AZ91D镁合金显微组织对其在特定环境下腐蚀行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为一种轻质工程材料,具有比重轻、比强度高、比刚度高、电磁屏蔽性能好及铸造性能优良等一系列优点,在汽车、3C、航空航天等领域有着广阔的应用前景。然而,镁合金的耐腐蚀性能较差,限制了镁合金的应用。目前对镁合金在NaCl溶液中的腐蚀行为的研究较多,但是对镁合金在大气腐蚀特别是在重污染地区等特殊环境下的腐蚀行为的研究还相对较少。镁合金产品的制造方式有铸造、压铸及半固态成形技术等,各种成形方式日趋成熟,但是针对不同成形工艺下镁合金显微组织对其腐蚀行为影响的研究还缺乏系统性,对镁及其合金在含硫酸根离子的溶液中的腐蚀行为的研究还相对较少,对触变成形铸件在热处理过程中显微组织的演变及耐腐蚀性能的研究也有待深入。因此,有必要系统研究AZ91D镁合金显微组织对其在大气及溶液等特殊环境下腐蚀行为的影响,以期丰富和发展镁合金腐蚀理论,为拓展镁合金的应用领域、充分发挥其性能潜力奠定坚实基础。
     本文利用金相显微镜、SEM、TEM、EDS、XRD、GDS、FTIR及电化学测试等方法,对不同显微组织的AZ91D镁合金在特殊环境下的腐蚀行为进行了研究,得到在不同环境下镁合金的腐蚀机制。对铸态和压铸态AZ91D在太原地区环境下进行室外暴露实验,研究了镁合金表面腐蚀产物层的结构特征和表面龟裂现象;通过比较压铸镁合金AZ91D在中性NaCl溶液、Na_2SO_4溶液、MgSO_4溶液及不同pH值的Na_2SO_4溶液中的腐蚀行为,系统研究了SO_4~(2-)离子对压铸镁合金腐蚀的影响,构建了AZ91D镁合金在含SO_4~(2-)溶液中腐蚀速率及腐蚀电位与pH值之间的关系图;比较了触变成形与高压压铸AZ91D镁合金在中性NaCl水溶液中的腐蚀行为,研究了不同显微组织对镁合金耐腐蚀性能的影响。详细研究了触变成形AZ91D镁合金铸件固溶、时效处理时显微组织的演变,分析了触变成形镁合金铸件时效强化的机理。
     镁合金AZ91D在重污染地区的大气腐蚀速率服从幂指数规律。铸态和压铸态镁合金在太原地区的大气腐蚀动力学方程分别为C=1.533t0.602及C=1.661t0.507。铸态和压铸态AZ91D在太原地区环境下暴露12个月的大气腐蚀速率分别为6.24g·m~(-2)·y~(-1)和5.97g·m~(-2)·y~(-1)。大气腐蚀产物包括Mg(OH)2、MgCO_3及Mg_2Al_2(SO_4)_5·39H_2O等,酸雨及SO2的存在是硫酸盐产物形成的重要原因。显微组织对镁合金大气腐蚀行为有较大的影响。表面缺陷主要影响镁合金初期的大气腐蚀速率,晶粒尺寸在AZ91D镁合金的大气腐蚀过程中影响着腐蚀产物层的厚度及表面裂纹分布,第二相分布情况主要影响大气腐蚀后期的腐蚀速率。
     压铸镁合金AZ91D在NaCl溶液中腐蚀48h后发生了点蚀,在含SO_4~(2-)的溶液中发生了全面腐蚀。各种溶液中的腐蚀速率大小顺序为:vNaCl>vMgSO_4>vNa_2SO_4,镁合金在含SO_4~(2-)的溶液中腐蚀速率相对较小,腐蚀过程主要是阴极析氢腐蚀控制。腐蚀产物主要为Mg(OH)_2及MgAl_2(SO_4)4·22H_2O。MgAl_2(SO_4)4·22H_2O的形成需要一个时间门槛值。压铸镁合金AZ91D在不同pH的Na_2SO_4的溶液中腐蚀速率大小顺序为酸性>中性>碱性溶液。随着pH值的增大,腐蚀速度呈递减趋势。在各种溶液中的腐蚀产物主要为MgAl_2(SO_4)_4·22H_2O、MgCO_3及Mg(OH)_2,不同的pH值不改变腐蚀产物类型,只改变腐蚀产物的形貌。在酸性Na_2SO_4的溶液中,浸蚀约330h后表面会发生点蚀现象。
     触变成形AZ91D镁合金组织中存在原固相α-Mg,其Al含量相对较低,导致共晶α-Mg中Al含量较高压压铸镁合金中共晶α-Mg要高。在腐蚀初期,触变成形铸件中原固相α-Mg作为主要腐蚀相,腐蚀一定时间后原固相α表面的腐蚀产物膜能较稳定地附着于α相表面阻止腐蚀继续发生,而后共晶α相作为主要被腐蚀相。电化学测试结果表明触变成形铸件腐蚀速率约比压铸铸件低28%。触变成形AZ91D镁合金在415℃时固溶处理导致β相溶入α-Mg固溶体,其固溶速率比高压压铸的快,在固溶初期观察到富铝晕圈。压铸态和触变成形试样在热处理过程中的晶粒长大动力学方程分别为d3-d03=588t和d3-d03=324t。触变成形铸件β相的快速溶解主要是因为其组织细小而且均匀。
Magnesium alloys have potential as structural materials for aerospace, 3C and other transport applications due to their high specific properties, low density and high damping capacity. However, the use of Mg alloys in these fields is still limited to some extent because of their susceptibility to corrosion. Despite such concern, very few studies are currently dedicated to the atmospheric corrosion of Mg alloys, especially in a polluted environment. Mg alloy parts are mainly formed by cast, high pressure die-casting and semi-solid processing. Previous studies have been extensively carried out on the corrosion behaviour of Mg alloys in NaCl solution. However, the corrosion processes of Mg alloys in solutions containing SO_4~(2-) ions still remain ambiguous. Although there are several works studied the corrosion behaviour and microstructure evolution of Mg alloy produced by semi-solid processes during heat treatment, there are rare reports concerning on the thixomolding Mg alloy. We aim to study the influence of microstructure on the corrosion behaviour of AZ91D magnesium alloys in particular environments in great detail. The results of our investigation may find wider applications for advancing materials.
