水通道蛋白5敲除对呼吸道粘液表达谱的影响及其信号转导机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水通道蛋白5敲除对呼吸道粘液表达谱的影响及其信号转导机制的研究
     第一部分
     水通道蛋白5在慢性哮喘小鼠模型气道炎症和粘液分泌中的作用
     目的气道粘液高分泌是慢性气道疾病的特征,水通道蛋白5对于呼吸道液体分泌的量起着很重要的作用,本研究从动物水平探讨在屋尘螨致敏的慢性哮喘小鼠模型中,水通道蛋白5基因敲除对气道炎症和粘液分泌的影响。
     方法应用水通道蛋白5基因敲除小鼠和野生型小鼠,屋尘螨滴鼻致敏制备慢性哮喘小鼠模型,HE检测病理、炎症评分,AB-PAS染色检测小鼠气道杯状细胞的增生、免疫组化和Realtime-PCR检测小鼠气道粘蛋白MUC5AC、MUC5B的表达及定量,ELISA检测支气管肺泡灌洗液(BALF)细胞因子IL-2、IL-4、IL-10、IFN-γ和MUC5AC的表达。
     结果屋尘螨慢性滴鼻致敏后,和野生型小鼠相比,水通道蛋白5基因敲除鼠病理评分减轻,BALF中Th2细胞因子减少,Thl细胞因子增加,BALF液中MUC5AC蛋白、肺组织中MUC5AC、MUC5B基因和蛋白表达减少。
     结论水通道蛋白5基因敲除慢性哮喘小鼠过敏性炎症和气道粘液分泌较野生型小鼠减轻。
     第二部分
     水通道蛋白5对PMA诱导的原代小鼠气道上皮细胞MUC5AC合成的影响
     目的气道上皮是呼吸道和外环境相互作用的非特异性屏障,原代培养的气道上皮细胞保留在体上皮细胞的特征和功能,是研究呼吸道上皮细胞很好的模型。本研究从细胞水平,探讨AQP5对PMA诱导的原代培养小鼠气道上皮细胞MUC5AC合成的影响及可能机制。
     方法原代培养两种小鼠(水通道蛋白5基因敲除鼠和野生鼠)气道上皮细胞,transwell建立气液平面,2周后扫描电镜及角蛋白免疫组化鉴定气道上皮细胞。PKC特异性激动剂PMA刺激原代小鼠气道上皮细胞及PKC通路特异性阻断剂Calphostinc阻断该通路,ELISA检测两组小鼠MUC5AC蛋白水平的变化,用western blotting检测两组小鼠气道上皮细胞PMA刺激后PKC、p-PKC、p-p38、p38、ERK、p-ERK的表达差异。
     结果气液平面培养后,扫描电镜显示培养的细胞上皮有微绒毛和纤毛覆盖,细胞角蛋白14免疫组化染色为阳性。PMA 20ng/ml刺激24小时后,两组小鼠气道上皮细胞分泌的MUC5AC明显升高,水通道蛋白5基因敲除鼠增加更显著,两者有显著性差异。PKC特异性阻断剂Calphostinc能阻断PMA引起的两组小鼠MUC5AC分泌。原代小鼠气道上皮细胞经PMA刺激后,western blotting检测显示PKC、p38磷酸化激活,ERK通路无变化。
     结论AQP5通过Ca2+-PKC-p38信号通路影响粘蛋白MUC5AC的合成和分泌。
     第三部分
     LPS诱导的粘液下腺细胞MUC5AC和AQP5的变化和调控机制
     目的气道粘液分泌物由水和粘蛋白MUC5AC等组成,水/粘蛋白的比例失调导致痰液粘稠,影响纤毛清除功能。本研究从细胞水平探讨在LPS刺激粘液下腺SPC-A1细胞后,MUC5AC和AQP5的变化和调控机制。
     方法用LPS刺激SPC-A1细胞,Realtime-PCR检测AQP5和MUC5AC mRNA水平的变化,western blotting、ELISA法检测AQP5和MUC5AC蛋白的变化。用EGFR抑制剂AG1478及MAPKs抑制剂(ERK抑制剂PD98059、p38 MAPK抑制剂ML3404、JNK抑制剂SP600125)干预,LPS刺激SPC-A1细胞6小时后Realtime-PCR检测AQP5和MUC5ACmRNA的表达。
     结果LPS刺激SPC-A1细胞后,MUC5AC基因和蛋白水平呈时间、浓度依赖性升高,同时AQP5基因和蛋白水平呈时间、浓度依赖性降低,两者呈负相关。EGFR抑制剂、p38/JNK抑制剂显著降低LPS诱导的MUC5ACmRNA的升高,p38/JNK抑制剂减轻AQP5mRNA的降低。
     结论P38/JNK抑制剂为AQP5和MUC5AC共同的信号通路,应用P38/JNK抑制剂能同时减轻LPS诱导MUC5AC和AQP5的变化,改善水/粘液比例。
PartⅠ
     Potential Effects of Aquaporin-5 in Allergic Inflammation and Airway Mucin Secretion in a Murine Model of Asthma
     Objective Airway mucus hypersecretion is one of the characteristics of chronic airway diseases. The aquaporin (AQP)-5 has been proposed to contribute to the volume of liquid secreted from the upper airways. The purpose of the present study was to determine whether deletion of AQP5 impacts on mucin hypersecretion in the lower airways with dust mite (HDM)-induced chronic allergic pulmonary inflammation in AQP5+/+and AQP5-/-mice.
     Methods Bronchoalveolar lavage (BAL) levels of IL-2, IL-4, IL-10, interferon (IFN)-gamma and MUC5AC, and number of peribronchial and perivascular cells were measured.
     Results We found that HDM induced more airway inflammation, lung Th2 cell accumulation and mucin hypersecretion in the lungs of C57BL/6 mice rather than AQP5-/-mice. Lung tissue expression of MUC5AC and MUC5B protein and gene expression was significantly reduced in AQP5 knockout mice.
     Conclusions Our results implicate involvement of AQP5 in mucin secretion in a mouse model of chronic asthmatic inflammation.
     PartⅡ
     Role of AQP5 in PMA induced MUC5AC mucin production in murine tracheal epithelia cells.
     Objective Primary culture of airway epithelia is a good model for studying differentiation process of epithelial cells. In this study we explored the role of AQP5 in PMA induced MUC5AC mucin production in murine tracheal epithelia cells and possible signaling pathways.
     Methods Murine tracheal epithelia cells grown at an air-liquid interface (ALI) were evaluated by scanning electron microscopy at 2 weeks of culture. After murine tracheal epithelia cells were stimulated with PMA for 24 hours, MUC5AC was determined by ELISA. Cells also were pretreated with PKC inhibitor Calphostinc after PMA stimulation. Western blotting was used to assess activation of the protein kinase C (PKC), p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) 1/2.
     Results Scanning electron micrograph demonstrated the cells were covered with numerous microvillus. Expression of cytokeratin 14 in mouse tracheal epithelial cells was positive. MUC5AC increased more in tracheal epithelia cells of AQP5 (-/-) mice than AQP5 (+/+) mice after PMA exposure. This effect was diminished in cells pretreated with Calphostinc. The phosphorylation of PKC/p38 but not (ERK) 1/2 induced by LPS was activated.
