基于水溶性共轭聚合物PPESO_3的荧光传感器制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物(Conjugated Polymers,CPs)是指碳链骨架上含有单、双键交替共轭体系的聚合物。作为高性能的光学电学材料,CPs拥有广泛的应用前景,已被广泛地应用于发光二极管、电化学电池、塑料激光器、太阳能电池、场效应晶体管等。同时,基于CPs的荧光传感器也受到越来越多的关注。本论文第一章中,我们首先概括了共轭聚合物的发展历史、结构性质,介绍了其猝灭原理并研究了CPs标志性的荧光特征—超猝灭。接着,我们综述了基于CPs的荧光传感器在离子检测、生物分子检测、爆炸物质检测方面的应用。最后我们对基于CPs的荧光传感器的应用前景进行了展望,并设计了几种基于水溶性共轭聚合物PPESO_3的新型荧光传感器,此传感器不但可以用于苯醌和对苯二酚和过氧化氢的高灵敏检测,还能作为生物传感器检测儿茶酚胺,以及免标记turn-on检测生物硫醇.
     第二章中,我们利用了一种简便的路线成功地合成了PPESO_3,并对其进行了表征。还详细研究了PPESO_3的基本光学性质以及其荧光的影响,为PPESO_3荧光传感器的制备和应用做了良好的铺垫。并利用水溶性共轭荧光聚合物PPESO_3在乙醇:水=1:1的溶剂中实现了对稀土离子La(III)的高灵敏检测。
     第三章中,我们利用制备的PPESO_3建立了一种新型的荧光传感器,此传感器可以灵敏地检测了苯醌,对苯二酚和过氧化氢:由于共轭荧光聚合物PPESO_3可以被苯醌猝灭,并且PPESO_3的荧光强度在猝灭前后之比(I_0/I)与苯醌的浓度成正比,在1.0×10~(-6)~3.0×10~(-3)mol/L浓度区间内满足斯特恩方程,从而可以实现对苯醌的检测。利用H_2Q在HRP和H_2O_2共同存在条件下能够被催化氧化为醌的形式,使PPESO_3超猝灭,可以实现对H_2Q的检测。另一方面,在HRP和H_2Q同时存在时,加入具有氧化性的过氧化氢,也能够产生苯醌超猝灭PPESO_3,可以实现对于H_2O_2的检测。我们的荧光传感器检测对苯二酚和过氧化氢的线性范围分别是1.0×10~(-6)~2.0×10~(-3)和6.0×10~(-6)~2.0×10~(-3),检出限分别为5.0×10~(-7)和1.0×10~(-6)。灵敏度高于以往文献中的报导。另外,利用BQ对于PPESO_3的猝灭和在催化剂存在时H_2Q对于PPESO_3的猝灭,能够检测苯酚的氧化程度。该体系为水溶性荧光共轭聚合物传感器的发展提供了基础,可以广泛用于分析检测含有或化学过程中产生苯醌的物质。
     PPESO_3不但可以对废水中的醌类和酚类进行检测,还可以作为生物传感器检测生物体内物质。第四章中,我们建立了以共轭聚合物基础,结合过氧化物酶和过氧化氢构成的生物传感器,利用儿茶酚胺的氧化产物对于PPESO_3的荧光猝灭作用实现了对儿茶酚胺的灵敏性检测。多巴胺、肾上腺素和去甲肾上腺素的线性范围分别为5.0×10~(-7)~1.4×10~(-4),5.0×10~(-6)~5.0×10~(-4)和5.0×10~(-6)~5.0×10~(-4)mol/L。检出限分别是1.4×10~(-7)mol/L,1.0×10~(-6)和1.0×10~(-6)mol/L。在实际样品检测实验中,我们利用该体系检测了人血清中的DA,AD,NE,实验数据的精确度于HPLC-MS方法对比,结果令人满意。表明此方法能够在血清中检测DA,为将来用于药物制剂的达标检测,药物在体内或在细胞中的运输和缓释等提供了可行性。
     二价铜离子能够猝灭PPESO_3,而且猝灭后形成一个稳定的离子复合物。这是由于PPESO_3和铜离子之间的电子转移导致的。当加入生物硫醇(GSH或Cys)时,由于硫醇与铜离子之间形成Cu-S键,这种化学键的结合能力远大于离子间的静电力,因此Cu_(2+)远离PPESO_3从而荧光恢复。基于此,我们成功的构建了一个免标记的turn-on生物硫醇传感器。此检测过程简单,无需标记,而且Cu-S键的结合力强,很容易形成,灵敏度很高,荧光恢复接近90%。对半胱氨酸和谷胱甘肽的检出限分别为4.0×10~(-8)和4.5×10~(-8)mol/L,足以检测人体血清中的生物硫醇。另外,该体系对于其它氨基酸等干扰物质相比选择性良好,并且可以用于实际样品人血清中硫醇检测。此体系还可以用于活肝癌细胞的生物成像,观察到了细胞中硫醇浓度分布。因此本项研究为CPs用于生物体系检测小分子以及细胞成像技术开辟了新的研究领域。
A conjugated system is a system of connected p-orbitals with delocalizedelectrons in compounds with alternating single and multiple bonds, which in generalmay lower the overall energy of the molecule and increase stability, which attractsmore and more interest. The first chapter of this thesis outlines the history anddevelopment of conjugated polymer, the structure and classify. The fluorescencequench mechanism and the research method were discussed. For CPs application,the reported fluorescent sensors based on CPs were listed (ion detection,biomolecular detection, explosive substance detection and bio-imaging applications).And the research significance of this work is discussed.
     We used a facile sysnthetic route for preparing fluorescent conjugated polymerPPESO_3in chapter two, which avoided the dealkylation step with BBr3. We alsoinvestigated the fluorescence spectroscopy and absorption spectroscopy of PPESO_3.Both fluorescence enchance and quenching of PPESO_3were studied detailedly which is a preparation for later study in the thesis.
     In chapter three, a sensitive and simple detecting system was developed forquantitative analysis of both hydroquinone (H_2Q) and hydrogen peroxide (H_2O_2),based on the successful combination of horse radish peroxidase (HRP) andwater-soluble conjugate fluorescence polymers PPESO_3. In the presence of HRP andH_2O_2, H_2Q could be oxidized to1,4-benzoquinone (BQ), an intermediate, which playsthe main role in the enhanced quenching of the photoluminescence (PL) intensity ofPPESO_3. The quenching PL intensity of PPESO_3(I0/I) was proportional to theconcentration of H_2Q and H_2O_2in the range of1.0×10~(-6)to2.0×10-3mol/L (R2=0.996)and6.0×10~(-6)to2.0×10-3mol/L (R2=0.999), respectively. The detection limit for H_2Qand H_2O_2was5.0×10~(-7)mol/L and1.0×10~(-6). The present fluorescence quenchingmethod was successfully applied for the determination of H_2Q in the lake water,rainwater, tap-water and chemical plant waste water samples. Compared withprevious reports, the fluorescence quenching approach described in this work issimple and rapid with high sensitivity, which has a potential application for detectingvarious analytes which can be translated into quinone.
