黄土高原沟壑区小流域土壤有机碳储量和二氧化碳排放
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球陆地生态系统土壤有机碳(Soil organic carbon,SOC)储量约为1500 PgC (1 Pg = 1015 g),是陆地生物碳库(560 PgC)的2.8倍,大气圈碳库(760 PgC)的2倍。全球土壤通过呼吸的碳排放量(75 PgC a-1)约占大气二氧化碳(CO2-C)总量的10%,是化石燃料燃烧释放CO2-C的10倍。SOC储量和土壤呼吸的微小变化都能引起全球CO2浓度显著变化。因此,提高SOC储量、减少土壤CO2排放对减缓大气CO2浓度升高具有重要意义。
     黄土高原处于干旱半干旱区,为我国典型的雨养农业区和生态脆弱区之一。由于多种不利因素,如降雨量低且年季多变、植被退化、土壤侵蚀和流失严重等,严重制约了该地区SOC积累。SOM含量(1%)均处于国内最低水平。尽管黄土区有关SOC已有大量研究,但主要集中于点位尺度单一治理措施与SOC含量变化的关系,而对SOC储量演变机理以及土壤CO2排放还知之甚少。小流域是黄土区进行水土流失综合治理的基本单元。研究小流域SOC储量和CO2排放影响因素有助于揭示区域SOC储量变化机理具有重要意义。为此,本研究以黄土高原沟壑区的王东沟流域为平台开展了以下两方面研究工作:
     一、以小流域内塬面、坡地和沟道等地貌单元和土地利用方式为对象,通过野外调查、试验分析,并结合实地调查与遥感、GIS技术,重点研究地貌单元与土地利用的交互作用对小流域SOC分布的影响,以期揭示大比例尺小尺度条件下地貌单元与SOC含量变化及其空间分布特征的关系,为准确估算黄土区大比例尺度SOC储量提供参考,为探索水土流失治理条件下流域SOC储量演变提供新思路和理论依据。
     二、以小流域内塬面上农田土壤系统和坡地上林地土壤系统为对象,监测土壤呼吸、土壤温度和土壤水分动态变化特征,研究土壤温度、土壤水分对土壤呼吸的相关关系,研究土壤CO2排放的不同过程和机理,探讨小流域内不同地貌和土地利用条件下影响土壤CO2排放的环境和人为因素。
     主要结果如下:
     地貌单元和土地利用对王东沟小流域表层SOC含量空间分布影响显著(P<0.05)。0-20 cm土层SOC含量,沟道>塬面>塬坡。塬面表层SOC含量的变化平缓(6.49-8.56 g kg-1);塬坡和沟道SOC含量变化显著。不同地貌单元条件下土地利用方式对表层SOC含量空间分布的影响也存在明显差异。塬面区,人工草地SOC含量亦明显高于农田和果园;在塬坡上,不同土地利用类型间,SOC含量也存在显著差异(P<0.05)。沟道内,林草两种土地利用类型间的SOC含量无显著差异。
     在王东沟小流域,地貌显著影响SOC垂直分布特征。除表层SOC含量沟道大于塬面和塬坡外,塬面均显著高于塬坡和沟道;塬坡和沟道SOC含量随深度增加而降低,而塬面上呈现SOC随深度增加降低-升高-降低的变化趋势。土地利用方式对SOC垂直分布的影响存在显著差异:塬面上,SOC含量基本呈现人工草地>农田>果园的趋势,影响深度为表层40 cm;塬坡上,呈现自然草地>人工林地>人工草地>果园的趋势,影响深度达到100 cm;而沟道地区林草地利用方式对整个垂直剖面分布的差异无显著影响。黄土高原沟壑区深层SOC储量巨大,20 -100 cm土层SOC储量占0-100 cm储量的67.6%;100-200 cm土层SOC储量占0-200 cm储量的37.3%,相当于0-100 cm的63.8%。
     王东沟小流域坡地人工刺槐林,去除灌丛群落可使土壤呼吸作用显著降低,去除灌丛群落的对照处理、去除、添加凋落物处理较保留灌丛群落的相应处理分别降低19%、15%和17%。对凋落物处理而言,添加凋落物使土壤呼吸速率增加,去除凋落物使土壤呼吸速率降低,且去除凋落物使土壤呼吸降低程度小于添加凋落处理土壤呼吸增加程度。灌丛群落条件下,与对照处理土壤呼吸速率相比,添加凋落物处理增加31.15%,去除凋落物处理则降低27.23%;去除灌丛群落条件下,与对照处理土壤呼吸速率相比,添加凋落物处理增加34.51%,去除凋落物处理则降低23.77%。土壤温度与土壤水分呈抛物线相关,与土壤温度呈指数相关。改变凋落物的输入量并没有显著改变土壤呼吸与土壤温度与水分的相关关系程度;而去除灌丛群落却明显提高了土壤呼吸与土壤温度和水分的相关程度。
     王东沟小流域农田休闲期(7月7日至9月9日),不同施肥处理土壤呼吸速率大小为:化肥有机肥配施处理(NMP)>有机肥处理(M)>化肥氮磷处理(NP)>化肥氮处理(N)和不施肥处理(CK),平均值分别为3.07、2.56、1.87、1.25和1.23μmol m-2 s-1。依据观测的实验数据,CK、N、NP、M和NPM处理休闲期土壤CO2排放量,依次为312、324、477、651和780 g m-2。黄土旱塬区农田休闲期土壤呼吸与土壤水分呈现极显著抛物线关系(P<0.01),可解释55%以上的土壤呼吸变异性;土壤呼吸与土壤温度呈极显著线性相关(P<0.01),但仅能解释呼吸作用变异性的19%-39%。休闲期土壤呼吸受土壤水分和土壤温度共同作用,但土壤水分是控制呼吸作用的主导因子,土壤温度仅为次要限制因素。土壤呼吸对耕作的响应强度,与微生物量碳极显著线性正相关(P <0.01),与SOC显著线性正相关(P<0.05),与全氮、可溶性碳无明显关系(P >0.05)。降雨对土壤呼吸的影响与土壤微生物量碳、SOC、可溶性碳、全氮显著线性以及土壤水分状况密切相关。