     Conclusions AQP5 affected MUC5AC production through Ca2+-PKC-p38 signaling pathways.
     PartⅢ
     Aquaporin 5 Expression Inhibited by LPS via p38/JNK Signaling Pathway in SPC-A1 Cells
     Objective While goblet cell hyperplasia and mucus hypersecretion had been recognized as typical features of chronic obstructive pulmonary disease (COPD), recent studies suggested association of mucin secretion by submucosal glands cell with aquaporin 5 expression, or to be precise, decreased AQP5 expression correlated with increased staining of MUC5AC in submucosal glands of COPD patients. LPS is universally used to induce airway mucin secretion in vitro.
     Methods After SPC-A1 cells were stimulated with LPS, AQP5 and MUC5AC mRNA were determined by real-time PCR, AQP5 and MUC5AC protein were measured by western blotting and ELISA. SPC-A1 cells were pretreated with EGFR inhibitor AG1478, ERK inhibitor PD98059, p38 inhibitor ML3404, or JNK inhibitor SP600125 before LPS stimulation. AQP5 and MUC5AC mRNA were determined by RT-PCR.
     Results AQP5 transcription and protein expression were decreased while MUC5AC expression was increased by LPS exposure in SPC-A1 cells. Further studies revealed that, AQP5 expression was down-regulated via p38/JNK signaling pathway, while MUC5AC was up-regulated through EGFR-p38/JNK pathway.
     Conclusions Therefore, p38 and JNK, their common signaling pathways, may become a promising target in our efforts of preserving AQP5 expression and preventing MUC5AC over expression to restore proper H2O/mucin ratio of airway mucus, which may be ultimately beneficial to COPD patients.
引文
[1]N. Ishida, S.I. Hirai, S. Mita, Immunolocalization of aquaporin homologs in mouse lacrimal glands, Biochemical and Biophysical Research Communications 238 (1997) 891-895.
    [2]Y. Ishikawa, M.T. Skowronski, H. Ishida, Persistent increase in the amount of aquaporin-5 in the apical plasma membrane of rat parotid acinar cells induced by a muscarinic agonist SNI-2011, Febs Letters 477 (2000) 253-257.
    [3]T.H. Ma, N. Fukuda, Y.L. Song, M.A. Matthay, A.S. Verkman, Lung fluid transport in aquaporin-5 knockout mice, Journal of Clinical Investigation 105 (2000) 93-100.
    [4]Y.L. Song, A.S. Verkman, Aquaporin-5 dependent fluid secretion in airway submucosal glands, Journal of Biological Chemistry 276 (2001) 41288-41292.
    [5]C.M. Krane, C.N. Fortner, A.R. Hand, D.W. McGraw, J.N. Lorenz, S.E. Wert, J.E. Towne, R.J. Paul, J.A. Whitsett, A.G. Menon, Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation, Proceedings of the National Academy of Sciences of the United States of America 98 (2001) 14114-14119.
    [6]Z.H. Chen, R. Zhu, L. Bai, C.X. Bai, Downregulation of aquaporin 5 induced by vector-based short hairpin RNA and its effect on MUC5AC gene expression in human airway submucosal gland cells, Respiratory Physiology & Neurobiology 152 (2006) 197-203.
    [7]Z.H. Chen, X.D. Wang, L. Gao, L. Bai, R. Zhu, C.X. Bai, Regulation of MUC5AC mucin secretion by depletion of AQP5 in SPC-A1 cells, Biochemical and Biophysical Research Communications 342 (2006) 775-781.
    [8]J.P. Audie, A. Janin, N. Porchet, M.C. Copin, B. Gosselin, J.P. Aubert, EXPRESSION OF HUMAN MUCIN GENES IN RESPIRATORY, DIGESTIVE, AND REPRODUCTIVE TRACTS ASCERTAINED BY IN-SITU HYBRIDIZATION, Journal of Histochemistry & Cytochemistry 41 (1993) 1479-1485.
    [9]N.M. El-Sayed, P.J. Myler, D.C. Bartholomeu, D. Nilsson, G. Aggarwal, A.N. Tran, E. Ghedin, E.A. Worthey, A.L. Delcher, G. Blandin, S.J. Westenberger, E. Caler, G.C. Cerqueira, C. Branche, B. Haas, A. Anupama, E. Arner, L. Aslund, P. Attipoe, E. Bontempi, F. Bringaud, P. Burton, E. Cadag, D.A. Campbell, M.
    Carrington, J. Crabtree, H. Darban, J.F. da Silveira, P. de Jong, K. Edwards, P.T. Englund, G. Fazelina, T. Feldblyum, M. Ferella, A.C. Frasch, K. Gull, D. Horn, L.H. Hou, Y.T. Huang, E. Kindlund, M. Ktingbeil, S. Kluge, H. Koo, D. Lacerda, M.J. Levin, H. Lorenzi, T. Louie, C.R. Machado, R. McCulloch, A. McKenna, Y. Mizuno, J.C. Mottram, S. Nelson, S. Ochaya, K. Osoegawa, G. Pai, M. Parsons, M. Pentony, U. Pettersson, M. Pop, J.L. Ramirez, J. Rinta, L. Robertson, S.L. Salzberg, D.O. Sanchez, A. Seyler, R. Sharma, J. Shetty, A.J. Simpson, E. Sisk, M.T. Tammi, R. Tarteton, S. Teixeira, S. Van Aken, C. Vogt, P.N. Ward, B. Wickstead, J. Wortman,O. White, C.M. Fraser, K.D. Stuart, B. Andersson, The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease, Science 309 (2005) 409-415.
    [10]C.M. Evans, K. Kim, M.J. Tuvim, B.F. Dickey, Mucus hypersecretion in asthma:causes and effects, Current Opinion in Pulmonary Medicine 15 (2009) 4-11.
    [11]D.F. Rogers, The airway goblet cell, International Journal of Biochemistry & Cell Biology 35 (2003) 1-6.
    [12]S.K. Linden, P. Sutton, N.G. Karlsson, V. Korolik, M.A. McGuckin, Mucins in the mucosal barrier to infection, Mucosal Immunology 1 (2008) 183-197.
    [13]H.Y. Lai, D.F. Rogers, Mucus hypersecretion in asthma:intracellular signalling pathways as targets for pharmacotherapy, Current Opinion in Allergy and Clinical Immunology 1067-76.
    [14]Y. Zhu, L.H. Abdullah, M. Kesimer, J.K. Sheehan, C.Davis, ISOLATION OF MUCIN SECRETORY GRANULES FROM HUMAN AIRWAY GOBLET CELLS, Pediatric Pulmonology (2009) 110.
    [15]G. Caramori, P. Casolari, C. Di Gregorio, M. Saetta, S. Baraldo, P. Boschetto, K. Ito, L.M. Fabbri, P.J. Barnes, I.M. Adcock, G. Cavallesco, K.F. Chung, A. Papi, MUC5AC expression is increased in bronchial submucosal glands of stable COPD patients, Histopathology 55 (2009) 321-331.
    [16]D.F. Rogers, Airway mucus hypersecretion in asthma:an undervalued pathology?, Current Opinion in Pharmacology 4 (2004) 241-250.