     The above study indicates that the enzymatic reaction product ofhydroquinone–quinone can efficiently quench the photo-luminescence intensity ofPPESO_3. Considering that dopamine is a catecholamine that contains adihydroxybenzene group, we developed a sensitive water-soluble fluorescentconjugated polymer biosensor for catecholamine (dopamine DA, adrenaline AD andnorepinephrine NE) in chapter four. In the presence of horse radish peroxidase (HRP) and H_2O_2, catecholamine could be oxidized and the oxidation product ofcatecholamine could quench the photoluminescence (PL) intensity of PPESO_3. Thequenching PL intensity of PPESO_3(I0/I) was proportional to the concentration of DA,AD and NE in the concentration ranges of5.0×10~(-7)to1.4×10~(-4),5.0×10~(-6)to5.0×10~(-4),and5.0×10~(-6)to5.0×10~(-4)mol/L, respectively. The detection limit for DA, AD and NEwas1.4×10~(-7)mol/L,1.0×10~(-6)and1.0×10~(-6)mol/L, respectively. The PPESO_3-enzymehybrid system based on the fluorescencequenching method was successfully appliedfor the determination of catecholamine in human serumsamples with good accuracyand satisfactory recovery. The results were in good agreement with thoseprovided bythe HPLC-MS method.
     In chapter five, we developed a new one-step turn-on sensor for the sensitive andselective detection of glutathione (GSH) and cysteine (Cys). The photoluminescenceintensity of PPESO_3could be quenched by Cu(II) due to the strong electrostaticinteraction and electron transfer between PPESO_3and Cu2+. In the presence ofbiothiols, such as GSH and Cys, Cu(II) preferred to react with biothiols to form theCu(II)-S bond due to the strong affinity between Cu(II) and thiols. The recovered PLintensity of PPESO_3(Ir/I0) was proportional to the concentration of GSH or Cys in theconcentration ranges of1.0×10~(-7)~1.5×10-5mol/L and2.0×10~(-7)~2.0×10-5mol/L,respectively. The detection limit for GSH and Cys were4.0×10~(-8)and4.5×10~(-8)mol/L, respectively. In addition, the established method showed a high selectivity forbiothiols among other twelve amino acids without biothiols. Furthermore, thePPESO_3-Cu(II) system as a fluorescence probe was successfully used for fluorescence imaging of biothiols in the HepG2cells, which presents a potential application inbioimaging field.
引文
[1] SAMUEL W T, GUY D J, TIMOTHY M S. Chemical sensors based onamplifying fluorescent conjugated polymers [J]. ChemicalReviews,2007,107:1339-1386.
    [2] YAN L, KATSU O, KIRK S S. Conjugated polyelectrolytes as fluorescentsensors [J]. Journal of Photochemistry and Photobiology C: PhotochemistryReviews,2009,10:173-190.
    [3] ADRIAN A, ALFONSO S C, JOSE’ M CF, ROSARIO P, ALFREDO S M.Fluorescent conjugated polymers for chemical and biochemical sensing[J].Analytical Chemistry,2011,30:1513-1525.
    [4] KRAFT A, GRIMSDALE A C, HOLMES A B. Electroluminescent conjugatedpolymers-seeing polymers in a new light[J]. Angewandte Chemie InternationalEdition,1998,37:402-428.
    [5] MONTALI A, SMITH P, WEDER C. Poly(p-phenylene ethynylene)-basedlightemitting devices[J]. Synthetic Metals,1998,97:123-126.
    [6] PEI Q B, YU G, ZHANG C, YANG Y, HEEGER A J. Polymer light-emittingelectrochemical-cells[J]. Science,1995,269:1086-1088.
    [7] HIDE F, DIAZGARCIA M A, SCHWARTZ B J, HEEGER A J. Newdevelopments in the photonic applications of conjugated polymers[J]. Accounts ofChemical Research,1997,30:430-436.
    [8] GUNES S, NEUGEBAUER H, SARICIFTCI N S. Conjugated polymer-basedorganic solar cells[J]. Chemical Reviews,2007,107:1324-1338.
    [9] TORSI L, DODABALAPUR A, ROTHBERG L J, FUNG A W P, KATZ H E.Intrinsic transport properties and performance limits of organic field-effecttransistors[J]. Science,1996,272:1462-1464.
    [10] SIRRINGHAUS H. Device physics of solution-processed organic field-effecttransistors[J]. Advanced Materials,2005,17:2411-2425.
    [11] ZHOU Q, SWAGER T M. Fluorescent chemosensors based on energy migrationin conjugated polymers:The molecular wire approach to increased sensitivity[J].Journal of the American Chemical Society,1995,117:12593-12602.
    [12] THOMPSON R B. Fluorescence sensors and biosensors[M]. Boca Raton: CRCPress,2005.
    [13] JANZEN W P. High throughput screening: methods and protocols[M].Totowa,NJ: Humana Press,2002.
    [14] SKOTHEIM T A, REYNOLDS J R. Handbook of conducting polymers[M].3rded. Boca Raton,FL: CRC Press,2007.
    [15] SWAGER T M. The molecular wire approach to sensory signal amplification[J].Accounts of Chemical Research,1998,31:201-207.
    [16] MCQUADE D T, PULLEN A E, SWAGER T M. Conjugated polymer-basedchemical sensors[J]. Chemical Reviews,2000,100:2537-2574.
    [17] PINTO M R, SCHANZE K S. Conjugated polyelectrolytes: synthesis andapplications[J]. Synth.-Stuttgart,2002:1293-1309.
    [18] LIU B, BAZAN G C. Homogeneous fluorescence-based DNA detection withwater-soluble conjugated polymers[J]. Chemistry of Materials,2004,16:4467-4476.
    [19] ACHYUTHAN K E, BERGSTEDT T S, CHEN L, et al. Fluorescencesuperquenching of conjugated polyelectrolytes: applications for biosensing and drugdiscovery[J]. Journal of Materials Chemistry,2005,15:2648-2656.
    [20] THOMAS S W, JOLY G D, SWAGER T M. Chemical sensors based onamplifying fluorescent conjugated polymers[J]. ChemicalReviews,2007,107:1339-1386.
    [21] HO H A, NAJARI A, LECLERC M. Optical detection of DNA and proteinsmoth cationic polythiophenes[J]. Accounts of Chemical Research,2008,41:168-178.
    [22] KRAFT A, GRIMSDALE A C, HOLMES A B. Electroluminescent conjugatedpolymers-seeing polymers in a new light[J]. Angewandte Chemie InternationalEdition,1998,37:402-428.
    [23] MONTALI A, SMITH P, WEDER C. Poly(p-phenylene ethynylene)-basedlightemitting devices[J]. Synthetic Metals,1998,97:123-126.
    [24] PEI Q B, YU G, ZHANG C, YANG Y, HEEGER A J. Polymer light-emittingelectrochemical-cells[J]. Science,1995,269:1086-1088.