Global warming is one of the urgent environmental problems. Carbon cycle takes a major role in climate changes, which becomes a hot issue interesting more and more scientists. SOC (Soil organic carbon) pools in the terrestrial ecosystem is about 1500 Pg, which is more than 2.8 times than terrestrial biological carbon pool and 2 times than global atmospheric carbon pool. Soil carbon emission at the global scale annual is 75 Pg, accounting on tem percents of total amount of atmospheric CO2. All these show that the fractional change of SOC pool and soil respiration may cause voilent changes in the climate of the Earth. Increasing SOC sequestration and reducing soil carbon dioxide emissions play an important role for reliefing global warming.
     The Loess Plateau, one of the areas with the most serious soil erosion in the world, is a typical rainfed agriculture area and an ecological fragile zone lying in arid and semiarid regions. Because of soil erosion and sweeping, vegetation degeneration, and low rainfall,the region has the lowest SOC content and density. Presently, the researches main centralize on the SOC content under the rehabilitation of small river basins, but the SOC pools and dynamic in the future, even soil respiration are neglected, for which we take two jobs based on the Wanggonggou watershed on the Loess Plateau. (1) Soil sampling units from 448 sites (0-20cm) and 33 sites (0-200cm) defining on the basis of land formand land use, were used to analyze the effect of land use, landform on SOC, and on the vertical distribution characteristic of SOC sampled to a depth of 200cm. (2) Based on the long-term fertilization experiment in the arid upland fields on the Loess Plateau that started in 1984 and manmade wood(Robinia pseudoacia L.), soil respiration, soil temperature and soil moisture were monitored with the dynamic closed chamber method (LI-8100 USA), and dynamics of soil respiration and its relationships with environmental factors were investigated.
     Results were as follows:
     There was significant variation in SOC concentration across the landforms (P<0.01). For the top soil of 0-20 cm, SOC concentration was greatest at the gully position (9.1 g kg-1), next was at the tableland position (7.8 g kg-1), and least (6.8 g kg-1) at the slope position. On the tableland, SOC in 0-20 cm varied between 6.49 and 8.56 g kg-1, and SOC content under manmade grass was significantly higher than cropland and orchard; on the slopleland, the range of SOC concentrations increased (5.79-9.95 g kg-1), and there was significant difference among landuse, while varied most in the gully (5.79-10.64 g kg-1), but there was no significant derrerence between grassland and woodland.