    [17]M. Toda, M.K. Tulic, R.C. Levitt, Q. Hamid, A calcium-activated chloride channel (HCLCA1) is strongly related to IL-9 expression and mucus production in bronchial epithelium of patients with asthma, Journal of Allergy and Clinical Immunology 109 (2002) 246-250.
    [18]C.F. Flach, S. Lange, E. Jennische, I. Lonnroth, Cholera toxin induces expression of ion channels and carriers in rat small intestinal mucosa, Febs Letters 561 (2004) 122-126.
    [19]W.G. Bai Chunxue, C. Hong, X. Xu, Y. Zhu, S. Niu, Relaxant effects of fructose-1,6-diphosphate on contraction of sensitized guinea pig tracheal and lung strips induced by antigen, Acta Academiae Medicinae Shanghai 23 (1996) 222-224.
    [20]A. Martinez-Anton, C. de Bolos, M. Garrido, J. Roca-Ferrer, C. Barranco, I. Alobid, A. Xaubet, C. Picado, J. Mullol, Mucin genes have different expression patterns in healthy and diseased upper airway mucosa, Clinical and Experimental Allergy 36 (2006) 448-457.
    [21]A.S. Verkman, Role of aquaporins in lung liquid physiology, Respiratory Physiology& Neurobiology 159 (2007) 324-330.
    [22]H. Funaki, T. Yamamoto, Y. Koyama, D. Kondo, E. Yaoita, K. Kawasaki, H. Kobayashi, S. Sawaguchi, H. Abe, I. Kihara, Localization and expression of AQP5 in cornea, serous salivary glands, and pulmonary epithelial cells, American Journal of Physiology 275 (1998) C1151-C1157.
    [23]G. Grunig, M. Warnock, A.E. Wakil, R. Venkayya, F. Brombacher, D.M. Rennick, D. Sheppard, M. Mohrs, D.D. Donaldson, R.M. Locksley, D.B. Corry, Requirement for IL-13 independently of IL-4 in experimental asthma, Science 282 (1998) 2261-2263.
    [24]E.E. Schadt, S.A. Monks, T.A. Drake, A.J. Lusis, N. Che, V. Colinayo, T.G. Ruff, S.B. Milligan, J.R. Lamb, G. Cavet, P.S. Linsley, M. Mao, R.B. Stoughton, S.H. Friend, Genetics of gene expression surveyed in maize, mouse and man, Nature 422 (2003) 297-302.
    [25]J.G.R. Demonchy, H.F. Kauffman, P. Venge, G.H. Koeter, H.M. Jansen, H.J. Sluiter, K. Devries, BRONCHOALVEOLAR EOSINOPHILIA DURING ALLERGEN-INDUCED LATE ASTHMATIC REACTIONS, American Review of Respiratory Disease 131 (1985) 373-376.
    [26]J.R. Johnson, R.E. Wiley, R. Fattouh, F.K. Swirski, B.U. Gajewska, A.J. Coyle, J.C. Gutierrez-Ramos, R. Ellis, M.D. Inman, M. Jordana, Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling, American Journal of Respiratory and Critical Care Medicine 169 (2004) 378-385.
    [27]B. Yong, C. Jie, Z. Rong, G. Lei, B. Chunxue, Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells, Respiratory Physiology& Neurobiology 161 (2008) 111-118.
    [28]A.H. Clarke, W.R. Thomas, J.M. Rolland, C. Dow, R.M. O'Brien, Murine allergic respiratory responses to the major house dust mite allergen Der p 1, International Archives of Allergy and Immunology 120 (1999) 126-134.
    [29]E.C. Cates, R. Fattouh, J. Wattie, M.D. Inman, S. Goncharova, A.J. Coyle, J.C. Gutierrez-Ramos, M. Jordana, Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism, Journal of Immunology 173 (2004) 6384-6392.
    [30]H.H. Kariyawasam, M. Aizen, J. Barkans, D.S. Robinson, A.B. Kay, Remodeling and airway hyperresponsiveness but not cellular inflammation persist after allergen challenge in asthma, American Journal of Respiratory and Critical Care Medicine 175 (2007) 896-904.
    [31]M.O. Henke, G. John, M. Germann, H. Lindemann, B.K. Rubin, MUC5AC and MUC5B Mucins increase in cystic fibrosis airway secretions during pulmonary exacerbation, American Journal of Respiratory and Critical Care Medicine 175 (2007) 816-821.
    [32]J.H. Ahn, C.H. Kim, Y.H. Kim, S.J. Kim, S.Y. Lee, Y.K. Kim, K.H. Kim, H.S. Moon, J.S. Song, S.H. Park, S.S. Kwon, Inflammatory and remodeling events in asthma with chronic exposure to house dust mites:A murine model, Journal of Korean Medical Science 22 (2007) 1026-1033.
    [33]Y. Wang, G. Qian, G. Wang, X. Cheng, C. Bai, X. Wang, Potential therapy of Fc-antigen combination-encoding DNA vaccination in mouse allergic airway inflammation, Clinical and Experimental Immunology 154 (2008) 115-122.
    [34]J. Bousquet, T. Bieber, W. Fokkens, M.L. Kowalski, M. Humbert, B. Niggemann, H.U. Simon, P. Burney, P. van Cauwenberge, T. Zuberbier, C.A. Akdis, P. Demoly, Important questions in allergy:novel research areas, Allergy 63 (2008) 143-147.
    [35]C. Moon, R. Rousseau, J.C. Soria, M.O. Hoque, J. Lee, S.J. Jang, B. Trink, D. Sidransky, L. Mao, Aquaporin expression in human lymphocytes and dendritic cells, American Journal of Hematology 75 (2004) 128-133.
    [36]G.F. Wang, C.L. Dong, G.S. Tang, Q. Shen, C.X. Bai, Membrane water permeability related to antigen-presenting function of dendritic cells, Clinical
    and Experimental Immunology 153 (2008) 410-419.
    [37]L. Blanc, J. Liu, M. Vidal, J.A. Chasis, X.L. An, N. Mohandas, The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volume, Blood 114 (2009) 3928-3934.
    [38]S. Hayashi, N. Takahashi, N. Kurata, A. Yamaguchi, H. Matsui, S. Kato, K. Takeuchi, Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair, Biochemical and Biophysical Research Communications 386 (2009) 483-487.
    [39]A.S. Verkman, Aquaporins:translating bench research to human disease, Journal of Experimental Biology 212 (2009) 1707-1715.
    [40]Y. Shinkai, D. Sumi, T. Toyama, T. Kaji, Y. Kumagai, Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes, Toxicology and Applied Pharmacology 237 (2009) 232-236.
    [41]S.M. Kreda, M.C. Gynn, D.A. Fenstermacher, R.C. Boucher, S.E. Gabriel, Expression and localization of epithelial aquaporins in the adult human lung, American Journal of Respiratory Cell and Molecular Biology 24 (2001) 224-234.
    [42]P.G. Middleton, K.A. Pollard, J.R. Wheatley, Hypertonic saline alters ion transport across the human airway epithelium, European Respiratory Journal 17(2001)195-199.