    [25] HIDE F, DIAZGARCIA M A, SCHWARTZ B J, HEEGER A J. Newdevelopments in the photonic applications of conjugated polymers[J]. Accounts ofChemical Research,1997,30:430-436.
    [26] GUNES S, NEUGEBAUER H, SARICIFTCI N S. Conjugated polymer-basedorganic solar cells[J]. Chemical Reviews,2007,107:1324-1338.
    [27] TORSI L, DODABALAPUR A, ROTHBERG L J, FUNG A W P, KATZ H E.Intrinsic transport properties and performance limits of organic field-effecttransistors[J]. Science,1996,272:1462-1464.
    [28] SIRRINGHAUS H. Device physics of solution-processed organic field-effecttransistors[J]. Advanced Materials,2005,17:2411-2425.
    [29] NGUYEN T Q, WU J J, DOAN V, SCHWARTZ B J, TOLBERT S H. Controlof energy transfer in oriented conjugated polymer-mesoporous silica composites[J].Science,2000,288:652-656.
    [30] GIERSCHNER J, CORNIL J, EGELHAAF H J. Optical bandgaps ofpi-conjugated organic materials at the polymer limit: experiment and theory[J].Advanced Materials,2007,19:173-191.
    [31] PAUL E W, RICCO A J, WRIGHTON M S. Resistance of polyaniline films as afunction of electrochemical potential and the fabrication of polyaniline-basedmicroelectronic devices[J]. Journal of Physical Chemistry,1985,89:1441-1447.
    [32] JANATA J, JOSOWICZ M. Chemical modulation of work function as atransduction mechanism for chemical sensors[J]. Accounts of ChemicalResearch,1998,31:241-248.
    [33] LAKOWICZ J R. Principles of fluorescence spectroscopy[M]. New York:Kluwer Academic/Plenum Publishers,1999.
    [34] ZHOU Q, SWAGER T M. Methodology for enhancing the sensitivity offluorescent chemosensors-energy migration in conjugated polymers[J]. Journal ofthe American Chemical Society,1995,117:7017-7018.
    [35] ZHOU Q, SWAGER T M. Fluorescent chemosensors based on energymigration in conjugated polymers: the molecular wire approach to increasedsensitivity[J]. Journal of the American Chemical Society,1995,117:12593-12602.
    [36] LIU X Q, ZHU J. Metal ion-sensing polymer in the weak binding monomerregime[J]. Journal of Physical Chemistry B,2009,113:8214-8217.
    [37] HUANG X, MENG J, DONG Y, CHENG Y, ZHU C. Polymer-basedfluorescence sensor incorporating triazole moieties for Hg2+detection via clickreaction[J]. Polymer,2010,51:3064-3067.
    [38] KIM L-B, DUNKHORST A, GILBERT J, BUNZ U H F. Sensing of lead ionsby a carboxylate-substituted PPE: multivalency effects[J].Macromolecules,2005,38:4560-4562.
    [39] FAN L-J, JONES W E, JR. A highly selective and sensitive inorganic/organichybrid polymer fluorescence “turn-on” chemosensory system for iron cations[J].Journal of the American Chemical Society,2006,128:6784-6785.
    [40] LIU X, ZHOU X, SHU X, ZHU J. A polymer-based ultrasensitive metal ionsensor[J]. Macromolecules,2009,42:7634-7637.
    [41] HO H A, LECLERC M. New colorimetric and fluorometric chemosensor basedon a cationic polythiophene derivative for iodide-specific detection[J]. Journal of theAmerican Chemical Society,2003,125:4412-4413.
    [42] LI Z, LOU X, YU H, LI Z, QIN J. An imidazole-functionalized polyfluorenederivative as sensitive fluorescent probe for metal ions and cyanide[J].Macromolecules,2008,41:7433.
    [43] ALVAREZ-DIAZ A, SALINAS-CASTILLO A, CAMPRUBI-ROBLES M, et al.Conjugated polymer microspheres for “turn-off”/“turn-on” fluorescence optosensingof inorganic ions in aqueous media[J]. Analytical Chemistry,2011,83:2712-2718.
    [44] LI Z, LOU X, LI Z, QIN J. A new approach to fluorescence “turn-on” sensingof α-amino acids[J]. Applied Materials,2009,1:232.
    [45] EO S H, WON K J, SONG S, YOON B, KIM J M. Hemoglobin detection on amicrofluidic sensor chip with a partially conjugated polymer[J]. Bulletin of theKorean Chemical Society,2010,31:467-479.
    [46] KUMARASWAMY S, BERGSTEDT T, SHI X, et al. Fluorescent-conjugatedpolymer superquenching facilitates highly sensitive detection of proteases[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2004,101:7511-7515.
    [47] PU K Y, LIU B. A multicolor cationic conjugated polymer for naked-eyedetection and quantification of heparin[J]. Macromolecules,2008,41:6636-6640.
    [48] HE F, FENG F, WANG S, LI Y, ZHU D. Fluorescence ratiometric assays ofhydrogen peroxide and glucose in serum using conjugated polyelectrolytes[J].Journal of Materials Chemistry,2007,17:3702-3707.
    [49] QIN C J, TONG H, WANG L X. Water-soluble phosphate-functionalizedpolyfluorene as fluorescence biosensors toward cytochrome c[J]. Science in ChinaSeries B,2009,52:833-839.
    [50] HO H A, NAJARI A, LECLERC M. Optical detection of DNA and proteinswith cationic polythiophenes[J]. Accounts of Chemical Research,2008,41:168-178.
    [51] LIU B, BAZAN G C. Homogeneous fluorescence-based DNA detection withwater-soluble conjugated polymers[J]. Chemistry of Materials,2004,16:4467-4476.
    [52] HO H A, DORE K, BOISSINOT M, et al. Direct molecular detection of nucleicacids by fluorescence signal amplification[J]. Journal of the American ChemicalSociety,2005,127:12673-12676.
    [53] NAJARI A, HO H A, GRAVEL J F, et al. Reagentless ultrasensitive specificDNA array detection based on responsive polymeric biochips[J]. AnalyticalChemistry,2006,78:7896-7899.
    [54] XU H, WU H, HUANG F, et al. Magnetically assisted DNA assays: highselectivity using conjugated polymers for amplified fluorescent transduction[J].Nucleic Acids Research,2205,33:e83.
    [55] REN X, XU Q H. Label-free DNA sequence detection with enhanced sensitivityand selectivity using cationic conjugated polymers and picogreen[J].Langmuir,2009,25:43-47.
    [56] HE F, TANG Y, WANG S, LI Y, ZHU D. Fluorescent amplifying recognition forDNA G-quadruplex folding with a cationic conjugated polymer: a platform forhomogeneous potassium detection[J]. Journal of the American ChemicalSociety,2005,127:12343-12346.
    [57] FENG F, TANG Y, HE F, et al. Cationic conjugated polymer/DNA complexesfor amplified fluorescence assays of nucleases and methyltransferases[J]. AdvancedMaterials,2007,19:3490-3495.