     Landform and lanuse had significant effect on the vertical distribution of SOC. For the subsoil, SOC in tableland was higher than that in gully and slopeland. For slopeland and gully, SOC decreased with depth increasing, while for tableland, SOC decreased initially, then increased, lastly decreased. Meanwhile, for tableland, the order of SOC appeared approximately manmade grassland > cropland > orchard with the effecting depth of land uses for 40cm, and for slopeland the order was native grassland > manmade woodland > manmade grassland > orchardwith the depth for 100cm, while for gully, there was no significantly difference (P > 0.05) among different land uses. SOC storage in the profile of 20-200 cm accounted for 88.3% sampled to a depth of 100cm, while for 100-200cm, SOC storage accounted 37.3% in 0-200cm equaling to 63.8% of the SOC storage in 0-100cm. The results revealed that landforms and land uses highly significantly (P< 0.05) affected the vertical distribution of SOC at a small watershed scale and considerable amounts of C were stored at deeper depths.
     At the gully region of Loess Plateau, soil respiration in soils under the removal of shrub under wood. For control treatment, exclusion and addition litter treatment, soil respiration decreased by 19%, 15%, and 17%, respectively. The amount change of litter also could significantly effected soil respiration. Soil respiration increased under litter addition treatment, while decreased under litter exclusion treatment. For shrud, the litter adding could increase soil respiration by 31.15%, while decreaed by 27.23% under exclusing litter. For removal of shrub, the values of the two litter treatment were 34.51% and 23.77%. Correlstion analysis showed that the litter change did not influence the relation between soil respiration and soil water content and soil temperature, but removal of shrub cound significantly altered the correlation level of soil respiration and soil water content and soil temperature. Significant exponential relation were found between soil respiration and soil temperature, meanwhile soil respiration has cubic parabola relation with soil moisture.
     Soil respiration varied drastically within the range from 0.06 to 5.05μmol m~(-2) s~(-1) with a variation coefficient of 116.5% and a mean of 2.00μmol m~(-2) s~(-1). For the whole study period, in terms of soil respiration, the treatments followed a decreasing order of NPM > M > NP > N and CK, with cumulative CO_2-C emission being 2.0, 1.6, 1.2, 0.8 and 0.8 Mg hm-2, respectively. The relationship between soil respiration and soil moisture appeared in an extremely significant parabolic curve (P < 0.01), which explains 55% of the variation of the soil respiration. Although soil respiration was in extremely significant linear relationship with soil temperature (P < 0.01),soil temperature could explain only 19% to 39% of the variation of soil respiration. Strength of the response of soil respiration to ploughing significantly (P <0.05) was positively related to soil microbial biomass carbon and soil organic carbon showing a linear relationship, but not to total nitrogen or soil dissolved organic carbon (P > 0.05).
