TiB_2颗粒增强Al-18%Si基复合材料的制备工艺和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铝基复合材料因其特有的重量轻、比强度与比模量高、耐磨及耐高温等优良性能,在航空航天、尖端武器、电子和汽车制造等行业中具有广阔的应用前景。
     本文以过共晶铝硅合金Al-18%Si作为基体,以Al-TiO_2-KBF_4-Na_3AlF_6为反应体系,通过热力学分析,采用熔体直接反应法制备了颗粒增强TiB_2/Al-18%Si复合材料。运用X射线衍射分析仪、金相显微镜、电子探针和扫描电镜等研究了复合材料的物相组成、铸态显微组织、颗粒增强体形貌及分布,探讨了反应温度、反应时间、搅拌强度等工艺参数对增强颗粒分布的影响;并通过硬度仪、拉伸试验机和摩擦磨损试验仪等测试了常温条件下复合材料的硬度、抗拉强度和干滑动摩擦磨损性能。获得的主要结果如下:
     (1)实验结果表明,Al-TiO_2-KBF_4-Na_3AlF_6反应体系原位制备复合材料的理想工艺参数为:反应温度为1000-1050℃之间,反应物加入量6wt %,反应混合物以压坯形态加入,反应时间为30min,外加较大的搅拌强度。
     (2)金相显微组织分析表明:TiB_2/Al-18%Si复合材料中α-Al枝晶晶粒尺寸较基体合金有一定程度细化,复合材料中的共晶硅尺寸也比基体中细小。
     (3)X射线衍射(XRD)、扫描电镜(SEM)和电子探针(EPMA)分析表明,该复合材料主要由Al、Si、TiB_2三相组成。原位内生的TiB_2颗粒尺寸十分细小(<1.0μm),并较弥散分布于Al-18%Si基体中。
     (4)力学性能实验结果表明,随着颗粒质量分数的增加,TiB_2p/Al-18%Si复合材料的硬度和抗拉强度均有显著提高,而伸长率呈下降趋势,当原位反应生成的颗粒质量分数达到6%时,该复合材料的布氏硬度由58.2增加到82.4,提高了40.7%,其抗拉强度为173.8MPa,较基体合金的131.5MPa提高了32.2%。拉伸断口形貌及机理分析结果表明,其复合材料的断裂机制以为脆性断裂为主。
     (5)室温干滑动磨损实验结果表明,TiB_2/Al-18%Si复合材料的耐磨性随着增强颗粒质量分数的增加而显著提高。摩擦表面SEM观察结果表明:复合材料的磨损形式既有粘着磨损又有磨粒磨损。
Particle reinforced aluminum matrix composites possess several additionaladvantages such as light weight, weal-resisting, high specific strength, high specificmodulus, high temperature-resisting and so on. So they are widely used in spacenavigation, aviation, advanced weapons, electronic industries and car manufacturing.
     Based on the thermodynamic analysis of Al-TiO_2-KBF_4-Na_3AlF_6 reaction system,the TiB_2P/Al-18%Si composites were manufactured by the directional melt reactionin-situ synthesis process. The phase composition, solidification microstructure, thedistribution of TiB_2 particles on the matrix and hardness of the composite wereinvestigated respectively by using XRD, OM, EPMA, SEM and other modemequipments. The effects of reaction temperature, reaction time, stirring intensity on thedistribution of reinforcing particles were studied. The mechanical properties and drywear property of the composites have also been tested.The nature and mechanism ofthese characteristics have been analyzed. The main results are as follows:
     (1)Experimental results show that the optimization parameters for the fabricationof TiB_2/Al-18%Si composites by using of Al-TiO_2-KBF_4 -Na_3AlF_6 reaction system areas following:the initial reaction temperature is between 1000℃to 1050℃, the amountof reactant added 6wt%,adding the reaction mixture as lump, the reaction time is30min,making a large stiring intensity.
     (2)Microstructure analysis shows that the grain size ofα-Al and eutectic Si ofTiB_2P/Al-18%Si in situ composite is smaller than that of Al-18%Si matrix alloy.
     (3)XRD, SEM and EPMA analysis indicated that there were Al, Si, and TiB_2phase in the composite. The in-situ TiB_2 particles are less than 1.0μm, and uniformlydistribute in the Al-18%Si matrix alloy.
