SOI关键参数的光学表征技术——理论研究及工程实用化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝缘衬底上的硅(Silicon-On-Insulator,简称SOI)在近年以来受到了人
    们的广泛关注。在未来,基于SOI的器件所具有的优异性能,它不但将会广泛应
    用于如笔记本电脑、移动电话等便携式系统;而且将在石油、化工、汽车等领域
    大放异彩。更进一步,SOI还有望向光电集成电路,纳米尺度的快速闪存器件,
    乃至单电子晶体管等等一系列面向未来的半导体技术发展,具有极其光明的应用
    前景。SOI材料的研制,也是中国科学院“知识创新”的重要课题。
     在本文中,利用SIMOX技术成功地制造了SOI材料,使用卢瑟福背散射
    (RBS/C)、透射电子显微镜(XTEM)和高分辨率电子显微镜(HRTEM)分析了样
    品的各层薄膜厚度、晶体结构的完整性以及薄膜的完整性和界面处的情况。在分
    析以上实验结果的基础上建立了一系列物理模型,发展了红外反射光谱(IR)来
    测量SOI材料的关键参数——顶层硅和氧化理层的光学厚度及均匀性,并针对各
    种误差的来源,进行了进一步的讨论和有效的修正,得到可信的结果。并利用俄
    歇电子能谱(AES)分析样品中硅和氧在样品中不同深度处的化学状态;以及在
    深度方向上,各元素在不同深度的变化情况。其结论很好地验证了红外反射光谱
    (IR)的模拟结果。
     基于对以上物理模型的研究,结合现阶段使用计算机测量的广泛性,利用动
    态数据交换(Dynamic Data Exchange)把数据和其他处理分析的工具结合起来,
    可以很容易地使数据得以共享;充分利用数值求解的自适应方法,结合物理模型,
    计算数学对样品模型做了大量优化,很好地做到了逐步逼近、而又保证快速收敛,
    从而对数理方程进行了不重不漏的分析,很好地达到了数值计算的目的;利用作
    图分析方法,可以简便直观地得到分析结果,SOI材料的有关参数一目了然,达
    到了预期的结果;基于软件工程的要求,本程序编码是模块化的,易于维护,可
    以很容易地进行进一步的改进,对于多种情况都可以分析;具有很强的健壮性,
    其中的实时记录模块能对数据处理过程中的一系列中间数据进行快速保存,防止
    意外停电等事故,并能为其它运算提供辅助作用,而容错处理模块能对输入输出
    的数据进行一系列校验,防止误操作等偶发性错误,这在工程生产上有重要意义。
     在以上工作中,作者建立了一套软件,用以分析SOI材料关键参数:表层硅
    和氧化埋层的厚度和均匀性。不但能迅速得到正确的结果,处理速度快、可靠性
    高,而且还易于使用,健壮性强,可维护性好。该套软件基于图形的用户界面,
    
     摘 要
    亲和力强,易于使用,达到了分析501材料生产实用化的要求,并成功地应用于
    中国科学院“知识创新工程” 501材料实际生产的样品表征测量流程中。通过对
    SOl材料的生产工艺进行分析,提出了一系列可靠的反馈意见。
     实践证明,该项工作能快速准确地得到501材料的关键性物理参数:表层硅
    和氧化埋层的厚度和均匀性,能实用于SOI材料生产工程的分析表征,具有相当
    的工程实用意义。
     本文还对硅中注氢后退火所形成的微结构进行了一系列分析,在分析了
    I化S几,扩展电阻探针uRP)以及显微照片等实验结果的基础上,建立了对应的
    物理模型,并应用红外反射光谱UR)来测量分析纳米空洞的分布,在利用原于
    力显微镜(A17M)等手段加以检验的前提下,作了进一步的讨论和有效的修正。
    这对于用枷l广CUt工艺生产SOI材料具有很重要的意义。
Silicon-On-Insulator (SQl), formed by the top Si layer, the buried SiQ2 layer and
     the bulk Si substrate, constitutes an interesting alternative to bulk Si for the
     fabrication of advanced electronic devices and integrated circuits (ICs). The
     technology of SQl is a powerful method for fabricating deep sub-micrometer
     Complementary-Metal-Oxide-Silicon devices (CMOS). The Circuits fabricated on
     these wafers present several advantages in relation to bulk Si technologies: low power,
     high density of integration, high radiation hardness and high switching speed of
     devices. These advantages are determined by the presence of the buried dielectric
     layer, which allows electrical isolation between the active region and the Si substrate,
     as well as between adjacent devices in the IC. There are more and more ICs based on
     SQl now.
    
