碳纳米管表面官能团特性对丙烯腈聚合物结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)是纳米管状材料,独特的结构使其具有优异的力学、电学和磁学性能等,在复合材料中受到广泛的关注。丙烯腈聚合物(PAN)是高性能碳纤维的主要前驱体。用碳纳米管改性丙烯腈聚合物,将有可能获得特殊性能的碳纤维。本论文对碳纳米管表面进行修饰,将其引入到丙烯腈聚合物中,围绕PAN分子结构的形成及演变的规律,研究了碳纳米管表面官能团特性对丙烯腈聚合物化学结构、纤维成纤过程中聚集态结构、以及对聚丙烯腈大分子链热氧化环化行为的影响规律。通过系统的实验和理论分析,进一步丰富了碳纳米管/丙烯腈聚合物体系的学术内涵,为持续的科学技术研究奠定了良好的基础。
     对纯化的碳纳米管进行酸化和胺化修饰,分别得到表面含羧基、羟基官能团(Acid-CNT)和含胺基官能团的碳纳米管(Amid-CNT)。采用红外光谱、X射线光电子能谱(XPS)、拉曼光谱和透射电子显微镜对改性后的碳纳米管进行了表征。结果表明:原始的碳纳米管纯化后,去除了其内的金属催化剂和无定型碳等杂质。红外光谱分析表明:双氧水修饰后的碳纳米管,其表面接枝上了羧基和羟基官能团。XPS测得其表面氧元素的相对含量较原始碳纳米管增加。Acid-CNT酰氯化和胺化后,碳纳米管的表面含有胺基官能团,XPS测得其表面含有氮元素。
     以水相沉淀原位聚合的方法制得了碳纳米管/丙烯腈(共)聚合物复合材料,用自由基溶液聚合制得了碳纳米管/聚丙烯腈复合纺丝液。采用湿法纺丝技术得到不同牵伸倍数的复合纤维。研究了碳纳米管表面官能团特性对丙烯腈(共)聚合物化学结构的影响。红外光谱分析结果表明:碳纳米管表面不同的官能团对丙烯腈均聚物(PAN)分子链上氰基的水解有一定的影响,使Acid-CNT/PAN复合材料中氰基的含量增加,而Amid-CNT/PAN复合材料中含有更多的酯基。对于丙烯腈共聚物(PANIA), Acid-CNT表面的羟基与PANIA分子链上的羧基发生相互反应,生成了酯基,使复合材料中羧基的相对含量减少;Amid-CNT表面的胺基与PANIA分子链上的羧基发生化学反应也使复合材料中羧基的相对含量减少。通过扫描电镜分析得知:原位聚合后得到的复合材料,碳纳米管分散比较均匀。通过拉曼光谱分析得知:Amid-CNT与丙烯腈(共)聚合物之间的相互作用强于Acid-CNT/丙烯腈(共)聚合物。
     研究了碳纳米管表面官能团特性对复合材料聚集态结构的影响。对于丙烯腈均聚物,CNT的加入降低了复合材料的结晶度,却提高了复合材料的晶粒尺寸。对于丙烯腈共聚物,CNT的加入使复合材料的结晶度和晶粒尺寸均增加。在PANIA成纤过程中,CNT的加入使复合纤维的结晶度降低。随着牵伸倍数的增加,复合纤维与PANIA纤维之间结晶度的差值变大。对于凝固丝,复合纤维比PANIA纤维有较大的晶粒尺寸;而对于一牵丝和原丝,复合纤维比PANIA纤维的晶粒尺寸小。Amid-CNT对晶粒尺寸的影响较Acid-CNT大。碳纳米管在复合纤维中的取向随着牵伸倍数的增加而增大,复合纤维中晶区的取向较PANIA纤维低,而其氰基的取向较PANIA纤维高。通过子午扫描得知,Amid-CNT复合原丝中含有螺旋型构象,而PANIA原丝中只有锯齿型构象。
     丙烯腈聚合物在热处理过程中发生复杂的化学反应,分别采用红外光谱、差式扫描量热仪和扫描电子显微镜研究了碳纳米管表面的不同官能团对此过程的影响。对于丙烯腈均聚物,空气气氛下,Amid-CNT/PAN复合材料比其具有更低的起始放热温度和环化放热温度。对于丙烯腈共聚物,空气气氛下,Acid-CNT/PANIA复合材料的放热量比其低,而Amid-CNT/PANIA复合材料的放热量比其高。碳纳米管的加入降低了丙烯腈(共)聚合物的玻璃化转变温度。在丙烯腈聚合物成纤过程中,空气气氛下,Amid-CNT/PANIA复合纤维比PANIA纤维具有低的起始放热温度和环化放热温度,以及低的放热量。在空气中,经过相同热处理条件的纤维,Amid-CNT/PANIA复合纤维具有较高的相对环化率和密度。对于热处理后纤维的放热效应,空气气氛下,Acid-CNT/PANIA复合纤维的放热量比PANIA纤维高,而Amid-CNT/PANIA复合纤维的放热量比PANIA纤维低。通过扫描电镜分析分析得知,热处理后的复合纤维断面比PANIA更加不规整。
     通过非等温DSC方法研究了碳纳米管表面官能团特性对PANIA纤维热化学反应动力学的影响。结果表明:在氮气气氛下,碳纳米管的加入使复合纤维的环化反应活化能提高,其中Acid-CNT/PANIA复合纤维的活化能为177.62KJ/mol,Amid-CNT/PANIA复合纤维的活化能为158.30KJ/mol,而PANIA纤维的活化能为156.45KJ/mol。在空气气氛下,PANIA纤维、Acid-CNT/PANIA复合纤维和Amid-CNT/PANIA复合纤维的环化反应活化能分别为211.18KJ/mo、200.39KJ/mol和149.76KJ/mol,而氧化反应的活化能分别为136.74KJ/mo、140.63KJ/mol和143.58KJ/mol。碳纳米管的加入对PANIA热化学反应的反应级数影响不是很大,均近似为一级反应。