     In this paper, the atmospheric corrosion behaviour of cast and high pressure die-cast AZ91D alloy in a polluted environment, the corrosion behaviour of die-cast AZ91D magnesium alloys in sulphate solutions with various pH value, the corrosion behaviors of the thixomolding and high die-casting AZ91D alloy in NaCl solution and the microstructure evolution of thixomolding AZ91D magnesium alloy during heat treatment were investigated by OM, SEM, TEM, XRD, FTIR, GDS and polarization measurements in order to provide further details regarding the corrosion processes and mechanisms of a die-cast Mg alloy in solutions containing the SO_4~(2-). The results are discussed in terms of the overall Mg corrosion theories.
     The kinetics of atmospheric corrosion of the ingot and the die-casting AZ91D alloys could be expressed as C=1.533t0.602 and C=1.661t0.507, respectively. The corrosion rates of the ingot and the die-casting AZ91D alloys exposed to the polluted environment were about 6.24 g·m~(-2)·y~(-1) and 5.97 g·m~(-2)·y~(-1), respectively. SO_2 gas played an important role in atmospheric corrosion. The main corrosion products of AZ91D alloys were Mg(OH)_2, Mg_2Al_2(SO_4)_5·39H_2O, and MgCO_3. The microstructure played an important role in the corrosion process. The initial corrosion rate was mainly influenced by surface defects. The thickness of the product layer and the diameter of the crack were greatly influenced by the grain size. The distribution of theβphase acts on the later corrosion rate.
     The pitting takes place on the die-casting specimen surface immersed in a NaCl solution when the immersion time is less than 48 h. In contrast, in Na_2SO_4 and MgSO_4 solutions, pitting corrosion does not occur, and the corrosion appears generalized because the aggressiveness of SO_4~(2-) is lower than that of Cl~-. The corrosion rate on the whole surface is approximately uniform in the sulphate solution. The corrosion rate order of the die-cast AZ91D Mg alloy in the three aqueous solutions is: vNaCl > vMgSO_4 > vNa2SO_4. The control factor of the corrosion process in the sulphate solution is the cathodic hydrogen-evolution corrosion. The main corrosion products are Mg(OH)_2 and MgAl_2(SO_4)_4·22H_2O in the sulphate solution. The precipitation of the MgAl_2(SO_4)_4·22H_2O needs a threshold immersion time. When the immersion time is extended to 6 h, the concentration of MgAl_2(SO_4)_4·22H_2O in the solution gradually became supersaturated and then began to precipitate from solution. The order of corrosion rate of Mg alloy in Na_2SO_4 solutions with various pH value was acidic solutions > neutral solutions > alkaline solutions. The corrosion products of the die-cast Mg alloy were mainly Mg(OH)_2 and MgAl_2(SO_4)4·22H_2O. The pH value could influence the corrosion rate and morphology of the corrosion products. Pitting occurred on the specimen surface which immersed in the acidic solution after immersed for about 330 h.
     There was unmeltedα-phase in the thixomolding specimen, and the Al content of which was low, so it made the Al content of the eutecticα-phase become higher than the die-casting specimen. The unmeltedαphase was a major corrosion phase at the early stage, with the corrosion time prolonged, the corrosion process was prevented due to the corrosion products covering on the unmeltedα-phase. And then, the eutecticα-phase corroded and dissolved. Electrochemical testing results showed that the corrosion rate of the thixomolding specimen was 28% lower than that of the die-casting specimen. The AZ91D Mg alloy specimen processed by thixomolding exhibits a fasterβphase dissolution rate than the die-casting alloy at 415℃solution treatment. The Al-rich halos have been seen at the early stage of the solution treatment because of Al diffusing from theβphase to the unmeltedα-globules. The thixomolding AZ91D alloy has fasterβphase dissolution kinetics in comparison with the die-casting alloy, showed as d3-d03=588t and d3-d03=324t, respectively. The reason is that initial secondaryα-Mg grain in the thixomolding specimen is equiaxed and fine, which makes the dissolution rate of theβ-Mg17Al12 faster.
引文
[1] Mordike B L, Ebert T. Magnesium properties-applications-potential[J]. Materials Science and Engineering A, 2001, 302 (1): 37-45.
    [2] Kojima Y. Platform science and technology for advanced magnesium alloys[J]. Mater. Sci. Forum., 2000, 350-351: 3-18.
    [3] Amy L. Rudd, Carmel B. Breslin, Florian Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium[J]. Corrosion Science 2000, 42(2): 275-288.
    [4]刘世友.镁工业生产、应用与发展[J].上海有色金属, 1995, 16(6): 353-357.
    [5]尹守义.国外镁合金的新发展[J].世界有色金属,1994, (7): 9-11.
    [6] Kojima Y. Platform science and technology for advanced magnesium alloys[J]. Mater Sci Forum, 2000, 350-351: 3-18.
    [7] Barll GPebere N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solution[J]. Corrosion Science, 2001, 43(3): 471-484.
    [8] Sanchez C. Nussbaum G., Azavant P, et al. Elevated temperature behavior of rapidly solidified magnesium alloys containing rare earths[J]. Materials Science and Engineering A, 1996, 221: 48-57.