引文
常旭虹,赵广才,孟祥云,杨丽珍,皮福忠,毕玉强,刘秀全. 2006.农牧交错区保护性耕作对土壤含水量和温度的影响.土壤, 38(3): 328-332
    陈全胜,李凌浩,韩兴国,阎志丹,王艳芬. 2003.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响.植物生态学报, 27(2): 202-209
    陈全胜,李凌浩,韩兴国,阎志丹. 2003.水分对土壤呼吸的影响及机理.生态学报, (5): 972-978
    陈四清,崔骁勇,周广胜,李凌浩. 1999.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究.植物学报, 41(6): 645-650
    傅伯杰,陈利顶. 1999.黄土丘陵区小流域土地利用变化对生态环境的影响:以延安市羊沟圈为例.地理学报, 54(3): 241-246
    高会议,郭胜利,刘文兆,车升国. 2010.施氮水平对黄土旱塬区麦田土壤呼吸变化的影响.环境科学, 10(2): 119-125
    巩杰,陈利顶,傅伯杰,李延梅,黄志霖,黄奕龙,彭鸿嘉. 2004.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响.应用生态学报, 15(12): 2292-2296
    郭胜利,吴金水,党廷辉. 2008.轮作和施肥对半干旱区作物地上部生物量与土壤有机碳的影响.中国农业科学, 41(3): 744-751
    郭胜利,刘文兆,史竹叶,侯喜禄,李凤民. 2003.半干旱区流域土壤养分分布特征及其与地形、植被的关系.干旱地区农业研究, 21(4): 40-43
    韩广轩,周广胜,许振柱. 2008.中国农田生态系统土壤呼吸作用研究与展望.植物生态学报, 32(3): 719-733
    郝明德.1998.黄土高原沟壑区农业生态经济系统研究.见:郝明德,梁银丽主编.长武农业生态系统结构、功能及调控原理与技术.北京:气象出版社: 3-14
    贾宇平,马义娟. 2005.黄土高原小流域土壤总碳分布与储量研究.水土保持通报, 25(5): 17-19
    李克让,王绍强,曹明奎. 2003.中国植被和土壤碳贮量.中国科学, 33(1): 72-80
    李光录,姚军,庞小明. 2008.黄土丘陵区土壤和泥沙不同粒径有机碳分布及其侵蚀过程.土壤学报, 45(4): 740-744
    李玉山,苏陕民. 1991.武王东沟高效生态经济系统综合研究.北京:科学技术文献出版社: 285-292
    连纲,郭旭东,傅伯杰,虎陈霞. 2008.黄土高原小流域土壤养分空间变异特征及预测.生态学报, 28(3): 946-954
    林而达. 2001.气候变化与农业可持续发展.北京:北京出版社: 1-32
    刘守赞,郭胜利,王小利,薛宝民. 2005.植被对黄土高原沟壑区坡地土壤有机碳的影响.自然资源学报, 20(4): 529-536
    马玉红,郭胜利,杨雨林,王小利,杨光. 2007.植被类型对黄土丘陵区流域土壤有机碳氮的影响.自然资源学报, 22(1): 97-105
    孟凡乔,吴文良. 1999.高产农田生态系统土壤有机碳的输出规律及其影响因素.中国农业大学学报, 8(1): 39-44
    孟磊,丁维新,蔡祖聪,钦绳武. 2005.长期定量施肥对土壤有机碳储量和土壤呼吸影响.地球科学进展, (6): 687-692
    孟磊,丁维新,蔡祖聪. 2008.长期施肥潮土土壤呼吸的温度和水分效应.生态环境, 17(2): 693-698
    潘根兴. 1999.中国土壤有机碳和无机碳库量研究.科技通报, 15(5): 330-332
    彭文英,张科利,杨勤科. 2006.退耕还林对黄土高原地区土壤有机碳影响预测.地域研究与开发, 25(3): 94-99
    齐丽彬,樊军,邵明安,王万忠. 2008.黄土高原水蚀风蚀交错带不同土地利用类型土壤呼吸季节变化及其环境驱动.生态学报, 28(11): 5428-5436
    邱扬,傅伯杰,王军,陈利顶. 2004.黄土高原小流域土壤养分的时空变异及其影响因子.自然科学进展, 14(3): 294-299
    孙小花,张仁陟,蔡立群,陈强强. 2009.不同耕作措施对黄土高原旱地土壤呼吸的影响.应用生态学报, 20(9): 2173-2180
    王光军,田大伦,闫文德,朱凡,项文化,梁小翠. 2009.改变凋落物输入对杉木人工林土壤呼吸的短期影响.植物生态学报, 33(4): 739-747
    王光军,田大伦,朱凡,闫文德,李树战. 2008.枫香(Liquidambar formosana)和樟树(Cinnamomum camphora)人工林土壤呼吸及其影响因子的比较.生态学报, 28(9): 4107-4114
    王军,傅伯杰,邱扬,陈利顶,余莉. 2003.黄土高原小流域土壤养分的空间分布格局—Kriging插值分析.地理研究, 22(3): 373-379
    王绍强,周成虎,李克让,朱松丽,黄方红. 2000.中国土壤有机碳库及空间分布特征分析.地理学报, 55(5): 533-544
    王小国,朱波,王艳强,郑循华. 2007.不同土地利用方式下土壤呼吸及其温度敏感性.生态学报, 27(5): 1960-1968
    吴建国,张小全,徐德应. 2004.土地利用变化对土壤有机碳贮量的影响.应用生态学报, 15(4): 593-599
    吴建国,张小全,徐德应. 2003.六盘山林区几种土地利用方式土壤呼吸时间格局.环境科学, 24(6): 23-32
    吴金水,林启美,黄巧云,肖和艾. 2006.土壤微生物生物量测定方法及其应.北京:气象出版社: 117-141
    吴雅琼,刘国华,傅伯杰,郭玉华. 2008.青藏高原土壤有机碳密度垂直分布研究.环境科学学报, 28(2): 362-367
    徐香兰,张科利,徐宪立,彭文英. 2003.黄土高原地区土壤有机碳估算及其分布规律分析.水土保持学报, 17(3): 13-15
    徐勇, Sidle R. 2001.黄土丘陵区燕沟流域土地利用变化与优化调控.地理学报, 56(6): 657-666
    杨文治,余存祖. 1992.黄土高原区域治理与评价.北京:科学出版社: 159
    杨玉盛,陈光水,王小国,谢锦升,董彬,李震,高人. 2005.皆伐对杉木人工林土壤呼吸的影响.土壤学报, 42(4): 584-590
    于东升,史学正,孙维侠,王洪杰,刘庆花,赵永存. 2005.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究.应用生态学报, 16(12): 2279-2283
    余存祖.1991.黄土高原地区土壤养分资源与分区.见:王恒俊,张淑光主编.黄土高原地区土壤资源及其合理利用.北京:中国科学技术出版社: 155-204.
