城市生物质废物水热预处理技术和厌氧消化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以餐厨垃圾和果蔬垃圾为代表的城市生物质废物是造成城市生活垃圾传统处理处置过程中出现二次污染的主要原因。本文通过研究水热预处理工艺,强化城市生物质废物的固相有机物水解,使生物质废物能利用高效率的厌氧消化反应器进行消化。综合能耗及厌氧消化性能考虑,水热工艺条件为175℃/60分钟时是较佳的工艺条件。此时,VSS水解率为57.89%,SCOD浓度增加到129.54g/L,粘度降低了46.53%,产甲烷总量提高了5.8%。由于大量有机物转移到液相,单位体积上清液产甲烷量能增加70%,加快了城市生物质废物的甲烷化转化。悬浮固体浓度(SS)不会对水热反应造成明显影响。随着SS浓度增加,餐厨垃圾和果蔬垃圾的屈服应力迅速增加,流动性严重下降。因此水热工艺中对餐厨垃圾和果蔬垃圾的SS浓度应分别控制在10%和5%左右,当原始物料的SS浓度较高时,不宜进一步浓缩。
     针对水热后的生物质废物仍然存在大量固相基质的特点,研究固相基质在厌氧消化过程中的特征。在产甲烷潜势(BMP)的实验中发现,以餐厨和果蔬垃圾制成的固相基质具有良好的厌氧消化特性,最终甲烷化转化的部分占固相基质总量的58.9%-74.6%之间。在低于1:5的生物负荷率条件下,消化液中SCOD和VFA均没有出现积累。据此建立了固相基质厌氧消化动力学模型。利用实验室已运行的CSTR反应器对批式实验中求得的固相基质厌氧消化模型参数进行校核,其模型预测结果与实验结果相符。通过模型研究发现,在CSTR反应器中,HRT=20天为VSS的降解曲线的拐点,当HRT小于20天时,反应器内VSS浓度将迅速上升。水热后的生物质废物相对生物固体浓度有所提升,有利于应用ASBR反应器进行消化。
     对ASBR进行初步的建模分析表明,反应器内部存在固体积累的可能。利用连续运行的ASBR反应器进行研究发现,固相基质是妨碍ASBR反应器效率进一步提高的关键因素。对比分析表明,当反应器内部生物固体浓度能够维持较高的水平时,即使SRT缩短,也能获得较高的VSS去除率。因此,可以尝试改进ASBR反应器,增加生物固体浓度,以提高转化效率,稳定工况。
The municipal biowaste including kitchen waste and vegetable-fruit waste is the main reason for the secondary pollution in the traditional disposition process of MSW. Through the hydrothermal pretreatment process, the organic materials in solid phase of the biowaste would be hydrolyzed and liquefied, so the biowaste could be converted into methane more efficiently. Considering the energy cost and the anaerobic digestion capacity, the best technological conditions are about 175 degrees of temperature and 60 minutes of reaction time. Under this condition, 57.89% VSS are hydrolyzed, the concentration of SCOD reached to 129.54g/L, the kinetic viscosity reduced about 45.53%, and the total methane production increased about 5.8%. As most of organic matter liquefied, the methane production of per unit volume of supernatant increased 70%. The hydrothermal reaction didn’t influenced by the suspended solid concentration (SS). But with the SS increasing, the yield pressure of biowaste increased sharply caused the fluidity decreased. So in hydrothermal process, the SS of kitchen waste and vegetable waste should below 10% and 5%, while the initial SS of biowaste is pretty high, the biowaste should not be thickened further.
     To the characterization of high SS in biowaste being pretreated, the solid substrate behavior in anaerobic digestion is worth studying. In Batch experiment, the solid substrate was pretty easy to be anaerobic digested. Finally about 58.9% to 74.6% solid substrate converted into methane. During experiments, both SCOD concentration and VFA concentration were not accumulated. Based on the experimental data, anaerobic digestion kinetics model of solid substrate established. The value of parameters was calibrated by the data from CSTR reactors. From the model simulation, we found HRT=20d is the flex point for the solid substrate degradation, while HRT is less than 20 days, the solid substrate concentration would increase sharply. The relative concentration of biosolids of the reactor fed on biowaste pretreated would be elevated.