    [9]张高会,张平则,潘俊德.镁及镁合金的研究现状及进展[J].世界科技研究与进展, 2003, (2): 72-78.
    [10] Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals[J]. Metallurgical Reviews, 1967, 12:169-194.
    [11]张津,章宗和,等.镁合金及应用[M].北京:化学工业出版社,2004.
    [12]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [13] Asm International, Magnesium and Magnesium Alloy[M]. OH: Metal Patk, 1999.
    [14] Aida T, Hatta H, Ramesh C. Work ability and mechanical properties of lighter- than-water Mg-Li alloy[J]. Proc. of the 3rd Inter. Magnesium Confer Manchester, Manchster, 1996: 143-153.
    [15]高仑.镁合金成形技术的开发与应用[J].轻合金加工技术,2004 (3) :5.
    [16]邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报,2002, (10): 37-39.
    [17]朱祖芳等.有色金属的耐腐蚀性及其应用[J].化学工业出版社,1995.
    [18]夏德宏,佘涛.镁的卓越特性[J].金属世界,2005, (3): 47-49.
    [19] Cahn R W,师昌绪,柯俊.非铁合金的结构与性能[M].北京:科学出版社. 1999
    [20]潘宪曾主编,压铸模具与设计[M].北京:电子工业出版社,2006.
    [21] Camahan R D, Decker R F, Vining R, et al. Influence of Solid Fraction on the Shrinkage and Physical Properties of Thixomolded Mg Alloys[J]. Die Casting Engineer, 1996(5-6): 54-59.
    [22]毛卫民.半固态金属成形技术[M].北京:机械工业出版社, 2004.
    [23] Wei Ying-hui, Yin Guo-sheng, Hou Li-feng, et.al. Formation mechanism of pits on the surface of thin-wall die-casting magnesium alloy components[J]. Engineering Failure Analysis, 2006, 13 (4): 558-564.
    [24] Mitterer C. Application of hard coatings in aluminium die casting soldering, erosion and thermal fatigue behaviour[J]. Surface and Coatings Technology, 2000, 125(1-3): 233-239.
    [25]赖华清,压铸工艺及模具[M].北京:机械工业出版社, 2004.
    [26] Nickodemus G.H., Wang C.M., Tims M.L., et al. Rheology of materials for semi-solid metalworking applications [A]. Proc.of the 5th Int. Conf. on Semi-solid Processing of Alloys and Composites, Golden, Colorado, June, 1998: 29-34.
    [27] Quak C J, Kool W H. Properties of semi-solid aluminum matrix composites[J]. Mater. Sci. Eng, 1994, 183A: 247-252.
    [28]倪红军.镁合金半固态铸造成形技术(SSP)的研究与应用[J].铸造技术,2000 (5): 37-63.
    [29] Molenaar J M, Salemans FWHC, Katgerman L. Analysis of process limits for continuous thixopic slurry casting[J]. Materials Science, 1985, 20: 700-707.
    [30] Midson S P .The commercial status of semi-solid casting in the USA[A]. In: Kirkwood D H, Kapranos P. Proc.40th International Conference on the Processing of Semi-solid Alloys and Composite [C], Shefield, University of Shefield, 1996, June, 251-255.
    [31] Zhang Y F, Liu Y B, Cao Z Y, et al. Mechanical properties of thixomolded AZ91D magnesium alloy[J]. Journal of materials processing technology, 2009, (209): 1375-1384.
    [32]王媛. AZ91D镁合金触变注射成形工艺及热处理研究[J].吉林大学硕士学位论文,2005.
    [33] Thixomat Inc. Thixomolding recognition grows[J]. Foundry Trade Journal, 1999, 2: 21-25.
    [34] Decker R F, Carnahan R D, Babij E, et al. Magnesium semi-solid metal forming[J]. Advanced Materials & Processes, 1996, 2: 41-42.
    [35] Carnahan R D, Decker R F, Vining R, et al. Influence of solid fraction on the shrinkage and physical properties of Thixomolded Mg alloys[J]. Die Casting Engineer, 1996, 5-6: 54-59.
    [36] Arbor Ann. Thixomolding of Magnesium components experiencing rapid commercial growth[J]. Die casting World, 1996, 6: 26-28.
    [37]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.
    [38]刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势[J].铸造技术,2007,(12): 1668-1671.
    [39]王义生,王建儒.可降解镁合金作为骨科应用生物材料的研究进展[J].河南医学研究,2009, 18(1): 75-77.
    [40]贺春.镁合金材料在机道交通行业中的应用前景[J].机车车辆工艺,2009,(1): 12-13
    [41]宋银川.镁合金材料在客车轻量化中应用的探讨[J].铁道车辆,2003, (5): 25-28.
    [42] Song Guangling, Bowles Amanda L, StJohn David H. Corrosion resistance of aged die cast magnesium alloy AZ91D[J]. Materials Science and Engineering A, 2004, (366): 74-86.
    [43] Makar G L, Kruger J. Corrosion of magnesium[J]. International Materials Reviews. 1993, 38(3): 138-153.
    [44] Rudd A L, Breslin C B, Mansfeld F. The Corrosion Protection Afforded by Rare-Earth Conversion Coatings Applied to Magnesium[J]. Corr Sci, 2000, 42(2): 275-288.
    [45] Fairman L, West J M. Stress corrosion cracking of a magnesium aluminum alloy[J]. Corrosion science, 1965, 5: 711-716.
    [46] Liu L J, Schlesinger M. Corrosion of magnesium and its alloys[J]. Corrosion Science,2009, (51): 1733-1737.
    [47] Heakal F. El-Taib, Fekry A M, Fatayerji M Z. Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions[J]. Electrochimica Acta, 2009, (54): 1545-1557.