    张红星,王效科,冯宗炜,宋文质,刘文兆,李双江,庞军柱,欧阳志云. 2008.黄土高原小麦田土壤呼吸对强降雨的响应.生态学报, 28(12): 6189-6196
    张淑光. 1988.黄土侵蚀地区黑垆土的形成、分布和利用.水土保持学报, 2(3): 65-73
    张文菊,彭佩钦,童成立,王小利,吴金水. 2005.洞庭湖湿地有机碳垂直分布与组成特征.环境科学, 26(3): 56-60
    郑聚锋,张旭辉,潘根兴,李恋卿. 2006.水稻土基底呼吸与CO2排放强度的日动态及长期不同施肥下的变化.植物营养与肥料学报, 12(4): 485-494
    周涛,史培军,惠大丰,骆亦其. 2009.中国土壤呼吸温度敏感性空间格局的反演.中国科学(C辑:生命科学), 39(3): 315-322
    周印东,吴金水. 2003.子午岭植被演替过程中土壤剖面有机质与持水性能变化.西北植物学报, 23(6): 895-900
    朱显谟. 1989.黄土高原土壤与农业.北京:农业出版社: 366-369
    朱咏莉,吴金水,童成立,王克林,王勤学. 2008.稻田CO2通量对光强和温度变化的响应特征.环境科学, 29(4): 1041-1044
    邹建文,黄耀,郑循华,王跃思. 2003.稻田CO2、CH4和N2O排放及其影响因素.环境科学学报, (6): 758-764
    Arrouays D, Deslais W, Badeau V. 2001. The carbon content of topsoil and its geographical distribution in France. Soil Use and Management, 17(1): 7-11
    Batjes N H, Sombroek W G. 1997. Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology, 3(2): 161-173
    Batjes N H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2): 151-163
    Batjes N H. 1998. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Biology and Fertility of Soils, 27(3): 230-235
    Berhe A A, Harden J W, Torn M S, Harte J. 2008. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. Journal of Geophysical Research-Biogeosciences, 113: G04039
    Bohn H L. 1976. Estimate of Organic Carbon in World Soils. Soil Science Society of America Journal, 40(3): 468-470
    Bohn H L. 1982. Estimate of Organic Carbon in World Soils: II Soil Science Society of America Journal, 46(5): 1118–1119
    Boone R D, Nadelhoffer K J, Canary J D, Kaye J P. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396(6711): 570-572
    Borken W, Xu Y J, Brumme R, Lamersdorf N. 1999. A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: Drought and rewetting effects. Soil Science Society of America Journal, 63(6): 1848-1855
    Borken W, Xu Y J, Davidson E A, Beese A. 2002. Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 8(12): 1205-1216
    Bouma T J, Bryla D R. 2000. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant and Soil, 227(1-2): 215-221
    Bremner J M, Mulvaney C S.1982. Regular Kjeldahl method. in: M R H Page A L, Keeney D R, Editor. Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties(second edition)
    Brubaker S C, Jones A J, Lewis D T, Frank K. 1993. Soil properties associated with landscape position. Soil Science Society of America Journal, 57(1): 235-239
    Cable J M, Ogle K, Williams D G, Weltzin J F, Huxman T E. 2008. Soil texture drives responses of soil respiration to precipitation pulses in the sonoran desert: implications for climate change. Ecosystems, 11(6): 961-979
    Campbell C A, Zentner R P. 1993. Soil organic-matter as influenced by crop rotations and fertilization. Soil Science Society of America Journal, 57(4): 1034-1040
    Cerri C C, B V. 1987. Carbon content in a yellow latosol of central Amazon rain forests. Acta Oecol, 81(1): 29-42
    Chen L D, Gong J, Fu B J, Huang Z L, Huang Y L, Gui L D. 2007. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecological Research, 22(4): 641-648
    Chimner R A. 2004. Soil respiration rates of tropical peatlands in Micronesia and Hawaii. Wetlands, 24(1): 51-56
    Dao T H. 1998. Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a Paleustoll. Soil Science Society of America Journal, 62(1): 250-256
    Davidson E A, Ackerman I L. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 20(3): 161-193
    Davidson E A, Belk E, Boone R D. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4(2): 217-227
    Davidson E A, Verchot L V, Cattani J H o, Ackerman I L, Carvalho J E M. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48(1): 53-69