     (4)Mechanical property tests show that the hardness and tensile strength ofTiB_2P/Al-18%Si composites were higher significantly than that of Al-18%Si matrixalloy respectively. And increased with the increase of the mass fraction of the particles,while the elongation decreased.With the 6% in-situ particulate, the values for tensilestrength and hardness reached to 82.4 and 173.8MPa, increased by 40.7% and 32.2%respectively compared with those of Al-18%Si matrix alloy. Morphology analysis forthe fracture surface of the composites showed that the fracture mechanism is brittlefracture.
     (5)Dry sli ding wear tests at room temperat ure shows that the wear resist ance ofthe composites is superi or to that of its matrix alloy. The wear mechanis ms of thecompositesis adherence wear and abrasi on wear.
引文
[1]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社, 1996:3-5
    [2]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006:11-13
    [3] Merzhanov A G, Borovinskaya I P, Surbrahmanyam J, et al. Self-propagatinghigh-temperature synthesis[J]. Mater.Sci., 1992, 27(23):6249-6273
    [4] Urquhart A W. Novel Reinforced ceramics and metals review of lanxide’scomposite technologies[J]. Mater. Sci. Eng. , 1991, A131(1):75-81
    [5]研红革,陈振华,黄培云.反应合成原位(in-situ)复合材料制备技术进展[J].材料科学与工程, 1997, 15(1):6-10
    [6]易宏展.原位自生TiB_2/Al复合材料及其反重力成型研究[D].上海:上海交通大学博士学位论文, 2005
    [7] Choi Y, Mullins M E, Wijayatilleke K, et al. Fabrication of metal matrixcomposites of TiC-Al through self-propagating synthesis reaction[J]. Metall. Trans.A, 1992, 23A: 2387-2392
    [8] Gotman I , Koczak M J , Shtessel E . Fabrication of Al matrix in situ compositesvia self-propagating synthesis[J]. Mater. Sci. Eng., 1994, A187(2):189-199
    [9] Dunmead S D, Munir Z A. Simultaneous synthesis and densification of TiC/Ni2composites [J].Mater. Sci., 1991, 26 (9):2410-2416
    [10] Choi Y, Mullins M E, Wijayatilleke K, et al.Fabrication of metal matrixcomposites of TiC/Al through self-propagating synthesis reaction[J].Metallurgieal Transactions, 1992, A23 (9):2387-2392.
    [11] Gotman I, Koczak M J, Shtessel E. Fabrication of Al matrix in situ compositesvia self-propagating synthesis[J]. Mater. Sci. & Eng A , 1994, 187(2): 189-199
    [12] KOstka A, Lelatko J, Gigla M. TEM study of the interface in ceramie-reinforcedaluminum-based composites[J]. Materials Chemistry and Physics, 2003, 81:323-325
    [13] Yong J K, Makoto K, Takao C, et a1. Fabrication of TiB_2/Al combustion synthesisof Al-Ti-B system[J].Materials Transactions, 2002, 43(11):2796-2801
    [14]惠希东,王执福,杨院生,等.液态反应法制备TiCp增强铸造Fe-Cr-Ni基复合材料[J].金属学报, 1998, 34:1115-1120
    [15] Christodoulou L, Nagle D C, Brupbacher J M. Process for forming etal-secondphase composites and product thereof[P]. U.S.Patent, US4751048, 1988
    [16] Brupbacher J M, Christodoulou L, Nagle D C. Rapid solidification of metalsecondPhase composites[p], U.S.Patent, US4836982, 1989
    [17] Ma Z Y, Li J H, Luo M, et al. In-situ formed Al2O3 and TiB_2 particulatesmixture-reinforced aluminum composite[J]. Scripta Metall. Mater., 1994, 31(5):635-639
    [18] Kuruvilla A K, Prasad K S. Bhanuprasad V V, et al.Microstructure-propertycorrelation in Al/TiB_2 (XD) composites[J] Scr. Metall. Mater. 1990, 24:873-878