    [48] Chen Jian, Dong Junhua, Wang, Jianqiu et al., Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution[J]. Corrosion Science, 2008, (50): 3610-3614.
    [49] CHENG Ying-liang, QIN Ting-wei, WANG Hui-min, et al. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 517-524.
    [50] Hampel C A. The Encyclypedia of Electrochemistry[C]. New York: Reinhold, 1964, p341.
    [51]徐卫军.镁合金腐蚀的负差数效应[J].甘肃联合大学学报(自然科学版), 2007, 21(3): 44-46.
    [52] Tunold R, Holtan H, May-britt H-B. Corros. Sci., 1977, 17: 353.
    [53] Song G, Atrens A, St John D, et al., Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions[J]. Corrosion Science, 1997, 39(10-11): 1981.
    [54] Maker G L, Kruger J. J. Electrochem. soc., 1990, 137(2): 414.
    [55]李瑛,宋光铃,林海潮等.金属镁在腐蚀介质中界面结构特征与负差数效应关系研究[J].腐蚀科学与防护技术, 1999, 11(4): 202-208.
    [56] Pardo A, Merino M C, Coy A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl[J]. Corrosion Science, 2008, (50): 823-834.
    [57] Song G, Atrens A, StJohn D, et al. The electrochemical corrosion of pure Magnesium in 1 N NaCl[J]. Corrosion Science, 1997, 39(5): 855-875.
    [58] Lopez-Buisan Natta M G. Evidence of two anodic processes in the polarization curve of magnesium in aqueous media[J]. Corrosion, 2001, 57(8): 712-720.
    [59] Lunder O, Lein J E. The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91[J]. Corrosion, 1989, 45(9): 741-748.
    [60] Mathieu S, Rapin C, Steinmetz J, et al. Corrosion study of the main constituent phases of AZ91 magnesium alloys[J]. Corrosion.Science, 2003, 45: 2741-2755.
    [61] Singh Raman R. K. The role of microstructure in localized corrosion of magnesium alloys[J]. Metall.Mater.Trans, 2004, A35: 2525-2562.
    [62] Ambat Rajan, Aung Naing Naing Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42: 1433-1455.
    [63] Song G, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions[J]. Corrosion Science, 1997, 39(10-11): 1981-2004.
    [64] Nobuyoshi Hara, Yasuhiro Kobayashi, Daisuke Kagaya, et al. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions[J]. Corrosion Science, 2007, 49: 166-175.
    [65] Chen Jian, Wang Jianqiu, Han Enhou, et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution[J]. Electrochimica Acta, 2007, 52: 3299-3309.
    [66] Chen Jian, Wang Jianqiu, Han Enhou, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1M Na2SO4 solution[J]. Materials Science and Engineering A, 2008, 488: 428-434.
    [67] Cai Q Z, Wang LS, Wei B K, Liu Q X. Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes[J]. Surface & Coating Technology, 2006, 200 (12-13): 3727-3733.
    [68] Li W P, Zhu L Q, Li Y H, Zhao B. Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na2SiO3 and KF[J]. Journal of University of Science and Technology Beijing, 2006, 13 (5): 450-455.
    [69] Wu C S, Zhang Z, Cao F H, et al. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions[J]. Applied Surface Science, 2007, (253): 3893-3898.
    [70] Song Guangling, StJohn David. Corrosion behaviour of magnesium in ethylene glycol[J]. Corrosion Science, 2004, (46): 1381-1399.
    [71] Lunder O, Nisancioglu K, Hansen R S. SAE Technical Paper No. 930755, 1993.
    [72] Fournier V, Marcus P, Olefjord I. Surf. Interf. Anal. 2002, (34): 494.
    [73] Nordlien J H, Nisancioglu K, Ono S, Masuko N. J. Electrochem. Soc. 1997, (144): 461.
    [74] Lindstr?m R, Svensson J E, Johanssoa L G. The influence of carbon dioxide on theatmospheric corrosion of some magnesium alloys in the presence of NaCl[J]. Journal of E1ectrochemical Society, 2002, 149(4): B103-B107.
    [75] Lindstrom R, Johansson L G, Svensson J E. The inflounce of NaCl and CO2 on the atmospheric corrosion of magnesium alloy AZ91[J]. Materials and Corrosion, 2003, 54: 587-594.
    [76] J?nsson Martin, Persson Dan. Christofer Leygraf. Atmospheric corrosion of field-exposed magnesium alloy AZ91D[J]. Corrosion Science, 2008, 50: 1406-1413.
    [77] J?nsson Martin, Persson Dan, Thierry Dominique. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D[J]. Corrosion Science, 2007, (49): 1540-1558.
    [78] Lindstr?m Rakel, Johansson Lars-Gunnar, Thompson George E, et al. Corrosion of magnesium in humid air[J]. Corrosion Science, 2004, 46: 1141-1158.
    [79]王凤平,李晓刚,林翠等. AZ91D镁合金在北京地区的大气腐蚀行为研究[J].中国腐蚀与防护学报, 2004, 24(6): 345-349.
    [80]徐卫军,马颖,吕维玲等.触变成型镁合金AZ91D在兰州城市大气中的腐蚀行为研究[J].腐蚀科学与防护技术, 2007, 19(1): 31-34
    [81]郑弃非,曹莉亚.镁合金的大气腐蚀试验研究[J].稀有金属, 2004, 28(1): 101-103.
    [82]林翠,李晓刚. AZ91D镁合金在含SO2大气环境中的初期腐蚀行为[J].中国有色金属学报, 2004, 14(10): 1658-1665.