    De Gryze S, Six J, Bossuyt H, Van Oost K, Merckx R. 2008. The relationship between landform and the distribution of soil C, N and P under conventional and minimum tillage. Geoderma, 144(1-2): 180-188
    Ding W X, Cai Y, Cai Z C, Yagi K, Zheng X H. 2007. Soil respiration under maize crops: Effects of water, temperature, and nitrogen fertilization. Soil Science Society of America Journal, 71(3): 944-951
    Dixon R K, Brown S, Houghton R A, Solomon A M, Trexler M C, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science, 263(5144): 185-190
    Drury C F, Oloya T O, McKenney D J, Gregorich E G, Tan C S, vanLuyk C L. 1998. Long-term effects of fertilization and rotation on denitrification and soil carbon. Soil Science Society of America Journal, 62(6): 1572-1579
    Dutta D, Sah K D, Reddy R S, Anil Kumar k S, Koyal A. 2000. Soil organic carbon storage in different landforms of South Deccan Plateau of Andhra Pradesh. Journal of the Indian Society of Soil Science, 48(3): 447-450
    Eswaran H, Vandenberg E, Reich P. 1993. Organic-carbon in soils of the world. Soil Science Society of America Journal, 57(1): 192-194
    Fang C, Moncrieff J B, Gholz H L, Clark K L. 1998. Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil, 205(2): 135-146
    Fearnside P M, Barbosa R I. 1998. Soil carbon changes from conversion of forest to pasture inBrazilian Amazonia. Forest Ecology and Management, 108(1-2): 147-166
    Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450: 277-280
    Franzluebbers A J, Hons F M, Zuberer D A. 1995. Tillage and crop effects on seasonal dynamics of soil co2 evolution, water-content, temperature, and bulk-density. Applied Soil Ecology, 2(2): 95-109
    Franzluebbers A J, Stuedemann J A. 2009. Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agriculture Ecosystems & Environment, 129(1-3): 28-36
    Fu B J, Ma K M, Zhou H F, Chen L D. 1999. The effect of land use structure on the distribution of soil nutrients in the hilly area of the Loess Plateau, China. Chinese Science Bulletin, 44(8): 732-736
    Gough C M, Seiler J R. 2004. The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. Forest Ecology and Management, 191(1-3): 353-363
    Halvorson A D, Reule C A, Follett R F. 1999. Nitrogen fertilization effects on soil carbon and nitrogen in a dryland cropping system. Soil Science Society of America Journal, 63(4): 912-917
    Halvorson A D, Wienhold B J, Black A L. 2002. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Science Society of America Journal, 66(3): 906-912
    He N P, Yu Q, Wu L, Wang Y S, Han X G. 2008. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology & Biochemistry, 40(12): 2952-2959
    Holt J A, Hodgen M J, Lamb D. 1990. Soil respiration in the seasonally dry tropics near Townsville, North-Queensland. Australian Journal of Soil Research, 28(5): 737-745
    Houghton R A. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus Series B-Chemical and Physical Meteorology, 55(2): 378-390
    IPCC (Intergovemmental Panle on Climate Change). 2000. Land use, Land-use change, and forestry, a special report of the Intergovemmental Panel on Climate Change. Cambridge:Cambridge University Press, U K,
    Ito D, Takahashi K. 1997. Seasonal changes in soil respiration rate in a mulberry Journal of Agricultural Meteorology, 53(3): 209-215
    Jobbagy E G, Jackson R B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423-436
    Keith H, Jacobsen K L, Raison R J. 1997. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant and Soil, 190(1): 127-141
    Kirschbaum M U F, Harms B, Mathers N J, Dalal R C. 2008. Soil carbon and nitrogen changes after clearing mulga (Acacia aneura) vegetation in Queensland, Australia: Observations, simulations and scenario analysis. Soil Biology & Biochemistry, 40(2): 392-405