     (100) n-type, 5?? cm silicon wafers were implanted with oxygen ions (16Q~),
     with enrgy from 140 to 160 KeV and dose from 4.5x 1O to l.4x10? cnf2. The
     temperatur of wafer during the implantation was maintained at 680 0C, The wafers
     were annealed at 1300 0C in an Ar ambient, mixed with 0.5% Oxygen for 5 hours.
    
     The structures of the top silicon and buried oxide layers are analyzed by
     Rutherford Back-scattering Spectrometry (RBS), Transmission Electron Microscope
     (TEM), Auger Electron Spectroscopy (AES) and Infrared Reflection (IR). RBS was
     used to get the information about the atomic ratio of Si/O and the crystal perfection of
     the top silicon layer, the thickness of buried oxide and top layer. TEM was used to
     analyze the micros-structure of SIMOX, including the sharpness of the interface and
     the existence of Si-island in the buried oxide layer. AES was applied to get the
     information about atomic ration of Si/O in buried oxide layer. The model based on a
     multi-layer stack structure is set up. An optical characterization, based on the model,
     has been~developed by simulation of Infrared Reflection spectrum.
    
     The key parameters of SIMQX wafers such as thickness of top silicon layer and
     buried oxide layer and their uniformity are obtained by this non-destructive optical
     characterization method. Our results prove that this method is powerful and very
     useful in in-line characterization of SIMOX wafer production.
    
    
    
     The RBS is used to analyze the crystalline properties of the top silicon layer, the
     atomic ratio of Si/Q of the buried oxide later and thickness of the top silicon layer and
     buried oxide layer. The results show that the crystalline structure of top layer silicon is
     very good. Simulated random spectra reveal that atomic ratio of Si/Q in buried oxide
     layer is about 1 .82.0. The interface between top silicon layer and buried oxide layer
     is sharp.
     The microstructure is examined by JEM-4000EX. The results show that the
     buried oxide layers are continuous and contain silicon islands. The thickness of top
     silicon layer and buried oxide layer is accorded with the results of RBS.
    
     HRTEM is used to analyze the lattice structure of the top silicor layer and
     interface between top silicon layer and buried oxide layer. The HRTEM images reveal
     that lattice of the top silicon layer is perfect and the interface is sharp.
    