    [19] Beck Tan N C, Aikin R M, Briber R M. Fracture toughness of discontinuouslyreinforced A1-4Cu-1.5Mg/TiB_2 composites[J]. Metall and Mater Trans A, 1994,25 (11):2461-2467
    [20]朱和国,王恒志,孙强金,等.Al-TiO2-B系XD合成铝基复合材料的力学性能[J].材料科学与工程学报, 2005, 23(1):8-11
    [21] Chen Z C, Takeda T, Ikeda K. Microstructural evolution of reactive-sinteredaluminum matrix composites[J]. Composites Science and Technology, 2008, 68:2245-2253
    [22] Wood J V, Davies P, Kellie J L F. Properties of reactively cast aluminum-TiB_2alloys[J]. Mater.Sci.Tech, 1993, 9 (10):833-840
    [23]陈于勇,陈玉勇,舒群,等.盐类反应制备TiB_2/Al-4.5Cu复合材料的研究[J].特种铸造及有色合金, 1997, (6):1-4
    [24]崔国明,曾建民,汤宏群,等.TiB_2p/Al-Sn复合材料的制备及摩擦磨损性能研究[J].铸造技术, 2006, 27(4):337-340
    [25]陈东,乐永康,白亮,等.原位TiB_2/7055铝基复合材料的力学性能与阻尼性能[J].功能材料, 2006, 37(10):1599-1601
    [26]易宏展,马乃恒,李险峰,等.原位合成TiB_2/ZL109复合材料的热处理特性[J].中国有色金属学报, 2005, 15(8):1184-1188
    [27]尧军平,谭艳军,张磊.原位自生TiB_2/Al-7Si复合材料组织和性能研究[J].铸造技术, 2009, 30(2):247-251
    [28]曾松岩.一种新型的金属基复合材料的方法-接触反应法[J].宇航材料工艺,1995, (5):27-30
    [29] Rajnesh Tyagi. Synthesis and tribological characterization of in situ cast Al–TiCcomposites[J]. Wear, 2005, 259(1-6):569-576
    [30] Fan T X, Zhang D ,Yang G, et al. Fabrication of in situ Al2O3/Al composite viaremelting[J]. Journal of Materials Processing Technology, 2003, 142(2):556-561
    [31] Enjamin J S. Dispersion strengthened superalloys by mechanical alloying[J].Metall. Trans, 1970, 16 (1):2943-2951
    [32] Murty B S, Ranganathan S. Novel materials synthesis by mechanical alloying/milling[J]. International Materials Reviews, 1998, 43 (3):101
    [33] Cambronero L E G,Sanehez E,Ruiz-Roman J M. Meehanical tetisation of AA7015 auminlum alloy reinforced with ceramics[J]. Journal of Material ProcessingTechnology. 2003, 143-144:378-383
    [34] Yuasa, Morooka, Toshimasa. Sintering of mechanically alloyed Cu-Ti-B powder[J]. Journal of the Society of Powder and Powder Metallurgy, 1994, 274:278-280
    [35] Yi H C, Moore J J. Review of self-propagating high-temperature synthesis ofpowder compacted materiols[J]. Mater. Sci., 1990, 25 (2B):1159-1168
    [36] Kohashi M. In-situ processing of TiB_2, AlN/Al composites by spontaneousinfiltation technique and the hardness of thecomposites[J]. Light Metals(in Jap),1995(7):397-402
    [37]王桂松,耿林,王德尊,等.反应热压(Al_2O_3+TiB_2+Al_3Ti)/Al复合材料的组织形成机制[J].中国有色金属学报, 2004, (2):229-232
    [38] Tjong S C, Wang G S, Geng L. Cylic deformation behavior of in-situ aluminummatrix composites of the system Al-A13Ti-TiB_2-Al_2O_3[J]. ComPosites Seienceand Technology, 2004, 64:1971-1980
    [39] Sahoo P, Koczak M J. Microstructure-property relationships of in situ reactedTiC/Al-Cu metal matrix composites[J]. Mater. Sci. Eng., 1991, A131(1), 69-76
    [40] Premkumar M K, Chu M G. Al-TiC particulate composite produced by a liquidstate in situ process[J]. Mater. Sci. Eng., 1995, A_20_2(1-2):172-178
    [41] Aghajanian M K, Macmillan N H, Kennedy C R, et al. Properties and microstructures of lanxide Al_2O_3-Al ceramic composite materials[J]. J. Mater. Sci.,1989, 24(2):658-670