    [43]C.M. Krane, B.J. Deng, V. Mutyam, C.A. McDonald, S. Pazdziorko, L. Mason, S. Goldman, M. Kasaian, D. Chaudhary, C. Williams, M.W.Y. Ho, Altered regulation of aquaporin gene expression in allergen and IL-13-induced mouse models of asthma, Cytokine 46 (2009) 111-118.
    [44]M. Skowron-Zwarg, S. Boland, N. Caruso, C. Coraux, F. Marano, F. Tournier, Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation, Experimental Cell Research 313 (2007) 2695-2702.
    [45]V. Sidhaye, J.D. Hoffert, L.S. King, cAMP has distinct acute and chronic effects on Aquaporin-5 in lung epithelial cells, Journal of Biological Chemistry 280 (2005) 3590-3596.
    [46]R. Schreiber, R. Nitschke, R. Greger, K. Kunzelmann, The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells, Journal of Biological Chemistry 274 (1999) 11811-11816.
    [47]W.W. Busse, R.F. Lemanske, Advances in immunology-Asthma, New England Journal of Medicine 344 (2001) 350-362.
    [48]X.M. Liu, Z.Y. Yan, M.H. Luo, J.F. Engelhardt, Species-specific differences in mouse and human airway epithelial biology of recombinant adeno-associated virus transduction, American Journal of Respiratory Cell and Molecular Biology 34 (2006) 56-64.
    [49]Y. Chen, P. Thai, Y.H. Zhao, Y.S. Ho, M.M. DeSouza, R. Wu, Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop, Journal of Biological Chemistry 278 (2003) 17036-17043.
    [50]X.M. Liu, M.H. Luo, L. Zhang, W. Ding, Z.Y. Yan, J.F. Engelhardt, Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia, American Journal of Respiratory Cell and Molecular Biology 36 (2007)313-323.
    [51]D. Inoue, M. Numasaki, M. Watanabe, H. Kubo, T. Sasaki, H. Yasuda, M. Yamaya, H. Sasaki, IL-17A promotes the growth of airway epithelial cells through ERK-dependent signaling pathway, Biochemical and Biophysical Research Communications 347 (2006) 852-858.
    [52]K. Hashimoto, J.E. Durbin, W.S. Zhou, R.D. Collins, S.B. Ho, J.K. Kolls, P.J. Dubin, J.R. Sheller, K. Goleniewska, J.F. O'Neal, S.J. Olson, D. Mitchell, B.S. Graham, R.S. Peebles, Respiratory syncytial virus infection in the absence of STAT1 results in airway dysfunction, airway mucus, and augmented IL-17 levels, Journal of Allergy and Clinical Immunology 116 (2005) 550-557.
    [53]R.R. Hodges, Y. Horikawa, J.D. Rios, M.A. Shatos, D.A. Dartt, Effect of protein kinase C and Ca2+ on p42/p44 MAPK, Pyk2, and Src activation in rat conjunctival goblet cells, Experimental Eye Research 85 (2007) 836-844.
    [54]K.S. Song, H.J. Kim, K. Kim, J.G. Lee, J.H. Yoon, Regulator of G-Protein Signaling 4 Suppresses LPS-Induced MUC5AC Overproduction in the Airway, American Journal of Respiratory Cell and Molecular Biology 41 (2009) 40-49.
    [55]M.G. Binker, A.A. Binker-Cosen, D. Richards, B. Oliver, L.I. Cosen-Binker, LPS-stimulated MUC5AC production involves Racl-dependent MMP-9 secretion and activation in NCI-H292 cells, Biochemical and Biophysical Research Communications 386 (2009) 124-129.
    [56]S.C. Eisenbarth, D.A. Piggott, J.W. Huleatt, I. Visintin, C.A. Herrick, K. Bottomly, Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen, Journal of Experimental Medicine 196 (2002) 1645-1651.
    [57]O. Michel, R. Ginanni, B. Lebon, J. Content, J. Duchateau, R. Sergysels, INFLAMMATORY RESPONSE TO ACUTE INHALATION OF ENDOTOXIN IN ASTHMATIC-PATIENTS, American Review of Respiratory Disease 146 (1992) 352-357.
    [58]A.L. Cozens, M.J. Yezzi, K. Kunzelmann, T. Ohrui, L. Chin, K. Eng, W.E. Finkbeiner, J.H. Widdicombe, D.C. Gruenert, CFTR EXPRESSION AND CHLORIDE SECRETION IN POLARIZED IMMORTAL HUMAN BRONCHIAL EPITHELIAL-CELLS, American Journal of Respiratory Cell and Molecular Biology 10 (1994) 38-47.
    [59]R.A. Robbins, P.J. Barnes, D.R. Springall, J.B. Warren, O.J. Kwon, L.D.K. Buttery, A.J. Wilson, D.A. Geller, J.M. Polak, EXPRESSION OF INDUCIBLE NITRIC-OXIDE IN HUMAN LUNG EPITHELIAL-CELLS, Biochemical and Biophysical Research Communications 203 (1994) 209-218.
    [60]T.E. Gray, K. Guzman, C.W. Davis, L.H. Abdullah, P. Nettesheim, Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells, American Journal of Respiratory Cell and Molecular Biology 14 (1996) 104-112.
    [61]Y.J. You, E.J. Richer, T. Huang, S.L. Brody, Growth and differentiation of mouse tracheal epithelial cells:selection of a proliferative population, American Journal of Physiology-Lung Cellular and Molecular Physiology 283 (2002)L1315-L1321.
    [62]S.H. Chung, J.H. Lee, J.H. Yoon, H.K. Lee, K.Y. Seo, Multi-layered culture of primary human conjunctival epithelial cells producing MUC5AC, Experimental Eye Research 85 (2007) 226-233.
    [63]D.F. Rogers, Physiology of airway mucus secretion and pathophysiology of hypersecretion, Respiratory Care 52 (2007) 1134-1149.
    [64]S. Kirkham, U. Kolsum, K. Rousseau, D. Singh, J. Vestbo, D. Thornton, MUC5B Is the Major Mucin in the Gel Phase of Sputum in Chronic Obstructive Pulmonary Disease, American Journal of Respiratory and Critical Care Medicine 178 (2008) 1033-1039.
    [65]M.A. Shatos, R.R. Hodges, J.A. Bair, K. Lashkari, D.A. Dartt, Stimulatory Role of PKC alpha in Extracellular Regulated Kinase 1/2 Pathway in Conjunctival Goblet Cell Proliferation, Investigative Ophthalmology& Visual Science 50 (2009) 1619-1625.
    [66]L.H. Abdullah, C.W. Davis, Regulation of airway goblet cell mucin secretion by tyrosine phosphorylation signaling pathways, American Journal of Physiology-Lung Cellular and Molecular Physiology 293 (2007) L591-L599.
    [67]J.S. Song, C.M. Kang, M. Bin Yoo, S.J. Kim, H.K. Yoon, Y.K. Kim, K.H. Kim, H.S. Moon, S.H. Park, Nitric oxide induces MUC5AC mucin in respiratory epithelial cells through PKC and ERK dependent pathways, Respiratory Research 8 (2007).
    [68]P.A. Kemp, R.A. Sugar, A.D. Jackson, Nucleotide-mediated mucin secretion from differentiated human bronchial epithelial cells, American Journal of Respiratory Cell and Molecular Biology 31 (2004) 446-455.