     The chemical state of silicon in the buried oxide layer has been studied by AES.
     Auger peak of Si in the buried oxide layer is at 86eV, which is different from that of
     pure Si at 92eV or that of Si in SiQ2 at 76eV. This result reveals that the oxide in the
     buried layer is not pure silicon dioxide. Combined with the results of TEM, it is found
引文
1. Rohnert Park, 1999 IEEE International SOI Conference Proceedings, Oct. 4-7, 1999
    2. http://www. ibm. com
    3. Y. Taur, D.A. Buchanan, W. Chen, COMS scaling into nanometer regime, Proceedings of the IEEE, vlo. 85, No, 4, p486-504,1997
    4. 林成鲁,SOI技术研究进展,第四届全国SOI技术研讨会,7
    5. P.K. Vasudev, Solid-State Electronics 39 (1995) 481
    6. Matsumura, K. Kawamure, I. Hamaguchi, S. Takayama, Y. Yano, Y. Nagatake, I. Mater. Sci: Mater. Eletro. 10(1999) 365
    7. J.P.考林基,SOI技术——21世纪的硅集成电路技术,167
    8. 张兴,王阳元,高质量栅氧化层制备及其辐射特性研究,半导体学报,第20卷,第6章515-519
    9. Akira Yoshikawa et al, Hitachi Review, 48, 349 (1999)
    10. 张兴,黄如,汪雪梅,李映雪,王阳元,SOI技术的机遇和挑战,第四届全国SOI技术研讨会,10
    11. Andreas Plobl, Gertrud Krauter, Silicon-on-insulator: materials aspects and applications, Solid-State Electronics 44(2000)775-782
    12. Matsumura, K. Kawamure, I. Hamaguchi, S. Takayama, Y. Yano, Y. Nagatake, I. Mater. Sci: Mater. Eletro. 10(1999)365
    13. N. Hatzopoulos, R. Chater, U. Bussmannand P.L. Hemment, J.R. Kilner, The effect of dose and temperature on the as-implanted microstructure of oxygen-implanted silicon, Mater. Sci. and Eng. B12(1992)37-40
    14. J. Wrong-Leung, E. Nygren and J. S. Williams, Appl. Phys. Lett. 67,(1995) 416
    15. K. Izumi, MRS Bulletin ,23, (1999)20
    16. J.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, Kluwer AcademicPublishers, 1991
    17. P.K. Chu, S. Qin, C. Chan, N.W. Cheung, L.A. Larson, Mater. Sc. and Engeeering, R.17 6-7 (1996)
    18. A.J. Auberton-Herve, J.M. Lamure, and T. Barge, Semiconductor International Oct. (1995)
    
    
    19. J. R. Conrad, J. L.Radtke, R. A. Dodd and F. J. Worzala, J. Appl. Phys. 62, 4591, (1987)
    20. http://www. soitec. com
    21. N. Hatzopoulos, R. Chater, U. Bussmann and P. L. Hemment, J. R. Kilner, The effect of dose and temperature on the as-implanted microstructure of oxygen-implanted silicon, Mater. Sci. and Eng. 812(1992) 37-40
    22. J. C. C. Fan, M. W. Geis and B. Y. Tsaur, Appl, Phys. Lett, 38, (1981) , 365
    23. Y. Yodo, et al. IEEE J. Solid State Circuits, vol 28, No, 4 April, 1993
    24. M. Meyer, et al. Solid State Technol.15 (1972) 38
    25. M. Ogino, T. Usami, M. Watanabe, Electrochem Soc. Extented Abstracts, 80-82, (1980) 435
    26. Tong Q-Y, Scholz R, Gosele U, Lee T-H, Huang L-J, Chao Y-L, Tan T-Y. Appl. Phy. Lett. 1998;72(1) :49-51
    27. Plob A, Krauter G, Materi. Sci. Engi 1999;25(1-2) , 1-88
    28. Q. Y. Tong, R. W. Bower, MRS Bull 23(1998) 40
    29. Michel Bruel, MRS Bulletin/Dec. (1998) 35-44
    30. J. R. Kaschny, P. F. P. Fichtner, A. Muechlich, U. Kreissig, R. A. Yankov, W. Skorupa, Nucler Insrt. and Methods in Phy. Research B 136-138(1998) 583:586
    31. W. Fukarek, J.R. Kaschny, Cavities in helium implanted and annealed silicon characterized by spectroscopic ellipsometry, Jour. Of Appl. Phy. Vol.86 No8 4159-4165
    32. B. K. Kang, H. S. Kang, C. G. Ahn, Y. K. Kwon, Jour. Of Electr. Soci, 146(9) 3489-3493 (1999)
    33. http://www. kla-tencor. com
    34. T. Motooka, Y. Kusano, K. Nisihira, N. Kato, Appl. Surf. Sci. 159-160 (2000) 111-115
    35. N.P. Barradas, A. J. H. Maas, S. Mandl and R. Gunzel, Jour. Appl. Lett, 81 (10) 6642-6650
    36. A.Piatkowska, G. Gawlik, J. Jagielski, AFM studies of hydrogen implanted silicon, Alli. Surf. Sci. 141(1999) 333-338
    37. Ahalapitiya Hewage Jayatissa, Tommuo Yamaguchi, Masahiro Nasu and Mitsuru Agyama, Japa. Jour. Appl. Phys. 36(1997) 2581-2586
    