    [58] PU K Y, LIU B. Optimizing the cationic conjugated polymer-sensitizedfluorescent signal of dye labeled oligonucleotide for biosensor applications[J].Biosensors and Bioelectronics,2009,24:1067-1073.
    [59] YANG J S, SWAGER T M. Fluorescent porous polymer films as TNTchemosensors: electronic and structural effects[J]. Journal of the American ChemicalSociety,1998,120:11864-11873.
    [60] SANCHEZ J C, TROGLER W C. Efficient blue-emittingsilafluorene–fluorene-conjugated copolymers: selective turn-off/turn-on detection ofexplosives[J]. Journal of Materials Chemistry,2008,18:3143-3156.
    [61] NARAYANAN A, VARNAVSKI O P, SWAGER T M, GOODSON III T.Multiphoton fluorescence quenching of conjugated polymers for TNT detection[J].Journal of Physical Chemistry C,2008,112:881-884.
    [62] FENG J, LI Y, YANG M. Conjugated polymer-grafted silica nanoparticles forthe sensitive detection of TNT[J]. Sensors and Actuators B,2010,145:438-443.
    [63] ZHANG S, LU F, GAO L, DING L, FANG Y. Fluorescent sensors fornitroaromatic compounds based on monolayer assembly of polycyclic aromatics[J].Langmuir,2007,23:1584-1590.
    [64] NGUYEN H H, LI X, WANG N, et al. Fiber-optic detection of explosives usingreadily available fluorescent polymers[J]. Macromolecules,2009,42:921-926.
    [65] NADDO T, CHE Y, ZHANG W, et al. Detection of explosives with afluorescent nanofibril film[J]. Journal of the American ChemicalSociety,2007,129:6978-6979.
    [66] WU C, BULL B, SZYMANSKI C, CHRISTENSEN K, MCNEILL J.Multicolor conjugated polymer dots for biological fluorescence imaging[J]. ACSNano,2008,2:2415-2423.
    [67] MCRAE R L, PHILLIPS R L, KIM I B, BUNZ U H F, FAHRNI C J. Molecularrecognition based on low-affinity polyvalent interactions: selective binding of acarboxylated polymer to fibronectin fibrils of live fibroblast cells[J]. Journal of theAmerican Chemical Society,2008,130:7851-7853.
    [68] KIM I B, SHIN H, GARCIA A J, BUNZ U H F. Use of a folate-PPE conjugateto image cancer cells in vitro[J]. Bioconjugate Chemistry,2007,18,815-820.
    [69] FENG X, TANG Y, DUAN X, LIU LWANG S. Lipid-modified conjugatedpolymer nanoparticles for cell imaging and transfection[J]. Journal of MaterialsChemistry,2010,20,1312-1316.
    [70] ASLUND A, SIGURDSON C J, KLINGSTEDT T, et al. Novel pentamericthiophene derivatives for in vitro and in vivo optical imaging of a plethora of proteinaggregates in cerebral amyloidoses[J]. ACS Chemical Biology,2009,4:673-684.
    [1] HONG J W, HEMME W L, KELLER G E, et al. Conjugated-polymer/DNAinterpolyelectrolyte complexes for accurate DNA concentration determination[J].Advanced materials,2006,18:878-882.
    [2] LIU B, BAZAN G C. Methods for strand-specific DNA detection with cationicconjugated polymers suitable for incorporation into DNA chips and microarrays[J].Proceedings of the National Academy of Sciences,2005,102(3):589-893.
    [3] KUSHON S A, LEY K D, BRADFORD K, et al. Detection of DNAhybridization via fluorescent polymer superquenching[J].Langmuir,2002,18(20):7245-7249.
    [4] GAYLORD B S, MASSIE M R, FEINSTEIN S C, et al. SNP detection usingpeptide nucleic acid probes and conjugated polymers: Applications inneurodegenerative disease identification. Proceedings of the National Academy ofSciences,2005,102(1):34-39.
    [5] TURRO N J. Modern molecular photochemistry[M]. Menlo Park,N.J: BeniaminCummings,1978.
    [6] LAKOWICZ J R. Principles of fluorescence spectroscopy[M]. New York:Plenum Press,1986.
    [7] LAKOWICZ J R. Principles of fluorescence spectroscopy[M].2nd ed. New York:Kluwer Academic/Plenum Publishers,1999.
    [8] CONNORS K A. Binding constants: the measurement of molecular complexstability[M]. New York: Wiley-Interscience,1987.
    [9] THOMAS S W, JOLY G D, SWAGER T M. Chemical sensors based onamplifying fluorescent conjugated polymers[J]. ChemicalReviews,2007,107(4):1339-1386.
    [10] PINTO M R, SCHANZE K S. Amplified fluorescence sensing of proteaseactivity with conjugated polyelectrolytes[J]. Proceedings of the National Academy ofSciences of the United States of America,2004,101(20):7505-7510.
    [11] FAN C H, WANG S, HONG J W, et al. Beyond superquenching:Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2003,100(11):6297-6301.
    [12]WOSNICK J H, MELLO C M, SWAGER T M. Synthesis and application ofpoly(phenylene ethynylene)s for bioconjugation: A conjugated polymer-basedfluorogenic probe for proteases[J]. Journal of the American ChemicalSociety,2005,127(10):3400-3405.
    [13]TAN C Y, ALAS E, MULLER J G, et al. Amplified quenching of a conjugatedpolyelectrolyte by cyanine dyes[J]. Journal of the American ChemicalSociety,2004,126(42):13685-13694.
    [14]PINTO M R, SCHANZE K S. Conjugated polyelectrolytes: Synthesis andapplications[J]. Synthesis-Stuttgart,2002,9:1293-1309.
    [15] ZHANG T, FAN H L, ZHOU J G, et al. Fluorescent conjugated polymerPPESO3: A novel synthetic route and the application for sensing proteaseactivities[J]. Macromolecules,2006,39:7839-7843.
    [16] ZHANG H, FENG J, ZHU W F, LIU C Q, XU S Q, SHAO P P, WU D S,YANG W J, GU J H. Chronic toxicity of rare-earth elements on humanbeings-implications of blood biochemical indices in REE-high regions[J]. Biol.Trace Elem. Res.73(2000)1-17.
    [17] NAKAMURA Y, TSUMURA Y, TONOGAI Y, SHIBATA T. Differences inbehavior among the chlorides of seven rare earth elementsadministered intravenously to rats[J]. Fundamental and Applied Toxicology37(1997)106.
    [18] LIU J S, SHEN Z G, YANG W D, CHE J, XIE L M, LEI H Y, Effect oflong-term intake of rare earth in drinking water on trace elements in brains ofmice[J]. J. Rare Earth20(2002)562.
    [19] XIA W S, SCHMEHL R H, LI C. A fluorescent18-crown-6basedluminescence sensor for lanthanide ions[J]. J. Tetrahedron56(2000)7045-7049.
    [20] WERTS M H V,WOUDENBERG R H, EMMERINK P G, GASSEL R V,HOFSTRAAT J W, Verhoeven J W, A near-infrared luminescent labelbased on Yb-III ions and its application in a fluoroimmunoassay[J].Angew. Chem. Int. Ed.39(2000)4542-4544.