     Preliminary analysis of ASBR indicated that the solid substrate could be accumulated in the reactor. The experimental data indicated that the substrate in solid phase is the critical factor to elevate the efficiency of ASBR. Comparative analysis shows that when the biosolid concentration in the reactor could retain high level, most of VSS could be removed with the short SRT. So the ASBR reactor should be further modified to retain biosolid in short SRT.
引文
[1].蒋建国,固体废物处理处置工程.北京:化学工业出版社,2005年8月:1~2.
    [2].李国学,国立祥,李彦明,固体废物处理与资源化.北京:中国环境科学出版社,2005年8月:446~454.
    [3].王向会,李广魏等.国内外餐厨垃圾处置状况概述.环境卫生工程,2005年4月,13(2):41~44
    [4].吕凡,何品晶等.易腐性有机垃圾的产生与处理技术途径比较.环境污染治理技术与设备,2003年8月,4(8):46~51
    [5].徐清艳,徐剑波.城市生活垃圾的厌氧消化处理.闽江学院学报,2007年4月,28(2):94.
    [6]. Sang-Hyoun Kim, Sun-Kee Han, Hang-Sik Shin. Feasibility of bio-hydrogen production by anaerobic co-digestion of food waste and sewage sludge.International Journal of Hydrogen Energy,2004,29: 1607~1616.
    [7]. Converti A,DelBorghi A, Zilli M,Arni S,DelBorghi M. Anaerobic digestion of the vegetable fraction of municipal refuses: mesophilic versus thermophilic conditions. Bioprocess Engineering, 1999, 21:371~376.
    [8]. Lane A G.Laboratory scale anaerobic digestion of fruit and vegetable solid waste. Biomass, 1984, 5:245~259.
    [9]. Mata-Alvarez J, Cecchi F, Llabrés P, Pavan P. Anaerobic digestion of the Barcelona central food market organicwastes: experimental study. BioresourTechnology, 1992:39~48.
    [10].上海市市容环境卫生管理局.上海市固体废弃物处置发展规划. 2001,9
    [11]. European Environment Agency (EEA). Biodegradable Municipal Waste Management in Europe, January, 2002
    [12].汪群慧,马鸿志,王旭明,等.餐厨垃圾的资源化技术.现代化工, 2004, 24 (7) : 56~60.
    [13].胡贵平,杨万,张广裕.国内主要城市餐厨垃圾处理进展.城市管理与科技, 2006年,8(6): 267~272
    [14].张振华,汪华林,胥培军,李权柄.餐厨垃圾的现状及其处理技术综述.再生资源研究,2007年(5):31~34
    [15].李小卉.餐厨垃圾的危害及综合治理对策.研究与探讨, 2006( 11) : 24~25.
    [16].朱跃钊等.木质纤维素预处理技术研究进展.生物加工过程,2004年11月,4(2): 11~171.
    [17].张志红,饶为国.填埋场垃圾体的安全稳定性分析.中国安全科学学报, 2005(6): 108~112.
    [18]. Eid H T, Stark TD , Evans WD , et al. Municipal Solid Waste Slope Failure.Ⅰ: Waste and Foundation Soil Properties. Journal f Geotechnical and Geoenvironmental Engineering,2000 ,126 (5) :397~407
    [19].崔亚伟,陈金发.餐厨垃圾的资源化现状及前景展望.中国资源综合利用, 2006( 10): 31~32.
    [20].汪春霞.有机固体废弃物厌氧消化与综合利用.中国资源综合利用, 2006, 24( 7): 25~28.
    [21].解强,边炳鑫,赵由才.城市固体废弃物能源化利用技术.北京:化学工业出版社,2004.
    [22]. Zhang R H,Zhang Z Q.Biogasification of rice straw with an anaerobic-phased solids digester system[J].Bioresource Technology, 1999,68:235~245.
    [23].徐新华.垃圾中甲烷产率计算及全国垃圾甲烷气资源估算.自然资源学报, 1997年,12(1):89~93
    [24]. L.De Baere. Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology, 41(3): 283~290.