    Kirschbaum M U F. 1995. The temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-c storage. Soil Biology & Biochemistry, 27(6): 753-760
    Kucharik C J, Brye K R, Norman J M, Foley J A, Gower S T, Bundy L G. 2001. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOCsequestration during the next 50 years. Ecosystems, 4(3): 237-258
    Lal R. 2003. Soil erosion and the global carbon budget. Environment International, 29(4): 437-450
    Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677): 1623-1627
    Lal R. 2010. Enhancing Eco-efficiency in Agro-ecosystems through Soil Carbon Sequestration. Crop Science, 50(2): S120-S131
    Lee X, Wu H J, Sigler J, Oishi C, Siccama T. 2004. Rapid and transient response of soil respiration to rain. Global Change Biology, 10(6): 1017-1026
    Li H J, Yan J X, Yue X F, Wang M B. 2008. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agricultural and Forest Meteorology, 148(3): 490-503
    Li K R, Wang S Q, Cao M K. 2004. Vegetation and soil carbon storage in China. Science in China Series D-Earth Sciences, 47(1): 49-57
    Liu Y, Han S J, Zhou Y M, Zhang J H. 2005. Contribution of root respiration to total soil respiration in a Betula ermanii-dark coniferous forest ecotone of the Changbai Mountains, China. Pedosphere, 15(4): 448-455
    Lloyd J, Taylor J A. 1994. On the temperature-dependence of soil respiration. Functional Ecology, 8(3): 315-323
    Lorenz K, Lal R. 2005. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advances in Agronomy, 88: 35-66
    Luo Y Q, Wan S Q, Hui D F, Wallace L L. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413(6856): 622-625
    Manabe S, Stouffer R J. 1979. CO2-climate sensitivity study with a mathematical model of the global climate. Nature, 282(5738): 491-493
    Martens D A, Reedy T E, Lewis D T. 2004. Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology, 10(1): 65-78
    Mathes K, Schriefer T. 1985. Soil respiration during secondary succession - influence of temperature and moisture. Soil Biology & Biochemistry, 17(2): 205-211
    Momtaz H R, Jafarzadeh A A, Torabi H, Oustan S, Samadi A, Davatgar N, Gilkes R J. 2009. An assessment of the variation in soil properties within and between landform in the Amol region, Iran. Geoderma, 149(1-2): 10-18
    Nelson D W, Sommers L E.1992. Total carbon, organic carbon, and organic matter. in: M R H Page A L, Keeney D R . Editor. Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties(second edition). Wisconsin,USA: Madison: 562-564
    Oldeman L R.1994. The global extent of soil degradation. In: Greenland D J, Szabolcs I, Editor. Soil resilience and sustainable land use. Wallingford: CAB International: 99-118
    Pacala S, Socolow R. 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305(5686): 968-972
    Pangle R E, Seiler J. 2002. Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation in the Virginia Piedmont. Environmental Pollution, 116: S85-S96
    Papiernik S K, Schumacher T E, Lobb D A, Lindstrom M J, Lieser M L, Eynard A, Schumacher J A. 2009. Soil properties and productivity as affected by topsoil movement within an eroded landform. Soil & Tillage Research, 102(1): 67-77
    Paustian K, Cole C V, Sauerbeck D, Sampson N. 1998. CO2 mitigation by agriculture: An overview. Climatic Change, 40(1): 135-162
    Peterjohn W T, Melillo J M, Steudler P A, Newkirk K M, Bowles F P, Aber J D. 1994. Responses of trace gas fluxes and n availability to experimentally elevated soil temperature. Ecological Applications, 4(3): 617-625
    Piovanelli C, Gamba C, Brandi G, Simoncini S, Batistoni E. 2006. Tillage choices affect biochemical properties in the soil profile. Soil & Tillage Research, 90(1-2): 84-92