    [21] DAS P, Ghosh A, Das A, Unusual Specificity of a Receptor for Nd3+Among Other Lanthanide Ions for Selective Colorimetric Recognition[J]. Inorg.Chem.49(2010)6909-6916.
    [22] TAN C Y, PINTO M R, SCHANZE K S. Photophysics,aggregation andamplified quenching of a water-soluble poly(phenylene ethynylene)[J]. ChemicalCommunications,2002,446-447.
    [23] YANG J S, SWAGER T M. Fluorescent porous polymer films as TNTchemosensors: Electronic and structural effects[J]. Journal of the AmericanChemical Society,1998,120:11864-11873.
    [24] HUANG W Y, MATSUOKA S, KWEI T K, et al. Aggregation and gelation offully conjugated rigid-rod polymers.poly(2,5-dialkyl-1,4-phenyleneethynylene)s[J].Macromolecules,2001,34:7166-7171.
    [25] HALKYARD C E, RAMPEY M E, KLOPPENBURG L, et al. Evidence ofaggregate formation for2,5-dialkylpoly(p-phenyleneethynylenes) in solution andthin films[J]. Macromolecules,1998,31:8655-8659.
    [26] MITEVA T, PALMER L, KLOPPENBURN L, et al. Interplay ofthermochromicity and liquid crystalline behavior in poly(p-phenyleneethynylene)s:π-πInteractions or planarization of the conjugated backbone[J].Macromolecules,2000,33:652-654.
    [27] KIM J, SWAGER T M. Control of conformational and interpolymer effects inconjugated polymers[J]. Nature,2001,411:1030-1034.
    [28] CHEN Y.G., ZHAO D., HE Z.K., AI X.P., Fluorescence quenching ofwater-soluble conjugated polymer by metal cations and its applicationin sensor[J]. Spectrochimica Acta Part A66(2007)448-452.
    [29] GANJALI M R, NOROUZI P, ALIZADEH T, ADIB M. Application of8-amino-N-(2-hydroxybenzylidene)naphthyl amine as a neutral ionophore in theconstruction of a lanthanum ion-selective sensor[J]. Analytica Chimica Acta,2006,576,275-282.
    [30] JAIN A K, SINGH A K, MEHTA S, SAXENA P. Rubeanic acid as novel carrierin construction of selective membrane sensor for La(III)[J]. Analytica Chimica Acta,2005,551,45-50.
    [31] MITTAL S K, KUMAR S K A, SHARMA H K. PVC-baseddicyclohexano-18-crown-6sensor for La(III) ions[J].Talanta,2004,62,801-805.
    [32] GANJALI R, DAFTARI A, REZAPOUR M, PUORSABERI T, HAGHGOO S.Gliclazide as novel carrier in construction of PVC-based La(III)-selective membranesensor[J].Talanta,2003,59,613-619.
    [33] AKHOND M, NAJAFI M B, T A SHKHOURIAN J. Lanthanum-selectivemembrane electrode based on2,2′-dithiodipyridine[J]. Analytica ChimicaActa,2005,531,179-184.
    [34] GANAJALI M R, AKBAR V, GHORBANI M, NOROUZI P. AHMADI A.Fluoride determination in some mouth wash preparations by a novel La(III) graphitecoated membrane sensor based on amitraz[J]. Analytica Chimica Acta,2005,531,185-191.
    [35] GUPTA V K, JAIN S, CHANDRA S. Chemical sensor for lanthanum(III)determination using aza-crown as ionophore in poly(vinyl chloride) matrix[J].Analytica Chimica Acta,2003,486,199-207.
    [36] GANAJALI M R, NOUOURZI P, SHAMSOLAHMSOLAHRARI L, AHMADIA. PPb level monitoring of lanthanium by a novel PCV-membrane sensor based on4-methyl-2-hydrazinobenzothiazole[J]. Sensors and Actuators B: Chemical,2006,114,713-719.
    [37] GANAJALI M R, QOMI M, DAFTARI A, NOROUZI P, SALAVATI-NIASARIM, RABBANI M. Novel lanthanum(III) membrane sensor based on a new N-SSchiff’s base[J]. Sensors and Actuators B: Chemical,2004,98,92-96.
    [38] AKBAR I, MOHAMMAD A Z, SHAHB S, ABDOLREZA A. A Fast ResponseMembrane Sensor based on Ethyl1,2,3,4-tetrahydro-6-methyl-4-phenyl-2-thioxopyrimidine-5-carboxylate forDetection of Lanthanum (III) Ions at Wide Concentration Range[J].Acta ChimicaSlovenica,2011,58,46-52.
    [1] KAN X W, ZHAO Q, ZHANG Z, WANG Z L, ZHU J J. Molecularly imprintedpolymers microsphere prepared by precipitation polymerization for hydroquinonerecognition[J]. Talanta,2008,75(1):22–26.
    [2] ABDULLAH J, AHMAD M, HENG L Y, KARUPPIAH N, SIDEK H.Chitosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol–gelsilicate for MBTH immobilization[J]. Talanta,2006,70(3):527-532.
    [3] GIANFREDA L, IAMARINO G, SCELZA R, RAO M A. Oxidative catalysts forthe transformation of phenolic pollutants: a brief review[J]. Biocatalysis andBiotransformation,2006,24(3):177–187.
    [4] SHARMA C, MAHANTY S, KUMAR S, RAO N J. Gas chromatographicdetermination of pollutants in the chlorination and caustic extraction stage effluentfrom the bleaching of a bamboo pulp[J]. Talanta,1997,44(10):1911–1918.
    [5] FAN S L, ZHANG L K, LIN J M. Post-column detection of benzenediols and1,2,4-benzenetriol based on acidic potassium permanganate chemiluminescence[J].Talanta,2006,68(3):646–652.
    [6] RUEDA M E, SARABIA L A, HERRERO A, ORTIZ M C. Optimisation of aflow injection system with electrochemical detection using the desirability function:Application to the determination of hydroquinone in cosmetics[J]. AnalyticaChimica Acta,2003,479(2):173–184.
    [7] WU X J, MARTIN, CHOI M F, WU X M. An organic-phase optical phenolbiosensor coupling enzymatic oxidation with chemical reduction[J].Analyst,2004,129:1143–1149.
    [8] PARANJPE P, DUTTA S, KARVE M, PADHYE S, NARAYANASWAMY R. Adisposable optrode using immobilized tyrosinase films[J]. AnalyticalBiochemistry,2001,294(2):102–107.
    [9] YUAN J P, GUO W W, WANG E K. Utilizing a CdTe quantum dots enzymehybrid system for the determination of both phenolic compounds and hydrogenperoxide[J]. Analytical Chemistry,2008,80(4):1141–1145.
    [10] SWAGER T M. The molecular wire approach to sensory signal amplification[J].Accounts of Chemical Research,1998,31(5):201–207.