    [42] Salas O, Ni H, Jayaram V, et al. Nucleation and growth of Al_2O_3/metalcomposites by oxidation of aluminum alloys[J]. J. Mater. Res., 1991,6(9):1964-1981
    [43] Lu L, Lain M O,Su Y,et al. In situ TiB_2 reinforced Al alloy composites[J].Scripta. Materalia, 2001, 45:1071-1023
    [44] Humphreys F J.Behaviour of metallic and ceramic composites[J]. RisoInt Symp,1988, 25(9):51-74
    [45]张洪立.铝基复合材料在惯性导航仪表中的应用分析[J].宇航材料工艺,2001(3):10-14
    [46] Karthikyan R, Adalarasan R, Pai B C. Optimization of machining characteristicsFor Al/SiCp composites using ANN/GA[J]. Mater.Sci.Technol., 2002, 18(l):47-50
    [47] Hoover W R. Fabrication of particulates reinforced metal composites[J].Proceedings of an International Conference, 1990:115
    [48] TarnopouskiiYu M, Vlkulakov. Applied problems of mechanics of compositestructures[J]. J.of Composite Materials, 1997, 31(12):1249
    [49]于家康.混杂2D-Cr/Al电子封装复合材料的研究[D],西安:西北工业大学博士学位论文, 2000
    [50] Peng H X,Wang D Z,Geng L.Evaluation of the microstructure of instureactionprocessed A13Ti,A12O3,Al composite[J]. Scripta Materialia, 1997, 37(2):199-204
    [51]刘耀辉,李庆春,何镇明.金属基铸造颗粒复合材料[J].复合材料报, 1989,(1):55
    [52]刘金水,肖汉宁,舒震,等.原位TiC颗粒增强Al-Cu复合材料的组织及性能[J].中国有色金属学报, 1998, 8(2):259-263
    [53] Kumar S,Subramanya S V,Murty B S.Influence of in situ formed TiB_2 particleson theabrasive wear behaviour of Al-4Cu alloy[J]. Materials Science andEngineering, 2007, A465:160-164
    [54] Wang Y, Wang H Y, Ma B X,et a1.Effect of Ti/B on fabricating TiB_2p/AZ91composites by employing a TiB_2p/Al master alloy[J]. J Alloys Compounds, 2006,422( 1-2 ):178
    [55]尹彩流.自生颗粒增强铝基复合材料制各和性能的研究[D].南宁:广西大学博士论文, 2004
    [56]何春年,赵乃勤.纳米相增强铝基复合材料制备技术的研究进展[J].兵器材料科学与工程, 2005, 28 (3):53-56
    [57]孙跃军,仲伟深,时海芳,等.金属基复合材料的研究现状与发展[J].铸造技术, 2004, 25 (3):158-160
    [58]郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社, 2004
    [59]宋永刚,郑晶,谭梅风.颗粒增强铝基复合材料的制备和组织分析[J].南京师范大学学报, 2006, 6(4):53-58
    [60]刘静安,谢水生.铝合金材料的应用与技术开发[M].冶金上业出版社, 2004
    [61] Lioyd D J.Particle reinforced aluminum magnesium matrix composites[J]International Materials Reviews. 1994, 39(1):1-22
    [62]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社, 2006
    [63] Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrixcomposites [J]. Mater Sci, 1991, 26 (1):1137-1156
    [64] Parka B G, Crosky A G, Hellier A K. Fracture toughness of microsphere Al2O3-Alparticulate metal matrix composites [J].Composites: Part B, 2008, 39:1270
    [65]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社, 2006
    [66] Chen S H, Wang T C. Size effects in the particle-reinforced metal-matrixcomposites[J]. Acta Mech, 2001, 157:113
    [67]吴人洁.金属基复合材料的发展现状与应用前景[J].航空制造技术,2001(3):19-22
    [68] Lakshmi S, Lu L, Gupta.In situ preparation of TiB_2 reinforced Al basedcomposites[J]. Journal of Material Processing Technology, 1998, 73:160-166
    [69] Tee K L, Lu L, Lai M O. In-situ processing of Al-TiB_2 Composites by the StircastingTechnique[J]. Journal of Materials Processing Technology, 1999,89-90:513-519
    [70] Ronald G, Munro. Material properties of titanium diboride[J]. J Res Natl InstStand Techn, 2000, 105(5):709-720
    [71] Youssef Y M, Dashwood R J, Lee P D. Effect of clustering on particle pushingand solidification behavior in TiB_2 reinforced aluminum PMMCs[J]. Appl SciManuf, 2005, 36(6):747