    [69]T. Fujisawa, K. Ide, M.J. Holtzman, T. Suda, K. Suzuki, S. Kuroishi, K. Chida, H. Nakamura, Involvement of the p38 MAPK pathway in IL-13-induced mucous cell metaplasia in mouse tracheal epithelial cells, Respirology 13 (2008) 191-202.
    [70]S. Kuroishi, T. Suda, T. Fujisawa, K. Ide, N. Inui, Y. Nakamura, H. Nakamura, K. Chida, Epithelial-mesenchymal transition induced by transforming growth factor-beta 1 in mouse tracheal epithelial cells, Respirology 14 (2009) 828-837.
    [71]A.S. Shah, Y. Ben-Shahar, T.O. Moninger, J.N. Kline, M.J. Welsh, Motile Cilia of Human Airway Epithelia Are Chemosensory, Science 325 (2009) 1131-1134.
    [72]K. Wang, Y.L. Feng, F.Q. Wen, X.R. Chen, X.M. Ou, D. Xu, J. Yang, Z.P. Deng, Decreased expression of human aquaporin-5 correlated with mucus overproduction in airways of chronic obstructive pulmonary disease, Acta Pharmacologica Sinica 28 (2007) 1166-1174.
    [73]C.M. Evans, J.S. Koo, Airway mucus:The good, the bad, the sticky, Pharmacology & Therapeutics 121 (2009) 332-348.
    [74]S.J. Moghaddam, H.H. Li, S.N. Cho, M.K. Dishop, Wistuba, Ⅱ, L. Ji, J.M. Kurie, B.F. Dickey, F. DeMayo, Promotion of Lung Carcinogenesis by Chronic Obstructive Pulmonary Disease-Like Airway Inflammation in a K-ras-Induced Mouse Model, American Journal of Respiratory Cell and
    Molecular Biology 40 (2009) 443-453.
    [75]G.Y. Jiao, E.R. Li, R.J. Yu, Decreased expression of AQP1 and AQP5 in acute injured lungs in rats, Chinese Medical Journal 115 (2002) 963-967.
    [76]P.M.A. Calverley, P. Walker, Chronic obstructive pulmonary disease, Lancet 362(2003)1053-1061.
    [77]Y.H. Wang, S. Yao, L. Ka, P.H. Zhang, G.F. Wang, G. Lei, C.X. Bai, Role of matrix metalloproteinase-9 in lipopolysaccharide-induced mucin production in human airway epithelial cells, Archives of Biochemistry and Biophysics 486 (2009)111-118.
    [78]N. MacIntyre, Y.C. Huang, Acute exacerbations and respiratory failure in chronic obstructive pulmonary disease, Proc Am Thorac Soc 5 (2008) 530-535.
    [79]M. Profita, A. Sala, A. Bonanno, L. Riccobono, M. Ferraro, S. La Grutta, G.D. Albano, A.M. Montalbano, M. Gjomarkaj, Chronic obstructive pulmonary disease and neutrophil infiltration:role of cigarette smoke and cyclooxygenase products, American Journal of Physiology-Lung Cellular and Molecular Physiology 298 L261-L269.
    [80]K. Gorska, M. Maskey-Warzechowska, R. Krenke, Airway inflammation in chronic obstructive pulmonary disease, Curr Opin Pulm Med 16 89-96.
    [81]M.R. Knowles, R.C. Boucher, Mucus clearance as a primary innate defense mechanism for mammalian airways, Journal of Clinical Investigation 109 (2002)571-577.
    [82]M.A. Mall, Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction:Lessons from mouse models, Journal of Aerosol Medicine and Pulmonary Drug Delivery 21 (2008) 13-24.
    [83]G. Caramori, C. Di Gregorio, I. Carlstedt, P. Casolari, I. Guzzinati, I.M. Adcock, P.J. Barnes, A. Ciaccia, G. Cavallesco, K.F. Chung, A. Papi, Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease, Histopathology 45 (2004) 477-484.
    [84]X. Yan, G.-M. Cao, X.-L. Wang, X.-D. Zhou, [Study of mucus secretion and aquaporin-5 expression of bronchial epithelium cultured in hypotonic medium], Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 19 (2007) 214-216.
    [85]C.X. Bai, N. Fukuda, Y.L. Song, T.H. Ma, M.A. Matthay, A.S. Verkman, Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice, Journal of
    Clinical Investigation 103 (1999) 555-561.
    [86]A. Ohinata, K. Nagai, J. Nomura, K. Hashimoto, A. Hisatsune, T. Miyata, Y. Isohama, Lipopolysaccharide changes the subcellular distribution of aquaporin 5 and increases plasma membrane water permeability in mouse lung epithelial cells, Biochemical and Biophysical Research Communications 326 (2005) 521-526.
    [87]L.S. Prince, J. Zabner, M.J. Welsh, LPS increases expression of aquaporin 3 and aquaporin 5 in human airway epithelia, Pediatric Research 51 (2002) 2764.
    [88]M.X.G. Shao, J.A. Nadel, Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells, Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 767-772.
    [89]K. Takeyama, B. Jung, J.J. Shim, P.R. Burgel, T.D. Pick, I.F. Ueki, U. Protin, P. Kroschel, J.A. Nadel, Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke, American Journal of Physiology-Lung Cellular and Molecular Physiology 280 (2001) L165-L172.
    [90]M.X.G. Shao, T. Nakanaga, J.A. Nadel, Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human airway epithelial (NCI-H292) cells, American Journal of Physiology-Lung Cellular and Molecular Physiology 287 (2004) L420-L427.
    [91]S.M. Casalino-Matsuda, M.E. Monzon, R.M. Forteza, Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium, American Journal of Respiratory Cell and Molecular Biology 34 (2006) 581-591.
    [92]J.J. Atkinson, R.M. Senior, Matrix metalloproteinase-9 in lung remodeling, American Journal of Respiratory Cell and Molecular Biology 28 (2003) 12-24.
    [93]M.G. Smirnova, L. Guo, J.P. Birchall, J.P. Pearson, LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells, Cellular Immunology 221 (2003) 42-49.
    [94]K. Takeyama, K. Dabbagh, H.M. Lee, K. Grattan, I. Ueki, J. Lausier, J.A. Nadel, Mucin MUC5AC gene and protein expression is up-regulated by the epidermal growth factor system, American Journal of Respiratory and Critical Care Medicine 159 (1999) A35-A35.
    [95]M.X.G. Shao, J.A. Nade, Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme, Journal of Immunology 175 (2005)4009-4016.
    [96]K. Kohri, I.F. Ueki, J.A. Nadel, Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation, American Journal of Physiology-Lung Cellular and Molecular Physiology 283 (2002) L531-L540.
    [97]L. Finzi, V. Barbu, P.R. Burgel, M. Mergey, K.S. Kirkwood, E.C. Wick, J.Y. Scoazec, F. Peschaud, F. Paye, J.A. Nadel, C. Housset, MUC5AC, a gel-forming mucin accumulating in gallstone disease, is overproduced via an epidermal growth factor receptor pathway in the human gallbladder, American Journal of Pathology 169 (2006) 2031-2041.