    [11] KUMARASWAMY S, BERGSTEDT T, SHI X B, et al. Fluorescent-conjugatedpolymer superquenching facilitates highly sensitive detection of proteases[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2004,101(20):7511–7515.
    [12] TAN C Y, PINTO M R, SCHANZE K S. Photophysics, aggregation andamplified quenching of a water-soluble poly(phenylene ethynylene)[J]. ChemicalCommunications,2002,446–447.
    [13] ZHANG T, FAN H L, JIN Q H. Sensitive and selective detection of nitrite ionbased on fluorescence superquenching of conjugated polyelectrolyte[J].Talanta,2010,81:95–99.
    [14] ZHAN R Y, FANG Z, LI B. Naked-eye detection and quantification of heparinin serum with a cationic polythiophene[J]. AnalyticalChemistry,2010,82(4):1326–1333.
    [15] LIU Y, SCHANZE K S. Conjugated polyelectrolyte based real-timefluorescence assay for adenylate kinase[J]. AnalyticalChemistry,2009,81(1):231–239.
    [16] WANG Y Y, LIU B. Conjugated polyelectrolyte-sensitized fluorescent detectionof thrombin in blood serum using aptamer-immobilized silica nanoparticles as theplatform[J]. Langmuir,2009,25(21):12787–12793.
    [17] LEE K, POVLICH L K, KIM J. Label-free and self-signal amplifying molecularDNA sensors based on bioconjugated polyelectrolytes[J]. Advanced FunctionalMaterials,2007,17(14):2580–2587.
    [18] LIU B, BAUDREY S, JAEGER L, BAZAN G C. Characterization of tectoRNAassembly with cationic conjugated polymers[J]. Journal of the American ChemicalSociety,2004,126(13):4076–4077.
    [19] GITI E, MEHDI H, NASSER G. Development of a microtitre plate method fordetermination of phenol utilization, biofilm formation and respiratory activity byenvironmental bacterial isolates[J]. International Biodeterioration andBiodegradation,2005,56(4):231–235.
    [20] DOU W C, SU X G. Study on the interaction between nitroxide free radical andconjugated polyelectrolytes by fluorimetry[J]. Luminescence,2009,24(1):45–49.
    [21] BURDA C, GREEN T C, LINK S, EL-SAYED M A. Electron shuttling acrossthe interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy[J].Journal of Physical Chemisrty B,1999,103:1783–1788.
    [22] LAKOWICZ J R. Principles of fluorescence spectroscopy[M]. NewYork:Plenum Press,1983.
    [23] KATHIRAVAN A, CHANDRAMOHAN M, RENGANATHAN R, SEKAR S.Spectroscopic studies on the interaction between phycocyanin and bovine serumalbumin[J]. Journal of Molecular Structure,2009,919:210–214.
    [24] ZHANG T, FAN H L, LIU G L, et al. Different effects of Fe2+and Fe3+onconjugated polymer PPESO3: a novel platform for sensitive assays of hydrogenperoxide and glucose[J]. Chemical Communication,2008,42:5414–5416.
    [1] WILSON G S, GIFFORD R. Biosensors for real-time in vivo measurements[J].Biosensors and Bioelectronics,2005,20(12):2388-2403.
    [2] SAKAGUCHI T, MORIOKA Y, YAMASAKI M, et al. Rapid and onsite BODsensing system using luminous bacterial cells-immobilized chip[J]. Biosensors andBioelectronics,2007,22(7):1345-1350.
    [3] CHEN S M, CHZO W Y. Simultaneous voltammetric detection of dopamine andascorbic acid using didodecyldimethylammonium bromide (DDAB) film-modifiedelectrodes[J]. Journal of Electroanalytical Chemistry,2006,587(2):226-234.
    [4] MECKER L C, MARTIN R S. Integration of Microdialysis Sampling andMicrochip Electrophoresis with Electrochemical Detection[J]. AnalyticalChemistry,2008,80(23):9257-9264.
    [5] MYERS R D, ADELL A, LANKFORD M F. Simultaneous comparison ofcerebral dialysis and push–pull perfusion in the brain of rats: a critical review[J].Neuroscience&Biobehavioral Reviews,1998,22(3):371-387.
    [6] NIKOLELIS D P, DRIVELOS D A, SIMANTIRAKI M G, KOINIS S. An opticalspot test for the detection of dopamine in human urine using stabilized in air lipidfilms[J]. Analytical Chemistry,2004,76(8):2174-2180.
    [7] MAMINSKI M, OLEJNICZAK M, CHUDY M, et al. Spectrophotometricdetermination of dopamine in microliter scale using microfluidic system based onpolymeric technology[J]. Analytica Chimica Acta,2005,540(1):153-157.
    [8] MADRAKIAN T, AFKHAMI A, KHALAFI L, MOHAMMADNEJAD M.Spectrophotometric determination of catecholamines based on their oxidationreaction followed by coupling with4-Aminobenzoic acid[J]. Journal of the BrazilianChemical Society,2006,17(7):1259-1265.
    [9] ISSOPOULUS P B. High-sensitivity spectrophotometric determination of traceamounts of Levodopa, Carbidopa and α-Methyldopa[J]. Fresenius’ Journal ofAnalytical Chemistry,1990,336:124-128.
    [10] GUO Y, YANG J, WU X, DU A. A sensitive fluorimetric method for thedetermination of epinephrine[J]. Journal of Fluorescence,2005,15:131-136.
    [11] TORRES A C, ROMERO A M, CALATAYUD J M. FIA-fluorimetricdetermination of adrenaline in pharmaceutical formulations by oxidation withmolecular oxygen[J]. Microchimica Acta,1998,128:187-190.
    [12] YAO H, SUN Y Y, LIN X, CHENG J, HUANG L. Flow-injectionchemiluminescence determination of catecholamines based on their enhancingeffects on the luminol–potassium periodate system[J].Luminescence,2006,21(2):112-117.
    [13] VILLANUEVA-CAMANAS R M, SANCHIS-MALLOLS J M,TORRES-LAPASIO J R, RAMIS-RAMOS G. Analysis of pharmaceuticalpreparations containing catecholamines by micellar liquid chromatography withspectrophotometric detection[J]. Analyst,1995,120:1767-1772.
    [14] GUAN C L, OUYANG J, LI Q L, LIU B H, BAEYENS W R G. Simultaneousdetermination of catecholamines by ion chromatography with direct conductivitydetection[J]. Talanta,2000,50(6):1197-1203.
    [15] NALEWAJKO E, WISZOWATA A, KOJLO A. Determination ofcatecholamines by flow-injection analysis and high-performance liquidchromatography with chemiluminescence detection[J]. Journal of Pharmaceuticaland Biomedical Analysis,2007,43:1673-1681.
    [16] MISHRA A K, MISHRA A, CHATTOPADHYAY P. A reversed-phase highperformance liquid chromatographic method for determination of epinephrine inpharmaceutical formulation[J]. Archives of Applied ScienceResearch,2010,2(2):251-256.
    [17] BOUTAGY J, BENEDICT C. Catecholamine determination by gas-liquidchromatography[J]. Journal of Chromatography A,1978,151(2):263-264.