    [83]李晋英,夏兰廷,王荣峰. AZ91D镁合金在青岛海洋大气中的腐蚀行为[J].中国铸造装备与技术, 2009(3): 44-46.
    [84]夏兰廷,李晋英,王荣峰. AZ91D镁合金在临汾工业大气中的腐蚀行为[J].中国铸造装备与技术, 2009(3): 15-17.
    [85]苏鹏,杜翠薇,李晓刚. AZ63镁合金牺牲阳极在高阻抗土壤环境中腐蚀行为研究[J].材料保护, 2008, 41(4): 4-6, 9.
    [86] Lambotte A. L’utilisation du magnesium comme materiel perdu dans l’osteosynthèse [J]. Bull Mém Soc Nat Chir, 1932, 28(9): 1325-1334.
    [87] Troitskii V V, Tsitrin D N. The resorbing metallic alloy‘Osteosinthez-it’as material for fastening broken bone[J]. Khirurgiia, 1944, 8 (1): 41-44.
    [88]任伊宾,黄晶晶,杨柯等.纯镁的生物腐蚀研究[J].金属学报, 2005, 41(11): 1228-1232.
    [89]宋光铃,宋诗哲.镁在人体模拟液中的腐蚀行为[J].物理化学学报, 2006, 22(10): 1222-1226.
    [90]吴振宁,李培,刘树勋等.镁合金腐蚀问题研究现状[J].铸造, 2001, 1: 583-586.
    [91]彭大暑,张辉,赵煜炜. AZ91镁合金锭耐腐蚀性能研究与应用[J].矿冶工程,2001, 11(1): 19-21.
    [92]徐萍,刘生发,黄尚宇等. AZ91镁合金显微组织对腐蚀性能的影响[J].中国铸造装备与技术, 2004, (4): 9-13.
    [93] Arne K, Dahle Young C, Lee Mark D, Nave Paul L, Schaffer David H StJohn. Development of the As-cast Microstructure in Magnesium-Aluminium Alloys[J]. Journal of Light Metals, 2001: 61-72.
    [94] Wei Ying-hui, Hou Li-feng, Yang Li-jing, et al. Microstructures and properties of die casting components with various thickness made of AZ91D alloy[J]. Journal of Materials Processing Technology, 2009, (209): 3278-3284.
    [95] Wei Ying-hui, Hou Li-feng, Xu Bing-she. Martensite in die-cast Magnesium Alloy[J]. Journal of Alloys and Compounds, 2009, (467): 130-134.
    [96] Cheng J J, Yuan S, Wang W X, et al. Solidification modes and morphology of liquid phase of semi-solid Mg alloy[J]. Foundry, 2005, 54(5): 442-445.
    [97] Song Guangling, Atrens Andrej, Dargusch Matthew. Influence of microstructure on the corrosion of diecast AZ91D[J]. Corrosion Science, 1999(41): 249-273.
    [98] Song Guangling, Atrens Andrej, Wu Xianlang, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corrosion Science, 1998, 40(10): 1769-1791.
    [99] Zhang Tao, Li Ying, Wang Fuhui. Roles ofβphase in the corrosion process of AZ91D magnesium alloy[J]. Corrosion Science, 2006, (48): 1249-1264.
    [100] Mathieu S, Rapin C, Hazan J, et al. Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys[J]. Corrosion Science, 2002, (44): 2737-2756.
    [101]李海宏,陈体军,郝远等.触变成形AZ91D镁合金在NaCl溶液中的应力腐蚀行为研究[J].材料保护, 2007, 40(10): 12-15, 44.
    [102]徐卫军,马颖,吕维玲等.触变成型镁合金AZ91D在NaCl水溶液中的腐蚀行为[J].中国腐蚀与防护学报, 2007, 27(4): 206-209.
    [103]李凌杰,雷惊雷,贺东海,徐辉,张胜涛,潘复生.原位椭圆偏振光谱法研究镁合金在模拟冷却水中的腐蚀[J].腐蚀科学与防护技术, 2009, 21(3): 236-238.
    [104] Yang Li-jing, Wei Ying-hui, Hou Li-feng, et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions[J]. Corrosion Science, 2010, (52): 345-351.
    [105]丁文江,向亚贞,常建卫,彭颖红. Mg-Al系和Mg-RE系合金在NaCl溶液中的腐蚀电化学行为[J].中国有色金属学报, 2009, 19(10): 1713-1719.
    [106]曾荣昌,周婉秋,韩恩厚,柯伟. pH值对挤压Mg合金AM60腐蚀的影响[J].金属学报, 2005, 41(3): 307-311.
    [1] Rudd Amy L, Breslin Carmel B, Mansfeld Florian. The corrosion protection afforded by rare earth conversion coatings applied to magnesium[J]. Corrosion Science 2000, 42(2): 275-288.
    [2] Mordike B L, Ebert T. Magnesium properties-applications-potential[J]. Materials Science and Engineering: A, 2001, 302 (1): 37-45.
    [3] Kojima Y. Mater. Sci. Forum., 2000, 350-351: 3-18.
    [4] Wang R M. Microstructures and dislocations in the stressed AZ91D magnesium alloys[J]. Materials Science and Engineering: A, 2002, 344(1): 279-287.
    [5] Wei Ying-hui, Yang Li-jing, Hou Li-feng, et al. Formation process of bright spots on surfaces of die-cast magnesium alloy components after chemical conversion treatment[J]. Engineering Failure Analysis, 2009, 16: 19-25.
    [6] Zhao Ming, Wu Shusen. A chromium-free conversion coating of magnesium alloy by a phosphate–permanganate solution[J]. Surface and Coatings Technology, 2006, 200(18-19): 5407-5412.
    [7] Lindstr?m Rakel, Johansson Lars-Gunnar, Thompson George E, et al. Corrosion of magnesium in humid air[J]. Corrosion Science, 2004, 46: 1141-1158.