    [25]. Bouallagui H, Torrijos M, Godon J J, et al. Two-phase anaerobic digestion of fruit and vegetable wastes: bioreacotors performance. Biochemical Engineering Journal, 2004, 21:193~197.
    [26]. Piotr Sosnowski, Anna Klepacz-Smolka, Katarzyna Kaczorek. Kinetic investigation of methane co-fermentation of sewage sludge and organic fraction of municipal solid waste. Bioresource Technology, 2008,99: 5731~5737.
    [27]. Luis Ortega, Celine Husser, Suzelle Barrington, et al. Evaluating limiting steps of anaerobic degradation of food waste based on methane production tests. Water Science and Technology, 2008, 57(3): 419~422.
    [28]. Joon M H, Duk C, Tai H C. Dynamic process response to sludge thickening behaviors in the anaerobic sequence batch reactor treating high-solids-content waste. Journal of Bioscience and Bioengineering, 1999, 87(4): 525~530.
    [29]. Vieitez E R, Mosquera J, Ghosh S. Kinetics of accelerated solid-state fermentation of organic-rich municipal solid waste. Water Science and Technology, 41(3): 231~238.
    [30]. Barbara R, Lissette T, Enrique S. The effect of organic loading rate on the anaerobic digestion of two-phase olive mill solid residue derived from fruits with low ripening index. Journal of Chemical Technology and Biotechnology, 2007,82: 259~266.
    [31]. Zhijun Wang, Wei Wang, Xihui Zhang, Guangming Zhang. Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor. Journal of Hazardous Materials, 2009, 163(2-3):799~803.
    [32].荀锐,王伟,乔玮,尹可清.城市污泥处理现状与强化脱水的水热减量化技术.环境卫生工程, 2008年, 16(2): 28~32.
    [33]. Rebecca A Silverstein, Ye Chen, Ratna R Sharma-Shivappa, et al. Bioresouce Technology, 2007, 98: 3000~3011.
    [34]. Isil Toreci, Kevin J Kennedy, Ronald L Droste. Evaluation of continuous mesophilicanaerobic sludge digestion after high temperature microwave pretreatment. Water Research, 2009, 43: 1273~1284.
    [35]. Brooks R B. Heat treatment of sewage sludge,Water Pollution Control,1970,69(2):221~227.
    [36]. Geert Lissens, Willy Verstraete, Tobias Albrecht, et al. Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobactor succinogenes. Biodegradtion, 2004, 15: 173~183.
    [37]. Mavi Climent, Ivet Ferrer, Ma del Mar Baeza, et al. Effects of thermal and mechanical pretreatment of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal, 2007, 133: 335~342.
    [38]. Tomoki Minowa, Masanori Murakami, Yutaka Dote, et al. Oil production from garbage by thermochemical liquefaction. Biomass and Bioenergy, 1995, 8(2): 117~120.
    [39]. Valerie Penaud, Jean-Philippe Delgenes, Rene Moletta. Characterization of soluble molecules from thermochemically pretreated sludge. Journal of Environmental Engineering, 2000, May: 397~402.
    [40].王治军,剩余污泥“热水解-ASBR”处理工艺研究: [博士学位论文].北京:清华大学环境科学与工程系,2004.
    [41]. Pinnekamp J, Effects of thermal pre-treatment of sewage sludge on anaerobic digestion, Water Science and Technology, 1989, 21: 97~108.
    [42]. Li Y Y, Noike T, Upgrading of anaerobic digestion of waste activated sludge by thermal pre-treatment, Water Science and Technology, 1992, 26: 857~866.
    [43]. Hiraoka M, Takeda N, Sakai S, Yasuda A, Highly efficient anaerobic digestion with thermal pre-treatment, Water Science and Technology, 1985, 17: 529~539.
    [44]. Jason Dwyer, Daniel Starrenburg, Stephan Tait, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Research, 2008, 42: 4699~4709.
    [45]. Sara I F S Martins, Wim M F Jongen, Martinus A J S van Boekel. A review of maillard reaction in food and implications to kinetic modeling. Trends in Food & Technology, 2001, 11: 364~373.