    Post W M, Emanuel W R, Zinke P J, G S A. 1982. Soil carbon pools and world life zones. Nature, 298(5870): 156-159
    Post W M, Kwon K C. 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6(3): 317-327
    Potter K N, Torbert H A, Johnson H B, Tischler C R. 1999. Carbon storage after long-term grass establishment on degraded soils. Soil Science, 164(10): 718-725
    Raich J W, Potter C S. 1995. Global patterns of carbon-dioxide emissions from soils. Global Biogeochemical Cycles, 9(1): 23-36
    Raich J W, Schlesinger W H. 1992. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Series B-Chemical and Physical Meteorology, 44(2): 81-99
    Raich J W, Tufekcioglu A. 2000. Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48(1): 71-90
    Reicosky D C. 1997. Tillage-induced CO2 emission from soil. Nutrient Cycling in Agroecosystems, 49(1-3): 273-285
    Ritchie J C, McCarty G W, Venteris E R, Kaspar T C. 2007. Soil and soil organic carbon redistribution on the landscape. Geomorphology, 89(1-2): 163-171
    Rochette P, Desjardins R L, Pattey E. 1991. Spatial and temporal variability of soil respiration in agricultural fields. Canadian Journal of Soil Science, 71(2): 189-196
    Rodhe H. 1990. A Comparison of the Contribution of Various Gases to the Greenhouse Effect Science in China Series D-Earth Sciences, 248(4960): 1217-1219
    Rustad L E, Huntington T G, Boone R D. 2000. Controls on soil respiration: Implications for climate change. Biogeochemistry, 48(1): 1-6
    Schlesinger W H, Andrews J A. 2000. Soil respiration and the global carbon cycle. Biogeochemistry, 48(1): 7-20
    Sha L Q, Zheng Z, Tang J W, Wang Y H, Zhang Y P, Cao M, Wang R, Liu G G, Wang Y S, Sun Y. 2005. Soil respiration in tropical seasonal rain forest in Xishuangbanna, SW China. Science in China Series D-Earth Sciences, 48: 189-197
    Six J, Elliott E T, Paustian K, Doran J W. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62(5): 1367-1377
    Smith P. 2004. Soils as carbon sinks: the global context. Soil Use and Management, 20: 212-218
    Smith P. 2008. Land use change and soil organic carbon dynamics. Nutrient Cycling inAgroecosystems, 81(2): 169-178
    Sotta E D, Meir P, Malhi Y, Nobre A D, Hodnett M, Grace J. 2004. Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology, 10(5): 601-617
    Vogel J G, Valentine D W, Ruess R W. 2005. Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 35(1): 161-174
    Wagai R, Brye K R, Gower S T, Norma n J M, Bundy L G. 1998. Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin. Soil Biology & Biochemistry, 30(12): 1501-1509
    Wang J, Fu B J, Qiu Y, Chen L D. 2001. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China. Journal of Arid Environments, 48(4): 537-550
    Wang S L, Huang M, Shao X M, Mickler R A, Li K, Ji J J. 2004. Vertical distribution of soil organic carbon in China. Environmental Management, 33: 200-209
    West T O, Post W M. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal, 66(6): 1930-1946
    Woodwell G M, Whitaker R H, Reiners W A, Likens G E, Delwich C C, Botkin D B. 1978. Biota and the World carbon budget. Science, 199(4325): 141-146
    Xu M, Qi Y. 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in norther California. Global Change Biology, 7: 667-677
    Yang Y S, Xie J S, Sheng H, Chen G S, Li X, Yang Z J. 2009. The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of southern China. Journal of Geographical Sciences, 19(1): 49-57
    Zheng Z M, Yu G R, Fu Y L, Wang Y S, Sun X M, Wang Y H. 2009. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study. Soil Biology & Biochemistry, 41(7): 1531-1540
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.