超长跨距无中继光传输新型技术的研究与试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超长跨距无中继光传输系统具有端到端直达通路,与传统的光传输系统相比,线路中间无光放大器或光电转换器等中继设备,无需专门建设为其供电的中继站,建设与运营成本低。特别是对于我国目前进行建设的跨大区,特高压输电线路的配套光通信系统而言,可有效解决通信线路经过沙漠,沼泽,山区等无人区的问题,大幅度降低中继站的建设与维护成本。另外超长跨距无中继光传输系统还运用于石油管道输送,跨海峡与岛屿间海底光纤通信中。
     本文针对超长跨距无中继光传输系统中的几种新型关键技术进行了理论与试验研究,重点研究了非线性抑制技术、遥泵放大技术、新型光纤技术以及新型码型技术。具体的研究工作如下:
     (1)对光纤通信中受激布里渊散射(SBS)与自相位调制(SPM)效应进行了深入的理论与试验研究。提出了试验测试系统SBS阈值的方法,并通过试验验证了对信号进行相位调制能有效提高SBS阈值。通过试验证明了在大入纤功率情况下SPM效应会造成一定的通道代价,提出并验证了抑制SPM效应的两种方法。
     (2)对遥泵放大器进行了理论与试验研究。提出了通过试验测试结合理论计算设计遥泵增益单元(RGU)在线路中最佳放置位置的算法,并通过试验验证了算法的准确性。
     (3)对超低损耗光纤在长距传输中的应用进行了理论与试验研究,并通过试验验证了新型光纤相比于普通光纤对长距离传输性能上的改善。
     (4)对新型码型中DPSK调制技术及平衡接收技术在长距传输中的应用进行了理论与试验研究,通过试验的方法验证了基于相位调制的DPSK码型对长距离传输性能的改善。
Compare to traditional optical transmission systems, ultra-long span Repeater-less optical transmission systems are characteristic of direct end to end routing without any line amplifier or repeater, which eliminate the need of power supply stations and thus reduce the construction and operating cost. Especially for the ongoing construction of long-span Ultra-High-Voltage transmission, the Repeater-less optical transmission systems can effectively avoid the repeaters in the routings through the no man's land such as deserts, swamps, mountains, thus largely cutting down the construction and maintenance costs of repeater stations. Additionally, the Repeater-less systems can be deployed at the oil pipeline transportation and submarine communication.
     This paper focus on the research and experiment of advanced techniques in the ultra-long span Repeater-less optical transmission, especially the suppressing of non-linear effect in the fiber, remotely pumped amplifiers, ultra low loss optical fiber and advanced optical modulation formats. The following are the abstract contents:
     (1) The theories and experiments of Stimulated Brillouin Scattering (SBS) and Self Phase Modulation (SPM) in the fiber are studied. The threshold of SBS is measured in experiment and increased greatly through externally phase modulation. Optical path penalty occurs at large launch power due to SPM. Two SPM suppressing methods are introduced.
     (2) The theories and experiments of remotely pumped amplifier are studied. An experimental and theoretical algorithm for calculating the optimal position of RGU is introduced, which is testified by the experiment.
     (3) Research and experiments on the application of ultra low loss optical fiber in ultra-long span optical transmission are introduced. It is proved that ultra low loss optical fiber takes obvious advantages over traditional fibers on the ultra-long transmission.
     (4) Theoretical and experimental studies on advanced optical modulation formats, especially DPSK, are introduced. DPSK presents better performance over OOK in experiments.
引文
[1]熊煌,李树辰,宋璇坤.超长站距光传输技术及其在电力系统的应用[J].电力系统通信,2008,29(185):9-10.
    [2]杨铸.超长距离无中继光传输技术及其应用[J].电力系统通信,2005,26(151):1-2.
    [3]夏江珍,谢同林,贾小铁,曾京文,何昕. 507km超长站距无中继光传输系统[J].电力系统通信,2009,30(197):10-12.
    [4]张娜,金志民.超长站距光通信技术在电力系统中的应用分析[J].电力系统通信,2008,29(181):11.
    [5]Winzer, P.J, Gnauck, A.H. and etal. Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator[C]. 36th European Conference, ECOC2010. 1-3.
    [6]杨宁,杨铸,漆启年,曾祥雨. DWDM系统中级联EDFA光信噪比计算[J].通信学报, 2003,23(1):75-79.
    [7]顾畹仪编著. WDM超长距离光传输技术[M].北京:北京邮电大学出版社,2005年
    [8](美)Keiser G著,李玉全,崔敏译.光纤通信(第三版)[M].北京:电子工业出版社. 2002年.
    [9]Takashi Mizuochi. Next Generation FEC for Optical Communication[R]. OFC/NFOEC2008 , San Diego, CA:pp9-14.
    [10]原荣.光通信技术讲座—十二光纤通信系统色散补偿和管理[J].光通信技术,2003,12:1-3.
    [11]A E Willner. Feature Issue on Fundamental Challenges in Ultra high Capacity Optical Fiber Communications Systems[J]. IEEE J of Quantum Electronics, 1998, 34(11):2053-2103.
    [12]Bryant, E.G. Carter, S.F. Wright, J.V. INFLUENCE OF KERR-EFFECT ON LONG-SPAN OPTICAL TRANSMISSION[C]. IET Conferences, 1990: 12/1 - 12/6.
    [13]郭建明,光纤非线性效应及其对光纤通信系统的影响[D],大连:大连理工大学,2000.39-40.
    [14]李长春等编著.超长距离光传输技术基础及其应用[M].北京:人民邮电出版社, 2008年.
    [15]Govind P.Agrawal. Nonlinear Fiber Optics, Fourth Edition[M]. USA: Academic Press,2007.