    [98]B.M. Fischer, J.A. Voynow, Neutrophil elastase induces MUC5AC gene expression in airway epithelium via a pathway involving reactive oxygen species, American Journal of Respiratory Cell and Molecular Biology 26 (2002) 447-452.
    [99]E. Gensch, M. Gallup, A. Sucher, D.Z. Li, A. Gebremichael, H. Lemjabbar, A. Mengistab, V. Dasari, J. Hotchkiss, J. Harkema, C. Basbaum, Tobacco smoke control of mucin production in lung cells requires oxygen radicals AP-1 and JNK, Journal of Biological Chemistry 279 (2004) 39085-39093.
    [100]S. Zheng, A.S. Byrd, B.M. Fischer, A.R. Grover, A.J. Ghio, J.A. Voynow, Regulation of MUC5AC expression by NAD(P)H:quinone oxidoreductase 1, Free Radical Biology and Medicine 42 (2007) 1398-1408.
    [101]J.E. Towne, C.M. Krane, C.J. Bachurski, A.G. Menon, Tumor necrosis factor-alpha inhibits aquaporin 5 expression in mouse lung epithelial cells, Journal of Biological Chemistry 276 (2001) 18657-18664.
    1. National Institute for Clinical Excellence (NICE). Chronic obstructive pulmonary disease:national clinical guideline on management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax 2004; 59.
    2. Moretti M, Bottrighi P, Dallari R, et,al. The effect of long-term treatment with erdosteine on chronic obstructive pulmonary disease:the EQUALIFE Study. Drugs Exp Clin Res 2004; 30:143-152.
    3. Rogers DF. Mucoactive drugs for asthma and COPD:any place in therapy? 2002 Jan;11(1):15-35.
    4. Kirkham S, Sheehan JK, Knight D,et,al.Heterogeneity of airways mucus:variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B.Biochem J.2002 Feb 1;361(Pt 3):537-46.
    5. Voynow JA, Gendler SJ, Rose MC.Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol.2006 Jun;34(6):661-5.
    6. K.S. Song, W.J. Lee, K.C. Chung, J.S. Koo, E.J. Yang, J.Y. Choi, J.H. Yoon, Interleukin-1 beta and tumor necrosis factor-alpha induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSK1-CREB activation in human airway epithelial cells, J. Biol. Chem.278 (2003) 23243-23250.
    7. J.S. Koo, Y.D. Kim, A.M. Jetten, P. Belloni, P. Nettesheim, Overexpression of mucin genes induced by interleukin-1 beta, tumor necrosis factor-alpha, lipopolysaccharide, and neutrophil elastase is inhibited by a retinoic acid receptor alpha antagonist, Exp. Lung Res.28 (2002) 315-332.
    8. YD. Kim, E.J. Kwon, D.W. Park, S.Y Song, S.K. Yoon, S.H. Baek, Interleukin-1 beta induces MUC2 and MUC5AC synthesis through cyclooxygenase-2 in SPC-A1 cells, Mol. Pharmacol.62 (2002) 1112-1118.
    9. Leikauf GD, Borchers MT, Prows DR, et,al. Mucin apoprotein expression in COPD.Chest.2002 May;121(5 Suppl):166S-182S.
    10. Tomasz K,Baginski TK, Dabbagh K,et,al. Cigarette smoke synergistically enhances respiratory mucin induction by proinflammatory stimuli. Am J Respir Cell Mol Biol.2006 Aug;35(2):165-74.
    11. Chen Y, Thai P, Zhao YH, et,al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop.J Biol Chem.2003 May 9;278(19):17036-43.
    12.毛翎,白春学,张敏等。表皮生长因子受体和黏蛋白在慢性阻塞性肺疾病气道中的表达及意义。中华结核和呼吸杂志2004年9月第27卷第9期
    13.毛翎,白春学,张敏等表皮生长因子受体和黏蛋白在慢性阻塞性肺疾病气道中的表达及意义。中国呼吸与危重监护杂志,2005年1月第4卷第1期
    14. O'Donnell RA, Richter A, Ward J,et,al. Expression of ErbB receptors and mucins in the airways of long term current smokers.Thorax.2004 Dec;59(12):1032-40.
    15. Takeshi Kitazaki,Hiroshi Soda,Seiji Doi,et al.Gefitinib inhibits MUC5AC synthesis in mucin-secreting non-small cell lung cancer cells.Lung Cancer,2005,50:19-24.
    16. Goldkorn T, Balaban N,Matsukuma K, et al. EGF2receptor phosphorylation and signaling are targeted by H2O2 redox stress. Am J Respir Cell Mol Biol,1998;19:786-798
    17. Yuan-Chen Wu D, Wu R, Reddy SP,et,al. Distinctive epidermal growth factor receptor/extracellular regulated kinase-independent and -dependent signaling pathways in the induction of airway mucin 5B and mucin 5AC expression by phorbol 12-myristate 13-acetate. Am J Pathol.2007 Jan;170(1):20-32.
    18. Borchers MT, Wert SE, Leikauf GD. Acrolein-induced MUC5AC expression in rat airways. Am J Physiol 1998; 274:L573-L581.
    19. Thai P, Chen Y, Dolganov G, Wu R. Differential regulation of MUC5AC/MUC5AC and hCLCA-1/mGob-5 expression in airway epithelium.Am J Respir Cell Mol Biol.2005 Dec;33(6):523-30.
    20. Wang K,Feng YL,Wen FQ,et,al. CaCC1 is correlated with mucus overproduction in the airways of Chinese patients with chronic obstructive pulmonary disease.Chin Med J(Engl).2007 Jun 20;120(12):1051-7
    21. Song, Y, Verkman, AS., Aquaporin-5 dependent fluid secretion in airway submucosal glands. J. Biol. Chem.2001.276,41288-41292.
    22. Chen Z, Wang X, Bai CX,et,al. Regulation of MUC5AC mucin secretion by depletion of AQP5 in SPC-A1 cells.Biochem Biophys Res Commun.2006 Apr 14;342(3):775-81.
    23. Chen Z, Zhu R, Bai CX,et,al. Downregulation of aquaporin 5 induced by vector-based short hairpin RNA and its effect on MUC5AC gene expression in human airway submucosal gland cells.Respir Physiol Neurobiol.2006 Jun; 152(2):197-203.
    24. Yan X, Cao GM, Wang XL,et,al. Study of mucus secretion and aquaporin-5 expression of bronchial epithelium cultured in hypotonic medium.Zhongguo Wei Zhong Bing Ji Jiu Yi Xue.2007 Apr; 19(4):214-6.
    1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease-gold executive summary. American Journal of Respiratory and Critical Care Medicine 2007;176:532-555.
    2. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O'Byrne P, Pedersen SE, et al. Global strategy for asthma management and prevention:Gina executive summary. European Respiratory Journal 2008;31:143-178.
    3. Albert P, Calverley PMA. Drugs (including oxygen) in severe copd. European Respiratory Journal 2008;31:1114-1124.
    4. Barnes PJ. Frontrunners in novel pharmacotherapy of copd. Current Opinion in Pharmacology 2008;8:300-307.
    5. Gordon E, Lazarus SC. Management of chronic obstructive pulmonary disease: Moving beyond the asthma algorithm. Journal of Allergy and Clinical Immunology 2009;124:873-880.