    
    38. Kenji Kajiyama, Yoji Morikawa, Iasc Hamagu, Japa. Jour. Appl. Phys.Vol 35 (1996) 526-532
    39. W.R.鲁尼安,半导体测量和仪器,152-161
    40. T. Motooka, Y. Kusano, K. Nisihira, N. Kato, Appl. Surf. Sci. 159-160 (2000) 111-115
    41. 陈静,陈猛,郑望,郑志宏,陈莉芝,俞跃辉,王曦,低能注水形成SOI材料的研究,第四届全国SOI技术研讨会,102-104
    42. J. Margail, J.M. Lamure and A.M. papon, Material Sci. and Engi. B12 (1992) 27-30
    43. 俞跃辉,邹世昌,周筑颖,赵国庆,高能离子注入硅中自由载流子的等离子效应的光学响应研究,半导体学报,第16卷第10期759-764
    44. T. Yanmaguchi, M. Nasu, Michiharu Tabe, Y. Kanda, Thin Solid Films 313-314 (1998) 264-269
    45. Edward, Handbook of Optical Constants of Solids, 85
    46. 章志鸣,沈元华,陈惠芬,光学(高等教育出版社),100
    47. J. Margail, J.M. Lamure and A. M. Papon, Defects in SIMOX structures:some process dependence, Mater. Sci. and Eng. B12(1992)27-36
    48. 王贻华,胡正琼,离子注入与分析基础,86
    49. E. Martin, L.F. Sanz, J. Jimenez, A. Perez-Rodriguez, J.R. Morante, B. Aspar, J. Margail, Phase stepping microscopy for layer thickness measurement in silicon-on-insulator structures, Thin Solid Films 311 (1997) 225-229
    50. W.R.鲁尼安,半导体测量和仪器,152-161
    51. Yuehui Yu and ShiChang Zou, Zhuyin Zhou and Guoqin Zhao, Optical effects of buried conductive layers from by MeV ion implantation, Materials Science and Engineering. B22(1994)297-302
    52. Rolf E. Hummel, Karl H. Guenther, Thin Films for Optical Coatings, 312
    53. T.Motooka, Y. Kusano, K. Nisihira, N. Kato, Ellipsometric analysis of ultrathin oxide layers on SIMOX wafers, Appl. Surf. Sci 159-160(2000) 111-115
    54. Edward, Handbook of Optical Constants of Solids, 749
    55. Rolf E. Hummel, Karl H. Guenther, Thin Films for Optical Coatings, 260
    56. 奚梅成,刘儒勋,数值分析方法,60
    
    
    57. Yuehui Yu and ShiChang Zou, Zhuyin Zhou and Guoqin Zhao, Optical effects of buried conductive layers from by MeV ion implantation, Materials Science and Engineering. B22(1994) 297-302
    58. Hiroyuki Iwata, Makoto Takagi, Yutaka Tokuda, Toru Irnura, Analysis of platelet distribution in H ion-implanted silicon, Jour, of Crystal. Growth 210 (2000) 94-97
    59. M. Fujinami, R.Suzuki, T. Ohdaira, T. Mikado, Thermal evolution of defects in H-implanted Si studied by monoenergetic postitrons, Phy.Review B, PRB, 12560-12562
    60. W. Fukarek, J.R.Kaschny, Cavities in helium implanted and annealed silicon characterized by spectroscopic ellipsometry, Jour. Of Appl. Phy. Vol.86 No8 4159-4165
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.