    [8] J?nsson Martin, Persson Dan, Leygraf Christofer. Atmospheric corrosion of field-exposed magnesium alloy AZ91D[J]. Corrosion Science, 2008, 50: 1406-1413.
    [9]徐卫军,马颖,吕维玲等.触变成型镁合金AZ91D在兰州城市大气中的腐蚀行为研究[J].腐蚀科学与防护技术, 2007, 19(1): 31-34.
    [10]林翠,李晓刚. AZ91D镁合金在含SO2大气环境中的初期腐蚀行为[J].中国有色金属学报, 2004, 14(10): 1658-1665.
    [11]李晋英,夏兰廷,王荣峰. AZ91D镁合金在青岛海洋大气中的腐蚀行为[J].中国铸造装备与技术, 2009(3): 44-46.
    [12]夏兰廷,李晋英,王荣峰. AZ91D镁合金在临汾工业大气中的腐蚀行为[J].中国铸造装备与技术, 2009(3): 15-17.
    [13] Wei Ying-hui, Hou Li-feng, Yang Li-jing, et al. Microstructures and properties of die casting components with various thickness made of AZ91D alloy[J]. Journal of MaterialsProcessing Technology, 2009(209): 3278-3284.
    [14] Wei Ying-hui, Hou Li-feng, Xu Bing-she. Martensite in die-cast Magnesium Alloy[J]. Journal of Alloys and Compounds, 2009, (467): 130-134.
    [15] Cole G, Michigan D. In: Smith D Sed. Can Magnesium Achieve its Potential for Large Volume Usage in Automotive Components[R]. Magnesium-the Lightweight Solution-Automotive Sourcing Special Report, London: Automotive Sourcing UK Ltd, 1998.
    [16]苗爱梅,刘秀春,安炜等.太原地区主要污染物污染的气象特征[J].山西气象, 2005, (1): 14-16, 30.
    [17] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India[J]. Corrosion Science, 2006, (48): 3584–3608.
    [18]莱格拉夫C,格雷德尔T著,韩恩厚等译.大气腐蚀[M].北京:化学工业出版社.
    [19]苗爱梅,刘秀春,安炜等.太原地区主要污染物污染的气象特征[J].山西气象, 2005, (1): 14-16, 30.
    [20]徐可文,任璞,王军平.太原酸雨特征分析[J].山西气象, 2005, (4): 11-13.
    [21] Veleva L, Acosta M, Meraz E. Atmospheric corrosion of zinc induced by runoff[J]. Corrosion Science, 2009, (51): 2055-2062.
    [22] Nishikata Atsushi, Suzuki Fumiyuki, Tsuru Tooru. Corrosion monitoring of nickel-containing steels in marine atmospheric environment, Corrosion Science, 2005, (47): 2578-2588.
    [23] Hideki Katayama, Kazuhiko Noda, Hiroyuki Masuda, et al. Corrosion simulation of carbon steels in atmospheric environment[J]. Corrosion Science, 2005, (47): 2599-2606.
    [24] Bouteau Murielle, Cantin Sophie, Benhabib Fewzi, et al. Sliding behavior of liquid droplets on tilted Langmuir-Blodgett surfaces[J], Journal of Colloid and Interface Science, 2008, (317): 247-254.
    [25] Furmidge C G L, J. Colloid Sci. 1962, (17): 309.
    [26]孙秋霞主编.材料腐蚀与防护[M].北京:冶金工业出版社, 2004.
    [27] Song G L, Atrens A, Dargusch M. Influence of microstructure on the corrosion of die cast AZ91D[J]. Corrosion Science, l999, 41: 249-273.
    [28] Ambat Rajan, Aung Naing Naing, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42: 1433-1455.
    [29]周和荣,马坚,陆启凯等.典型铝合金在江津自然大气环境中的腐蚀行为研究[J].装备环境工程, 2009, 6(3): 10-14, 29.
    [30]宋光玲.镁合金腐蚀与防护[M].北京:化学工业出版社, 2007.
    [31]严川伟,何毓番,林海潮,等.铜在含SO2大气中的腐蚀初期规律和机理[J].中国有色金属学报, 2000, 10(5): 645-648.
    [1] Li-jing Yang, Yan-fang Li, Ying-hui Wei, et al. Atmospheric corrosion of field-exposed AZ91D Mg alloys in a polluted environment, Corrosion Science, DOI: 10.1016/j.corsci.2010.03.011.
    [2]万晔,严川伟.几种盐沉积和微量SO2对AZ91D镁合金大气腐蚀的协同作用[J].中国有色金属学报, 2006, 16(1): 176-182.
    [3]林翠,李晓刚. AZ91D镁合金在含SO2大气环境中的初期腐蚀行为[J].中国有色金属学报, 2004, 14(10): 1658-1665.
    [4]万晔.污染因素对金属大气腐蚀行为的影响[D].中国科学院金属研究所博士学位论文, 2004.
    [5]张汉茹,郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究[J].铸造设备研究, 2007, (3): 19-27.
    [6]马全友,王振家,王璐科等.压铸镁合金AZ91D在碱性NaCl溶液中的腐蚀行为[J].腐蚀科学与防护技术, 2005, 17(5): 328-330.
    [7] Song G, Atrens A, StJohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl[J]. Corrosion Science, 1997, 39(5): 855-875.
    [8] Pardo A, Merino M C, Coy A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl[J]. Corrosion Science, 2008, 50: 823-834.
    [9] Chen Jian, Dong Junhua, Wang Jianqiu, et al. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution[J]. Corrosion Science, 2008, 50: 3610-3614.
    [10] Song G, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions[J]. Corrosion Science, 1997, 39(10-11): 1981-2004.