    6. MacIntyre N, Huang YC. Acute exacerbations and respiratory failure in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2008;5:530-535.
    7. Spears M, Donnelly I, Jolly L, Brannigan M, Ito K, McSharry C, Lafferty J, Chaudhuri R, Braganza G, Adcock IM, et al. Effect of low-dose theophylline plus beclometasone on lung function in smokers with asthma:A pilot study. European Respiratory Journal 2009;33:1010-1017.
    8. Culpitt SV, de Matos C, Russell RE, Donnelly LE, Rogers DF, Barnes PJ. Effect of theophylline on induced sputum inflammatory indices and neutrophil chemotaxis in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 2002;165:1371-1376.
    9. Iiboshi H, Ashitani J, Katoh S, Sano A, Matsumoto N, Mukae H, Nakazato M. Long-term treatment with theophylline reduces neutrophils, interleukin-8 and tumor necrosis factor-alpha in the sputum of patients with chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 2007;20:46-51.
    10. Poole PJ, Black PN. Mucolytic agents for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews 2006.
    11. Barnes PJ. Theophylline for copd. Thorax 2006;61:742-744.
    12. Rogers DF. Mucoactive drugs for asthma and copd:Any place in therapy? Expert Opinion on Investigational Drugs 2002; 11:15-35.
    13. Sadowska AM, Manuel-Y-Keenoy B, De Backer WA. Antioxidant and anti-inflammatory efficacy of nac in the treatment of copd:Discordant in vitro and in vivo dose-effects:A review. Pulmonary Pharmacology& Therapeutics 2007;20:9-22.
    14. Decramer M, Rutten-van Molken M, Dekhuijzen PNR. Effects of n-acetylcysteine on outcomes in chronic obstructive pulmonary disease (bronchitis randomized on nac cost-utility study, broncus):A randomised placebo-controlled trial (vol 365, pg 1552,2005). Lancet 2005;366:984-984.
    15. Poole PJ, Black PN. Oral mucolytic drugs for exacerbations of chronic obstructive pulmonary disease:Systematic review. British Medical Journal 2001;322:1271-1274.
    16. Brandolini L, Allegretti M, Berdini V, Cervellera MN, Mascagni P, Rinaldi M, Melillo G, Ghezzi P, Mengozzi M, Bertini R. Carbocysteine lysine salt monohydrate (scmc-lys) is a selective scavenger of reactive oxygen intermediates (rois). European Cytokine Network 2003;14:20-26.
    17. Ishii Y, Kimura T, Morishima Y, Mochizuki M, Nomura A, Sakamoto T, Uchida Y, Sekizawa K. S-carboxymethylcysteine inhibits neutrophil activation mediated by n-formyl-methionyl-leucyl-phenylalanine. European Journal of Pharmacology 2002;449:183-189.
    18. Yasuda H, Yamaya M, Sasaki T, Inoue D, Nakayama K, Tomita N, Yoshida M, Sasaki H. Carbocisteine reduces frequency of common colds and exacerbations in patients with chronic obstructive pulmonary disease. Journal of the American Geriatrics Society 2006;54:378-380.
    19. Tatsumi K, Fukuchi Y. Carbocisteine improves quality of life in patients with chronic obstructive pulmonary disease. Journal of the American Geriatrics Society 2007;55:1884-1886.
    20. Carpagnano GE, Resta O, Foschino-Barbaro MP, Spanevello A, Stefano A, Di Gioia G, Serviddio G, Gramiccioni E. Exhaled interleukine-6 and 8-isoprostane in chronic obstructive pulmonary disease:Effect of carbocysteine lysine salt monohydrate (scmc-lys). European Journal of Pharmacology 2004;505:169-175.
    21. Zheng JP, Kang J, Huang SG, Chen P, Yao WZ, Yang L, Bai CX, Wang CZ, Wang C, Chen BY, et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (peace study):A randomised placebo-controlled study. Lancet 2008;371:2013-2018.
    22. Barnes PJ. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2009;6:693-696.
    23. Laforest L, Van Ganse E, Devouassoux G, El Hasnaoui A, Osman LM, Bauguil G, Chamba G. Dispensing of antibiotics, antitussives and mucolytics to asthma patients: A pharmacy-based observational survey. Respiratory Medicine 2008;102:57-63.
    24. Calverley PMA, Walker P. Chronic obstructive pulmonary disease. Lancet 2003;362:1053-1061.
    25. ZuWallack RL, Mahler DA, Reilly D, Church N, Emmett A, Rickard K, Knobil K. Salmeterol plus theophylline combination therapy in the treatment of copd. Chest 2001;119:1661-1670.
    26. Cazzola M, Di Lorenzo G, Di Perna F, Calderaro F, Testi R, Centanni S. Additive effects of salmeterol and fluticasone or theophylline in copd. Chest 2000;118:1576-1581.
    27. Rossi A, Kristufek P, Levine BE, Thomson MH, Till D, Kottakis J, Della Cioppa G, Grp FIS. Comparison of the efficacy, tolerability, and safety of formoterol dry powder and oral, slow-release theophylline in the treatment of copd. Chest 2002;121:1058-1069.
    28. Auerbach D, Baughman R, Boyars M, Braun S, Buist AS, Campbell SC, Chick T, Cohen B, Colice G, River W, et al. Routine nebulized ipratropium and albuterol together are better than either alone in copd. Chest 1997; 112:1514-1521.
    29. Gross N, Tashkin D, Miller R, Oren J, Coleman W, Linberg S, Dey Combination Solution Study G. Inhalation by nebulization of albuterol-ipratropium combination (dey combination) is superior to either agent alone in the treatment of chronic obstructive pulmonary disease. Respiration 1998;65:354-362.
    30. van Noord JA, de Munck D, Bantje TA, Hop WCJ, Akveld MLM, Bommer AL. Long-term treatment of chronic obstructive pulmonary disease with salmeterol and the additive effect of ipratropium. European Respiratory Journal 2000;15:878-885.
    31. Bellia V, Foresi A, Bianco S, Grassi V, Olivieri D, Bensi G, Volonte M, Grp BIS. Efficacy and safety of oxitropium bromide, theophylline and their combination in copd patients:A double-blind, randomized, multicentre study (breath trial). Respiratory Medicine 2002;96:881-889.
    32. Zacarias EC, Castro AA, Cendon S. Effect of theophylline associated with short-acting or long-acting inhaled beta2-agonists in patients with stable chronic obstructive pulmonary disease:A systematic review. J Bras Pneumol 2007;33:152-160.
    33. Kidney J, Dominguez M, Taylor PM, Rose M, Chung KF, Barnes PJ. Immunomodulation by theophylline in asthma. American Journal of Respiratory and Critical Care Medicine 1995;151:1907-1914.
    34. Zhou YM, Wang XP, Zeng XY, Qiu R, Xie JF, Liu SM, Zheng JP, Zhong NS, Ran PX. Positive benefits of theophylline in a randomized, double-blind, parallel-group, placebo-controlled study of low-dose, slow-release theophylline in the treatment of copd for 1 year. Respirology 2006; 11:603-610.