    [16]吕理想,张晓萍.不同形式非线性薛定谔方程及其分步傅里叶法求解[J].计算物理,2007,24(3): 373-375.
    [17]李长春.光传输系统中SPM效应的研究[J].光学与光电技术,2006,4(2):1-4.
    [18]周维军,李泽仁,王荣波.前向泵浦拉曼放大器增益特性理论分析[J].高能量密度物理,2008,9(3):122-124.
    [19]Malach, Miroslawa; Bunge, Christian-Alexander, Petermann, Klaus. Fibre-Independent Optimum Dispersion Mapping for SPM and XPM Suppression in 10 Gbit/s WDM NRZ Optical Transmission Systems[C]. ECOC, 2006.1– 2.
    [20]T.Minano, M.Fukutoku, K.Hattori, and H.Ono. Suppression of degradation caused by SPM/XPM + GVD in WDM transmission using bit-synchronous intensity-modulated DPSK[C]. in Proc. OECC, vol. 14D3, 2000:1-6.
    [21]A. Lucero, D. G. Foursa, and J.-X. Cai. Long-Haul Raman ROPA-Assisted EDFA Systems[R]. OSA/OFC/NFOEC 2009. San Diego, CA, USA, 2009.OThc3.
    [22]P.B. Hansen, L. Eskilden, S.G. Grubb. 529km unrepeatered transmission at 2.488GBit/s using dispersion compensation, forward error correction and remote post-and pre-amplifiers pumped by diode-pumped Raman lasers[J]. Electron.Lett, 1995,31(17):1460-1461.
    [23]杨宁,杨铸,漆启年,曾祥雨. DWDM系统中级联EDFA光信噪比计算[J].通信学报,2003,1(24):76-77.
    [24]J. D. Downie, J. Hurley, R. Khrapko, D. Ma, and S. Gray. Performance Comparison of a New Low-Attenuation Fibre with G.652 Fiber in Unrepeatered Single-Span Systems[C]. ECOC 2006, Cannes, France: Nexus Media Limited. 2006.1-2.
    [25]L.Eskildsen, P.B.Hansen, S.G.Grubb, etal. 490-km TRANSMISSION IN A“SINGLE-FIBER”2.488 Gb/s REPEATERLESS SYSTEM WITH REMOTE PRE-AMPLIFIER AND DISPERSIONCOMPENSATION[C]. 22nd ECOC’96, Oslo, Norway: Nexus Media Limited, TuD.2.4, 1996. 177-179.
    [26]左萌,张慧剑,顾蜿仪,徐大雄. 40Gb/s传输系统的解决方案及应用前景分析[J].现代有线传输,2004年04:87-88.
    [27]姜利民,罗玉兴,印新达,熊亮.电力系统光纤通信超长站距传输技术的研究[J].电力系统通信. 2008,29(185):24-25.
    [28]IvanP.Kaminow, TingyeLi, AlanE.Willner. OpticalFiber TelecommunicationsV B:Systems and Networks[M]. USA: Academic Press, 2008. 49-79.
    [29]郜晋玲,梅文丽. DWDM系统中先进光纤传输调制格式的调研.中国科技论文在线,http://www.paper.edu.cn.
    [30]Peter J. Winzer, Rene–Jean Essiambre. Advanced Optical Modulation Formats[R]. Proceedings of the IEEE, 2006. 94 (5). 957-968.
    [31]Andrey V. Kanaev, Gregory G. Luther, etal. Ghost-Pulse Generation Suppression in Phase-Modulated 40-Gb/s RZ Transmission[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003,21(6): 1486-1489.
    [32]A.N. Pilipetskii. Challenges of High Capacity Undersea Long-Haul Systems[C]. OSA/ACP 2009, 2009. ThCl.
    [33]Yonggyoo Kim, Seungki Nam, and Jichai Jeong. Yield Estimation of 10-Gb/s Electroabsorption Modulator-Integrated DFB Lasers Due to Chirp[J]. IEEE PHOTONICS TECHNOLOGY LETTERS,2002,14(4): 447-449.
    [34] Peter J. Winzer, Rene–Jean Essiambre. Advanced Optical Modulation Formats(R). Proceedings of the IEEE, 2006, 94(5). 957-968.
    [35]A.H.Gnauck, P.J.Winzer. Optical Phase-Shift-Keyed Transmission[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23(1): 115-117.
    [36]Jinyu Mo, Guangtao Zhou, JianChen and YangJing Wen. Single-Span Transmission of WDM RZ-DPSK Signal Over 310km Standard SMF Without Using FEC and Remote-Pumping[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17(10):2209-2211.
    [37]Gentaro Funatsu, Hideki Maeda, and Akira Naka. Suppression of stimulated Brillouin scattering by using RZ-DPSK format in long-span unrepeatered transmission system[C]. Advanced Modulation Formats, IEEE/LEOS Workshop on 2004. 17-18.
    [38]Hsin Min Wang, Yen Ting Lin and Hidenori Taga. Experimental investigation of nonlinear effects upon long-haul RZ-DPSK system with block-type dispersion map[R]. OECC 2009. 14th. FQ4.
    [39]Takashi Mizuochi. Kazuyuki Ishida, Tatsuya Kobayashi. etal. A Comparative Study of DPSK and OOK WDM Transmission Over Transoceanic Distances and Their Performance Degradations Due to Nonlinear Phase Noise[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003, 21(9):1933-1940.
    [40]J. P. Gordon and L.F. Mollenauer. Phase noise in photonic communications systems using linear amplifiers[J]. OPTICS LETTERS, 1990, 15( 23): 1351-1353.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.