    [11] Chen Jian, Wang Jianqiu, Han Enhou, et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution[J]. Electrochimica Acta, 2007, 52: 3299-3309.
    [12] Chen Jian, Wang Jianqiu, Han Enhou, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1M Na2SO4 solution[J]. Materials Science andEngineering A, 2008, 488: 428-434.
    [13] Nobuyoshi Hara, Yasuhiro Kobayashi, Daisuke Kagaya, et al. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions[J]. Corrosion Science, 2007, 49: 166-175
    [14]陈昌国,司玉军,余丹梅等. AZ31镁合金在MgSO4溶液中的电化学行为[J].中国有色金属学报, 2006, 16(5): 781-785.
    [4] Masataka Hakamada, Kazunori Shimizu, Tomokazu Yamashita, et al. Effect of initial microstructures on hot forging of Ca-containing cast Mg alloys[J]. Journal of Materials Science, 2010, (45): 719-724.
    [5] J. P. Park, M. G. Kim, U. S. Yoon, W. J. Kim. Microstructures and mechanical properties of Mg-Al-Zn-Ca alloys fabricated by high frequency electromagnetic casting method[J]. Journal of Materials Science, 2010, (44): 47-54
    [17] Wei Ying-hui, Hou Li-feng, Yang Li-jing, et al. Microstructures and properties of die casting components with various thickness made of AZ91D alloy[J]. Journal of Materials Processing Technology, 2009, (209): 3278-3284.
    [18] Wei Ying-hui, Hou Li-feng, Xu Bing-she. Martensite in die-cast Magnesium Alloy[J]. Journal of Alloys and Compounds. 2009, (467): 130–134
    [19]林翠,李晓刚. AZ91D镁合金在含SO2大气环境中的初期腐蚀行为[J].中国有色金属学报, 2004, 14(10): 1658-1665.
    [20] Song Guangling, Bowles Amanda L, StJohn David H. Corrosion resistance of aged die cast magnesium alloy AZ91D[J]. Materials Science and Engineering A, 2004, 366(1): 74-86.
    [21] Song G, Atrens A, StJohn D, et al. The electrochemical corrosion of pure Magnesium in 1 N NaCl[J]. Corrosion Science, 1997, 39(5): 855-875.
    [22] Lopez-Buisan Natta M G. Evidence of two anodic processes in the polarization curve of magnesium in aqueous media[J]. Corrosion, 2001, 57(8): 712-720.
    [23] Ambat Rajan, Aung Naing Naing, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J]. Corrosion Science, 2000, (42): 1433-1455.
    [24] Song G L, Atrens A, Dargusch M. Influence of microstructure on the corrosion of die cast AZ91D[J]. Corrosion Science, l999, (41): 249-273.
    [25]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.
    [1] Mordike B L, Ebert T. Magnesium properties-applications-potential[J]. Materials Science and Engineering: A, 2001, 302 (1): 37-45.
    [2] Wei Ying-hui, Yang Li-jing, Hou Li-feng, et al. Formation process of bright spots on surfaces of die-cast magnesium alloy components after chemical conversion treatment[J]. Engineering Failure Analysis, 2009, 16: 19-25.
    [3] Song G, Atrens A, StJohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl[J]. Corrosion Science, 1997, 39(5): 855-875.
    [4] Pardo A, Merino M C, Coy A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl[J]. Corrosion Science, 2008, (50): 823-834.
    [5] Chen Jian, Dong Junhua, Wang Jianqiu, et al. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution[J]. Corrosion Science, 2008, (50): 3610-3614.
    [6]张汉茹,郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究[J].铸造设备研究, 2007, (3): 19-27.
    [7] Song G, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions[J]. Corrosion Science, 1997, (39): 10-11.
    [8]张汉茹.镁合金的应用和腐蚀研究概况[D].兰州理工大学学报, 2004.
    [9] Chen Jian, Wang Jianqiu, Han Enhou, et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution[J]. Electrochimica Acta, 2007, 52: 3299-3309.
    [10] Chen Jian, Wang Jianqiu, Han Enhou, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1M Na2SO4 solution[J]. Materials Science and Engineering A, 2008, 488: 428-434.
    [11]李金桂,赵闺彦.腐蚀和防护控制手册[M].北京:国防工业出版社, 1988, 5-28.
    [12]申泽骥,谢华生,李宝东等.镁合金表面钝化膜结构研究及钝化处理技术进展[C]. 2002年中国材料研讨会论文集, 2002.
    [13] Natta Lopez-Buisan M G, Evidence of Two Anodic Processes in the Polarization Curvesof Magnesium in Aqueous Media[J]. Corrosion, 2001, 57(8): 712.
    [14]关云山,王成玲,戴杰等.不同形貌氢氧化镁的化学合成及影响因素[J].无机盐工业, 2006, 38(6): 1-4.
    [15] Lv J P, Qiu L Z, Qu B J. Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method[J]. Journal of Crystal Growth, 2004, 267: 676-684.
    [1] Kang C G, Jung H K. Semisolid forming process Numerical simulation and experimental study[J]. Metallurgical Transactions, 1972, 32(2): 363-371.
    [2] Cerri E, Evangelists E, Spigarelli S, et al. Effects of thermal treatment on microstructure and mechanical properties in thixo-cast aluminum alloy[J]. Materials Science and Engineer, 2000, A284(1): 255-260.
    [3] Zhao Ming, Wu Shusen. A chromium-free conversion coating of magnesium alloy by a phosphate–permanganate solution[J]. Surface and Coatings Technology, 2006, 200(18-19): 5407-5412.