    [18] AFKHAMI A, KHATAMI H A. Determination of some catecholamines basedon their reaction with periodate[J]. Journal of AnalyticalChemistry,2003,58:135-138.
    [19] WU X J, CHOI M M F, WU X M. An organic-phase optical phenol biosensorcoupling enzymatic oxidation with chemical reduction[J].Analyst,2004,129(11):1143-1149.
    [20] PARANJPE P, DUTTA S, KARVE M, et al. A disposable optrode usingimmobilized tyrosinase films[J]. Analytical Biochemistry,2001,294(2):102-107.
    [21] KUMARASWAMY S, BERGSTEDT T, SHI X B, et al. Fluorescent-conjugatedpolymer superquenching facilitates highly sensitive detection of proteases[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2004,101:7511-7515.
    [22] ZHAN R Y, FANG Z, LI B. Naked-eye detection and quantification of heparinin serum with a cationic polythiophene[J]. AnalyticalChemistry,2010,82(4):1326-1333.
    [23] LIU Y, SCHANZE K S. Conjugated polyelectrolyte based real-timefluorescence assay for adenylate kinase[J]. AnalyticalChemistry,2009,81(1):231-239.
    [24] WANG Y Y, LIU B. Conjugated polyelectrolyte-sensitized fluorescent detectionof thrombin in blood serum using aptamer-immobilized silica nanoparticles as theplatform[J]. Langmuir,2009,25:12787-12793.
    [25] LEE K, POVLICH L K, KIM J. Label-free and self-signal amplifying molecularDNA sensors based on bioconjugated polyelectrolytes[J]. Advanced FunctionalMaterials,2007,17(14):2580-2587.
    [26] LIU B, BAUDREY S, JAEGER L, BAZAN G C. Characterization of tectoRNAassembly with cationic conjugated polymers[J]. Journal of the American ChemicalSociety,2004,126(13):4076-4077.
    [27] ZHAO D, DU J, CHEN Y G, et al. A quencher-tether-ligand probe and itsapplication in biosensor based on conjugated polymer[J].Macromolecules,2008,41(14):5373-5378.
    [28] GUAN H L, ZHOU P, ZENG S, et al. Detection of deletion mutations in DNAusing water-soluble cationic fluorescent thiophene copolymer[J].Talanta,2009,79(2):153-158.
    [29] ROBINSON D L, VENTON B J, HEIEN M L A V, WIGHTMAN R M.Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo[J].Clinical Chemistry,2003,49(10):1763-1773.
    [30] HEFCO V, YAMADA K, HEFCO A, et al. Role of the mesotelencephalicdopamine system in learning and memory processes in the rat[J]. European Journalof Pharmacology,2003,475:55-60.
    [31] WIGHTMAN R M, MAY L J, MICHAEL A C. Detection of dopaminedynamics in the brain[J]. Analytical Chemistry,1988,60(13):769A-779A.
    [32] MA Y, YANG C, LI N, YANG X R. A sensitive method for the detection ofcatecholamine based on fluorescence quenching of CdSe nanocrystals[J].Talanta,2005,67(5):979-983.
    [33] YU Z G, YONG W G, YANGA X. Aptamer-based colorimetric biosensing ofdopamine using unmodified gold nanoparticles[J]. Sensors and Actuators B:Chemical,2011,156(1):95-99.
    [34] WANG Y, ZHANG X H, CHEN Y, et al. Detection of dopamine based ontyrosinase-Fe3O4nanoparticles-chitosan nanocomposite biosensor[J]. AmericanJournal of Biomedical Sciences,2010,2(3):209-216.
    [35] POLIAKOV A E, DUMSHAKOVA A V, MUGINOVA S V, et al. Aperoxidase-based method for the determination of dopamine, adrenaline, andα-methyldopa in the presence of thyroid hormones in pharmaceutical forms[J].Talanta,2011,84(3):710-716.
    [36] HUANG H, XU M, GAO Y, WANG G N, SU X G. Water-soluble fluorescentconjugated polymer-enzyme hybrid system for the determination of bothhydroquinone and hydrogen peroxide[J]. Talanta,2011,86:164-169.
    [37] ZHANG T, FAN H L, JIN Q H. Sensitive and selective detection of nitrite ionbased on fluorescence superquenching of conjugated polyelectrolyte[J].Talanta,2010,81:95-99.
    [1] SHAHROKHIAN S. Lead phthalocyanine as a selective carrier for preparation ofa cysteine-selective electrode[J]. Analytical Chemistry,2001,73:5972-5978.
    [2] WANG W, RUSIN O, XU X, et al. Detection of homocysteine and cysteine[J].Journal of the American Chemical Society,2005,127:15949-15958.
    [3] POMPELLA A, VISVIKIS A, PAOLICCHI A, TATA D V, CASINI A F. Thechanging faces of glutathione, a cellular protagonist[J]. BiochemicalPharmacology,2003,66(8):1499-1503.
    [4] HONG R, HAN G, FERNANDEZ J M, et al. Glutathione-mediated delivery andrelease using monolayer protected nanoparticle carriers[J]. Journal of the AmericanChemical Society,2006,128(4):1078-1079.
    [5] SCHULZ J B, LINDENAU J, SEYFRIED J, DICHGANS J. Glutathione,oxidative stress and neurodegeneration[J]. European Journal ofBiochemistry,2000,267(16):4904-4911.
    [6] SESHADRI S, BEISER A, SELHUB J, et al. Plasma homocysteine as a riskfactor for dementia and alzheimer's disease[J]. The New England Journal ofMedicine,2002,346:476-483.
    [7] WOOD Z A, SCHRODER E, HARRIS R J, POOLE L B. Structure, mechanismand regulation of peroxiredoxins[J]. Trends in BiochemicalSciences,2003,28(1):32-40.
    [8] NEKRASSOVA O, LAWRENCE N S, COMPTON R G. Analyticaldetermination of homocysteine: a review[J]. Talanta,2003,60(6):1085-1095.
    [9] IVANOV A R, NAZIMOV I V, BARATOVA L A. Qualitative and quantitativedetermination of biologically active low-molecular-mass thiols in human blood byreversed-phase high-performance liquid chromatography with photometry andfluorescence detection[J]. Journal of Chromatography A,2000,870:433-442.
    [10] MOURAD T, MIN K L, STEGHENS J P. Measurement of oxidized glutathioneby enzymatic recycling coupled to bioluminescent detection[J]. AnalyticalBiochemistry,2000,283(2):146-452.
    [11] HIGNETT G, THRELFELL S, WAIN A J, et al. Electroanalytical exploitation ofquinone–thiol interactions: application to the selective determination of cysteine[J].Analyst,2001,126(3):353-357.
    [12] ZHANG M, YU M, LI F, et al. A highly selective fluorescence turn-on sensor forcysteine/homocysteine and its application in bioimaging[J]. Journal of the AmericanChemical Society,2007,129(34):10322-10323.