    35. Pauwels RA, Joos GF. Characterization of the adenosine receptors in the airways. Archives Internationales De Pharmacodynamie Et De Therapie 1995;329:151-160.
    36. Bjorck T, Gustafsson LE, Dahlen SE. Isolated bronchi from asthmatics are hyperresponsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. American Review of Respiratory Disease 1992;145:1087-1091.
    37. Foukas LC, Daniele N, Ktori C, Anderson KE, Jensen J, Shepherd PR. Direct effects of caffeine and theophylline on p110 delta and other phosphoinositide 3-kinases-differential effects on lipid kinase and protein kinase activities. Journal of Biological Chemistry 2002;277:37124-37130.
    38. Yamamori T, Inanami O, Nagahata H, Kuwabara M. Phosphoinositide 3-kinase regulates the phosphorylation of nadph oxidase component p47(phox) by controlling cpkc/pkc6 but not akt. Biochemical and Biophysical Research Communications 2004;316:720-730.
    39. Ram FSF, Jardin JR, Atallah A, Castro AA, Mazzini R, Goldstein R, Lacasse Y, Cendon S. Efficacy of theophylline in people with stable chronic obstructive pulmonary disease:A systematic review and meta-analysis. Respiratory Medicine 2005;99:135-144.
    40. Okubo S, Konno K, Ishizaki T, Kubo M, Suganuma T, Takizawa T. Effect of theophylline on respiratory neuromuscular drive. European Journal of Clinical Pharmacology 1987;33:85-88.
    41. Kongragunta VR, Druz WS, Sharp JT. Dyspnea and diaphragmatic fatigue in patients with chronic obstructive pulmonary-disease-responses to theophylline. American Review of Respiratory Disease 1988; 137:662-667.
    42. Javaheri S, Guerra L. Lung-function, hypoxic and hypercapnic ventilatory responses, and respiratory muscle strength in normal subjects taking oral theophylline. Thorax 1990;45:743-747.
    43. Murciano D, Aubier M, Lecocguic Y, Pariente R. Effects of theophylline on diaphragmatic strength and fatigue in patients with chronic obstructive pulmonary-disease. New England Journal of Medicine 1984;311:349-353.
    44. Kanehara M, Yokoyama A, Tomoda Y, Shiota N, Iwamoto H, Ishikawa N, Taooka Y, Haruta Y, Hattori N, Kohno N. Anti-inflammatory effects and clinical efficacy of theophylline and tulobuterol in mild-to-moderate chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 2008;21:874-878.
    45. Barnes PJ. Theophylline-new perspectives for an old drug. American Journal of Respiratory and Critical Care Medicine 2003;167:813-818.
    46. Tamura G, Ohta K. Adherence to treatment by patients with asthma or copd: Comparison between inhaled drugs and transdermal patch. Respiratory Medicine 2007;101:1895-1902.
    47. Hirano T, Yamagata T, Gohda M, Yamagata Y, Ichikawa T, Yanagisawa S, Ueshima K, Akamatsu K, Nakanishi M, Matsunaga K, et al. Inhibition of reactive nitrogen species production in copd airways:Comparison of inhaled corticosteroid and oral theophylline. Thorax 2006;61:761-766.
    48. Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, Barnes PJ. A molecular mechanism of action of theophylline:Induction of histone deacetylase activity to decrease inflammatory gene expression. Proceedings of the National Academy of Sciences of the United States of America 2002;99:8921-8926.
    49. Barnes PJ. Theophylline in chronic obstructive pulmonary disease:New horizons. Proc Am Thorac Soc 2005;2:334-339; discussion 340-331.
    50. Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ. Theophylline restores histone deacetylase activity and steroid responses in copd macrophages. Journal of Experimental Medicine 2004;200:689-695.
    51. Chen YH, Yao WZ, Ding YL, Geng B, Lu M, Tang CS. Effect of theophylline on endogenous hydrogen sulfide production in patients with copd. Pulmonary Pharmacology & Therapeutics 2008;21:40-46.
    52. Calverley P, Celli B, Ferguson G, Jenkins C, Jones P, Pauwels R, Pride N, Vestbo J, Anderson J, Devoy M, et al. The torch (towards a revolution in copd health) survival study protocol. European Respiratory Journal 2004;24:206-210.
    53. Burgunder JM, Varriale A, Lauterburg BH. Effect of n-acetylcysteine on plasma cystein and glutathione following paracetamol administration. European Journal of Clinical Pharmacology 1989;36:127-131.
    54. Martinez-Losa M, Cortijo J, Juan G, O'Connor JE, Sanz MJ, Santangelo F, Morcillo EJ. Inhibitory effects of n-acetylcysteine on the functional responses of human eosinophils in vitro. Clinical and Experimental Allergy 2007;37:714-722.
    55. Riise GC, Larsson S, Larsson P, Jeansson S, Andersson BA. The intrabronchial microbial-flora in chronic-bronchitis patients-a target for n-acetylcysteine therapy. European Respiratory Journal 1994;7:94-101.
    56. Riise GC, Qvarfordt I, Larsson S, Eliasson V, Andersson BA. Inhibitory effect of n-acetylcysteine on adherence of streptococcus pneumoniae and haemophilus influenzae to human oropharyngeal epithelial cells in vitro. Respiration 2000;67:552-558.
    57. Barbaro MPF, Carpagnano GE, Spanevello A, Cagnazzo MG, Barnes PJ. Inflammation, oxidative stress and systemic effects in mild chronic obstructive pulmonary disease. International Journal of Immunopathology and Pharmacology 2007;20:753-763.
    58. Lehtonen ST, Ohlmeier S, Kaarteenaho-Wiik R, Harju T, Paakko P, Soini Y, Kinnula VL. Does the oxidative stress in chronic obstructive pulmonary disease cause thioredoxin/peroxiredoxin oxidation? Antioxidants & Redox Signaling 2008;10:813-819.
    59. van Overveld FJ, Demkow UA, Gorecka D, Bialas-Chromiec B, Sadowska AM, Goljan A, Kolakowski J, de Backer WA, Zielinski J. The effects of n-acetylcysteine and inhaled steroid on inflammatory and oxidative stress markers in chronic obstructive pulmonary disease (copd). Central European Journal of Immunology 2008;33:135-141.
    60. Barbaro MPF, Serviddio G, Resta 0, Rollo T, Tamborra R, Carpagnano GE, Vendemiale G, Altomare E. Oxygen therapy at low flow causes oxidative stress in chronic obstructive pulmonary disease:Prevention by n-acetyl cysteine. Free Radical Research 2005;39:1111-1118.
    61. Rodrigo GJ, Nannini LJ. Tiotropium for the treatment of stable chronic obstructive pulmonary disease:A systematic review with meta-analysis. Pulmonary Pharmacology& Therapeutics 2007;20:495-502.
    62. Rennard SI. Treatment of stable chronic obstructive pulmonary disease. Lancet 2004;364:791-802.
    63. Bai Chunxue WG, Hong C, Xu X, Zhu Y, Niu S. Relaxant effects of fructose-1, 6-diphosphate on contraction of sensitized guinea pig tracheal and lung strips induced by antigen. Acta Academiae Medicinae Shanghai 1996;23:222-224.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.