    [72] Emamy M.Formation of TiB_2 particles during dissolution of TiAl3 in Al-TiB_2metal matrix composite using an in situ technique[J]. Comp Sci Techn, 2006,66(7-8):1063
    [73] Tjong S C, Tam K F. Mechanical and thermal expansion behavior of hippedaluminum-TiB_2 composites[J]. Mater Chem Phys, 2006, 97(1):91
    [74] Yi H Z, Ma N H,Li X F,et a1.High-ternperature mechanics properties of in situTiB_2p reinforced Al-Si alloy composites[J]. Mater Sci Eng A, 2006, 419(1-2):12
    [75]苏雅璇,马乃恒,易宏展,等.原位合成TiB_2/ZL109复合材料的力学性能[J].热加工工艺, 2006, 35(18):11
    [76]孟保平,张英,关武红.高硅铝合金A390铸棒的生产工艺研究[J].有色金属加工, 2004, 33(3):5-7
    [77]王双喜,刘雪敬,孙家森.铝基复合材料的制备工艺[J].热加工工艺, 2006,35(1):65-69
    [78]杨伏良,甘卫平,陈招科.高硅铝合金几种常见制备方法及其细化机理[J].材料导报, 2005, 16(5):42-45
    [79]金鹏,刘越,李曙,等.颗粒增强铝基复合材料在航空航天领域的应用[J].材料导报, 2009, 23(6):24-28
    [80] Zhao M, Wu G H, Dou Z Y. TiB_2/Al Composite fabricated by squeeze castingtechnology[J]. Materials Science and Engineering, 2004, A374:303-306
    [81] Riley Jeed. Ceramic race materials[M]. John son inc,1990,l3-l9
    [82]纪嘉明,周飞,李中华,等.TiB_2和ZrB2晶体结构与性能的电子理论研究[J],中国有色金属学报, 2000, 10(3):358-360
    [83]崔峰,耿浩然,钱宝光,等.原位生成TiB_2/ZA27复合材料的制备与性能[J].复合材料学报, 2004. 21(4):87-91
    [84]卢光照,候增寿,金属学教程[M].上海:上海科学技术出版社, 1985, 82-87
    [85] Lu L,Lai M O, Su Y,et al. In situ TiB_2 reinfored Al alloy composites[J]. ScriptaMaterialia, 2001, 45:1017-1023
    [86]马宗义,毕敬,吕瑁雄,等.原位生长TiB_2增强Al复合材料的研究[J].金属学报, 1992, 28(9):419-422
    [87] Jha A, Dometakis C. The dispersion mechanism of ceramic phase in moltenaluminum and its alloys [J]. Materials&Design, 1997, 18(4):297-301
    [88] Sadykov F A,Barykin N P,Aslanyan I R.Wear of copper and its alloys withsubmicrocrystalline structure[J]. Wear, 1999, 225-229:649-655
    [89]韩延峰,刘相法,边秀房,等.原位生成TiB_2/ZL10_2复合材料的研究[J].特种铸造及有色合金, 2000, 6:35-37
    [90]刘红卫,陈康华.原位合成TiB_2和Al3Ti对ZL20_1的晶粒细化效果[J].特种铸造及有色合金, 2000, 2:4-6
    [91]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社, 1996
    [92]梁岩峰,董晟全,杨通.原位增强相(TiB_2+TiAl_3)形成的热力学分析[J].特种铸造及有色合金, 2005, 25(7):397-399
    [93]齐广慧,刘相法,杨志强等.“绿色”高效Al-Si合金变质剂Al-P中间合金[J].材料科学与工艺, 2001, 9 (2): 211-215
    [94]陈子勇,陈玉勇,舒群.原位反应法制备Al/A1_3Ti复合材料组织和性能[J].复合材料学报, 1997, 14(2):66-70
    [95]杨平.原位合成铝基复合材料凝固组织中TiB_2粒子的特性[J].中国有色金属学报, 1999, 9 (4):752-758
    [96]闫卫平,荣福杰,宋国金,等.混合盐法制备TiB_2/Al复合材料的研究现状[J].铸造, 2006, 55(11):1114-1117
    [97]赵瑞锋,刘忠侠,杨明生,等. Mg对原位合成TiB_2/Al-7Si复合材料的微观组织及力学性能的影响[J].中国有色金属学报, 2009, 19(9):1548-1554
    [98]徐萌,陈刚,赵玉涛,等.电磁搅拌制备TiB_2颗粒增强7055铝基复合材料的研究[J].铸造, 2009, 58(12):1233-1237
    [99]赵芳欣,张瑛洁,尹绍奎,等.原位生成铸造TiB_2/Al-7Si复合材料的微观特征及弹性模量[J].铸造, 1998, 47(12):13-16
    [100] Iain L. Principles of mechanical metallurgy[M]. Edw ard A rnold, Ltd,U. K,1981
    [101] Skolianos S, Kattamis T Z. Tribological properties of SiCp-reinfoce Al-14.5%Cu-1.5%Mg alloy composites[J]. Mater. Sci. Eng. A, 1993, A163:107-113
    [102]吴洁君,王殿斌,桂满吕,等.颗粒增强铝基复合材料干滑动摩擦性能述评[J].稀有金属, 1999, 23(3):214-219
    [103] Thakur S K,Dhindaw B K. The influence of interfacial characteristics betweenSiCp and Mg/Al metal matrix on Wear voefficient of friction andmicrohardness[J]. Wear, 2001,247(2):191-201
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.