    [13] CHEN S J, CHANG H T. Nile red-adsorbed gold nanoparticles for selectivedetermination of thiols based on energy transfer and aggregation[J]. AnalyticalChemistry,2004,76(13):3727-3734.
    [14] TANG B, XING Y, LI P, ZHANG N, YU F, YANG G. Rhodamine-basedfluorescent pprobe w Se-N bond for detecting thiol&appl cell[J]. Journal of theAmerican Chemical Society,2007,129(38):11666-11667.
    [15] ZHANG T, FAN H L, LIU G L, et al. Different effects of Fe2+and Fe3+onconjugated polymer PPESO3: a novel platform for sensitive assays of hydrogenperoxide and glucose[J]. Chemical Communications,2008,42:5414-5416.
    [16] ZHANG T, FAN H L, LIU G L. Sensitive and selective detection of nitrite ionbased on fluorescence superquenching of conjugated polyelectrolyte[J].Talanta,2010,81:95-99.
    [17] WANG Y Y, PU K Y, LIU B. Anionic conjugated polymer withaptamer-functionalized silica nanoparticle for label-free naked-eye detection oflysozyme in protein mixtures[J]. Langmuir,2010,26(12):10025-10030.
    [18] LIU Y, OGAWA K, SCHANZE K S. Conjugated polyelectrolyte based real-timefluorescence assay for phospholipase C[J]. Analytical Chemistry,2008,80:150-158.
    [19] LIU Y, SCHANZE K S. Conjugated polyelectrolyte based real-time fluorescenceassay for adenylate kinase[J]. Analytical Chemistry,2009,81:231-239.
    [20] MONTALTI M, PRODI L, ZACCHERONI N. Fluorescence quenchingamplification in silica nanosensors for metal ions [J]. Journal of MaterialsChemistry,2005,15:2810-2814.
    [21] MA Y, LUO W, QUINN P J, LIU Z, HIDER R C. Design, synthesis,physicochemical properties, and evaluation of novel iron chelators with fluorescentsensors[J]. Journal of Medicinal Chemistry,2004,47,6349-6362.
    [22] RURACK K, KOLLMANNSBERGER M, RESCH-GENGER U, DAUB J. Aselective and sensitive fluoroionophore for Hg II, Ag I, and Cu II with virtuallydecoupled fluorophore and receptor units[J]. Journal of the American ChemicalSociety,2000,122(5):968-969.
    [23] LI Z, LOU X, YU H, LI Z, QIN J. An imidazole-functionalized polyfluorenederivative as sensitive fluorescent probe for metal ions and cyanide[J].Macromolecules,2008,41:7433-7439.
    [24] ALVAREZ-DIAZ A, SALINAS-CASTILLO A, CAMPRUBI-ROBLES M, et al.Conjugated polymer microspheres for “turn-off”/“turn-on” fluorescence optosensingof inorganic ions in aqueous media[J]. Analytical Chemistry,2011,83:2712-2718.
    [25] DOU W C, SU X G. Study on the interaction between nitroxide free radical andconjugated polyelectrolytes by fluorimetry[J]. Luminescence,2009,24:45-49.
    [26] IVANOV A R, NAZIMOVA I V, BARATOVA L. Determination of biologicallyactive low-molecular-mass thiols in human blood. I. Fast qualitative and quantitative,gradient and isocratic reversed-phase high-performance liquid chromatography withphotometric and fluorescence detection[J]. Journal of ChromatographyA,2000,895:157-166.
    [27] SHANG L, YIN J Y, LI J, JIN L H, DONG S J. Gold nanoparticle-basednear-infrared fluorescent detection of biological thiols in human plasma[J].Biosensors and Bioelectronics,2009,25:269-274.
    [28] XUE M, WANG X, WANG H, TANG B. The preparation of glutathione-cappedCdTe quantum dots and their use in imaging of cells[J].Talanta,2011,83(5):1680-1686.
    [29] ZHANG Y, LI Y, YAN X P. Photoactivated CdTe/CdSe quantum dots as a nearinfrared fluorescent probe for detecting biothiols in biological fluids[J]. AnalyticalChemistry,2009,81:5001-5007.
    [30] HAN B Y, YUAN J P, WANG E K. Sensitive and selective sensor for biothiolsin the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II)system[J]. Analytical Chemistry,2009,81:5569-5573.
    [31] LIU J F, BAO C Y, ZHONG X H, ZHAO C C, ZHU L Y. Highly selectivedetection of glutathione using a quantum-dot-based OFF-ON fluorescent probe[J].Chemical Communication,2010,46(17):2971-2973.
    [32] HAN B Y, WANG E K. Oligonucleotide-stabilized fluorescent silvernanoclusters for sensitive detection of biothiols in biological fluids[J]. Biosensors andBioelectronics,2011,26(5):2585-2589.
    [33] ZHANG Y, LI Y, YAN X P. Photoactivated CdTe/CdSe quantum dots as a nearinfrared fluorescent probe for detecting biothiols in biological fluids[J]. AnalyticalChemistry,2009,81:5001-5007.
    [34] XU H., HEPEL M.“Molecular beacon”-based fluorescent assay for selectivedetection of glutathione and cysteine[J]. Analytical Chemistry,2011,83:813-819.
    [35] ZHOU X H, KONG D M, SHEN H X. Ag+and cysteine quantitation based ong-quadruplex-hemin DNAzymes disruption by Ag+[J]. AnalyticalChemistry,2009,82:789-793.
    [36] LI T, SHI L L, WANG E K, DONG S J. Silver-ion-mediated DNAzyme switchfor the ultrasensitive and selective colorimetric detection of aqueous Ag+andcysteine[J]. Chemistry–A European Journal,2009,15(14):3347-3350.
    [37] HAN B Y, YUAN J P, WANG E K. Sensitive and selective sensor for biothiolsin the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II)system[J]. Analytical Chemistry,2009,81:5569-5573.
    [38] ZHANG M, YIN B C, TAN W, YE B C. A versatile graphene-based fluorescence“on/off” switch for multiplex detection of various targets[J]. Biosensors andBioelectronics,2011,26(7):3260-3265.
    [39] SHANG L, YIN J Y, LI J, JIN L H, DONG S J. Gold nanoparticle-basednear-infrared fluorescent detection of biological thiols in human plasma[J].Biosensors and Bioelectronics,2009,25:269-274.
    [40] XU J P, JIA L, FANG Y, LV L P, SONG Z G, JI J. Highly soluble PEGylatedpyrene-gold nanoparticles dyads for sensitive turn-on fluorescent detection ofbiothiols[J]. Analyst,2010,135(8):2323-2327.
    [41] SHANG L, QIN C J, WANG T, WANG M, WANG L X, DONG S J.Well-aligned ternary Cd1-xZnxS nanowire arrays and their composition-dependentfield emission properties[J]. Journal of Physical ChemistryC,2007,111(36):13414-13417.
    [42] LIU J F, BAO C Y, ZHONG X H, ZHAO C C, ZHU L Y. Highly selectivedetection of glutathione using a quantum-dot-based OFF–ON fluorescent probe[J].Chemical Communications,2010,46(17):2971-2973.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.