    [46]. Namguk Her, Gary Amy, Diane McKnight, et al. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC and fluorescence detection. Water Research, 2003, 37: 4295~4303.
    [47]. Bjerre AB, Olesen AB, Fernqvist T, Ploger A and Schmidt AS,Pre-treatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and
    [48]. hemicellulose. Biotechnology Bioengineering, 1996, 49: 568~577.
    [49]. Armando T Q, Muhammad F, Kilyoon K, et al. Low-molecular-weight carboxylic acidsproduced from hydrothermal treatment of organic wastes. Journal of Hazardous Materials, 2002(93): 209~220.
    [50]. Evans T D, Boor M, MacBrayne D. Bioferiliser plant design-food waste to biofertiliser and biogas. 12th European Biosolids and Organic Resources Conference, Aqua Enviro, Manchester, UK, 2007.
    [51]. Barr K G, Solley D O, Starrenburg D J, et al. Evaluation, selection and initial performance of a large scale centralized biosolids facility at Oxley Creek Water Reclamation Plant, Brisbane. Water Science and Technology, 2008, 41: 1579~1586.
    [52]. Shigeki Sawayama, Seiichi Inoue, Tomoaki Minowa, et al. Thermochemical liquidization and anaerobic treatment of kitchen garbage. Journal of Fermentation and Bioengineering, 1997, 83(5): 451~455.?
    [53]. http://www.cambi.no/wip4/publications.epl?cat=10647
    [54].任连海,餐厨垃圾湿热水解处理技术研究与应用. [博士学位论文].北京,清华大学环境科学与工程系,2006.
    [55].乔玮,王伟,黎攀,等。城市污水污泥微波热水解特性研究.环境科学, 2008, 29(1): 152~157.
    [56]. Spinosa L, Lotito V. A simple method for evaluating sludge yield stress. Advances in Environmental Research, 2003, 7: 655–659.
    [57]. Cigdem Eskicioglu, Kevin J Kennedy, Ronald L Droste. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Research, 2006, 40: 3725~3736.
    [58]. Vavilin V A, Rytov S V, Lokshina Ya L. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology, 1996, 56: 229~237.
    [59]. Jokela J P Y, Vavilin V A, Rintala J A. Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation. Bioresource Technology, 2005, 96: 501~508.
    [60]. Vavilin V A, Fernandez B, Palatsi J, et al. Hydrolysis kinetics in anaerobic degradation of particulate organic materials: an overview. Waste Management, 2008, 28: 939~951.
    [61]. Rachel Dimock, Eberhard Morgenroth. The influence of particle size on microbial hydrolysis of protein particles in activated sludge. Water Research, 2006, 40: 2064~2074.
    [62]. Yasui H, Goel R, Li Y Y, Noike T. Modified ADM1 structure for modeling municipal primary sludge hydrolysis. Water Research, 2008, 42: 249~259.
    [63]. Bruce E Rittmann, Perry L McCarty. Environmental biotechnology principles and applications(环境生物技术原理与应用,文湘华,王建龙等译).北京:清华大学出版社,2004年.533页~536页
    [64]. Rao M S, Singh S P. Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield-organic loading relationships for process optimization. BioresourceTechnology, 2004, 95: 173~185.
    [65].刘国涛,彭绪亚,龙腾锐,等.有机垃圾序批式厌氧消化水解动力学模型研究.环境科学学报,2007,27(7):1227~1232.
    [66].吴行知,师绍琪,蒋展鹏,等。有机物厌氧生物降解性研究。给水排水, 2000,26(7):28~31.
    [67]. Geert Lissens, Anne Belinda Thomsen, Luc De Baere, et al. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environmental Science and Technology, 2004, 38: 3418~3424.
    [68]. Asa Davidsson, Christopher Gruvberger, Thomas H. Christensen, et al. Methane yield in source-sorted organic fraction of municipal solid waste. Waste Management, 2007, 27: 406~414.
    [69]. Masse D I, Droste R L. Comprehensive model of anaerobic digestion of swine manure slurry in a sequence batch reactor. Water Research, 2000,34(12): 3087~3106.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.