    [4] Rudd Amy L, Breslin Carmel B, Mansfeld Florian. The corrosion protection afforded by rare earth conversion coatings applied to magnesium[J]. Corrosion Science, 2000, 42(2): 275-288.
    [5] Song G, Atrens A, StJohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl[J]. Corrosion Science, 1997, 39(5): 855-875.
    [6] Lunder O, Lein J E. The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91[J], Corrosion, 1989, 45(9): 741-748.
    [7] Mathieu S, Rapin C, Steinmetz J, et al. Corrosion study of the main constituent phases of AZ91 magnesium alloys[J]. Corrosion.Science, 2003, 45: 2741-2755.
    [8] Singh Raman R. K. The role of microstructure in localized corrosion of magnesium alloys[J]. Metall.Mater.Trans, 2004, A35: 2525-2562.
    [9] Wei Ying-hui, Hou Li-feng, Yang Li-jing, et al. Microstructures and properties of die casting components with various thickness made of AZ91D alloy[J]. Journal of Materials Processing Technology, 2009, (209): 3278-3284.
    [10] Wei Ying-hui, Hou Li-feng, Xu Bing-she. Martensite in die-cast Magnesium Alloy[J]. Journal of Alloys and Compounds, 2009, (467): 130-134
    [11] Cheng J J, Yuan S, Wang W X, et al. Solidification modes and morphology of liquid phase of semi-solid Mg alloy[J]. Foundry, 2005, 54(5): 442-445.
    [12] Song G L, Andrej Atrens. Matthew Dargusch, Influence of microstructure on thecorrosion of diecast AZ91D[J]. Corrosion Science, 1999, 41: 249-273.
    [13] Mathieu S, Rapin C, Hazan J, et al. Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys[J]. Corrosion Science, 2002, (44): 2737-2756.
    [14]刘道新.材料的腐蚀与防护,西安:西北工业大学出版社, 2005.
    [15] Wang Y, Liu G, Fan Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment[J]. Acta Materialia, 2006, (54): 689-699.
    [16]徐卫军,马颖,吕维玲等.触变成型镁合金AZ91D在NaCl水溶液中的腐蚀行为[J].中国腐蚀与防护学报, 2007, 27(4): 206-209.
    [17] Ambat Rajan, Aung Naing Naing Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42: 1433-1455.
    [1] Kang C G, Jung H K. Semisolid forming process Numerical simulation and experimental study[J]. Metallurgical Transactions, 1972, 32(2): 363-371.
    [2] Cerri E, Evangelists E, Spigarelli S, et al. Effects of thermal treatment on microstructure and mechanical properties in thixo-cast aluminum alloy[J]. Materials Science and Engineer, 2000, A284(1): 255-260.
    [3] Kang C G, Jung Y J, Youn S W. Horizontal reheating of aluminum alloys and semi-solid casting for a near net shape compressor component[J]. Journal of Materials Processing Technology, 2003, 135: 158-171.
    [4] Koren Z, Rosenson H, Gu Tman E M, et al. Development of semisolid casting for AZ91 and AM50 magnesium alloys[J]. Journal of Light Metals, 2002 (2): 81-87.
    [5]李元东,唐钟雪,郝远等.触变成形AZ91D镁合金的固溶和时效热处理研究[J].兰州理工大学学报, 2005, 31(5): 15-18.
    [6]唐钟雪,李元东,郝远.时效处理对触变成形AZ91D镁合金组织和力学性能的影响[J].热加工工艺, 2005(3): 5-7.
    [7] Wang Y, Liu G, Fan Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment[J]. Acta Materialia, 2006, (54): 689-699.
    [8] Czerwinski F. Size evolution of the unmelted phase during injection molding of semisolid magnesium alloys[J]. Scripta Materialia, 2003, (48): 327-331.
    [9] Bettles C J. The effect of gold additions on the ageing behaviour and creep properties of the magnesium alloy AZ91E[J]. Materials Science and Engineering A, 2003, (348): 280-288.
    [10] Wang Y, Liu G, Fan Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment[J]. Acta Materialia, 2006, (54): 689-699.
    [11] Huang J-f, Yu H-y, Li Y-b, et al. Precipitation behaviors of spray formed AZ91 magnesium alloy during heat treatment and their strengthening effect[J]. Materials and Design, 2009, (30): 440-444.
    [12]陈振华.镁合金[M].北京:机械工业出版社, 2000.
    [13]轻金属材料加工手册编写组.轻金属材料加工手册(上册)[M].冶金工业出版社, 1979.
    [14]长崎诚三,平林真编著,刘安生译.二元合金状态图集[M].北京:冶金工业出版社, 2004, p.35.
    [15]于海朋,王峰,于宝义.工艺参数和热处理对压铸AZ91D力学性能的影响[J].特种铸造及有色合金, 2002, (2): 27-28.
    [16] Zhao Z, Chen Q, Wang Y, et al. Microstructure evolution of an ECAE-formed ZK60-RE magnesium alloy in the semi-solid state[J]. Materials Science and Engineering A, 2009, (506): 8-15.
    [17]王锰,卢治森,于光等.轻金属材料加工手册[M].北京:冶金工业出版社, 1979.
    [18]王越,吴伟,刘正等. AZ91Hp非连续析出的组织转变特点[J].沈阳工业大学学报, 2000, 22(6): 465-470.
    [19] Clark J B. Age Hardening in A Mg-9wt.% Al Alloy[J]. Acta Metallurgic, 1968, 16(2): 141-152.
    [20] Celotto S, Bastow T J. Study of precipitation in aged binary Mg–Al and ternary Mg–Al–Zn alloys using 27Al NMR spectroscopy[J]. Acta Materialia, 2001, (49): 41-51.
    [21]《有色金属及热处理》编写组.有色金属及热处理[M].北京:国防工业出版社, 1981.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.