Carbon nanotubes (CNT) are the nano-tube materials with the remarkable mechanical properties, electrical properties and magnetic properties owing to the unique structure. So the CNT in the composite was focused by many researchers. Acrylonitrile polymer (PAN) is the main precursor for manufacturing the high strength carbon fiber. The addition of CNT into the PAN polymer would obtain the excellent properties for the carbon fiber. In this paper the CNT was modified by different methods, and then was added into the PAN matrix. According to the formation and evolving of the PAN molecular structure, the CNT with different function groups on the chemical structure of acrylonitrile polymer, the aggregation structure of acrylonitrile polymer during spinning, the heat chemical reaction for the acrylonitrile polymer were studied, respectively. Through the systemic experiment and theoretical analysis, the academic contents were enriched by the CNT/acrylonitrile polymer, which laid a solid foundation for the continuous scientific and technological research.
     The purified CNT was modified by hydrogen peroxide and triethylenetetramine to obtain the carboxylic acid and hydroxyl group on the surface of CNT (Acid-CNT) and the amide-groups on the surface of CNT (Amid-CNT), respectively. The modified CNT were characterized by Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectrum and Transmission electron microscopy (TEM). The results showed that the metal catalyst and amorphous carbon in the pristine CNT disappeared after purification. The results from the FTIR spectrum showed that the surface of CNT contained the carboxylic acid and hydroxyl groups after modification by hydrogen peroxide. The content of oxygen element on the surface of CNT was increased through XPS analysis. After modification by thionyl chloride and triethylenetetramine for the Acid-CNT, the amide-groups were grafted onto the surface of CNT. The surface of Amid-CNT have new element-nitrogen element by XPS analysis.
     The different function CNT/acrylonitrile (co-)polymer composite were synthesized by aqueous deposition in situ polymerization. The composite spinning solutions were prepared by radical solution polymerization, and the different drafting composite fibers were obtained by wet spinning method. The Effects of functional CNT on the chemical structure for the acrylonitrile (co-)polymer were studied. The results from the FTIR spectrum showed that the hydrolysis of nitrile groups for the PAN homopolymer was affected by the different functional groups on the surface of CNT. The Acid-CNT/PAN composite have more nitrile groups than PAN homopolymer, and the Amid-CNT/PAN composite have more ester groups. For the acrylonitrile copolymer (PANIA), the hydroxyl groups on the surface of Acid-CNT had reacted with the carboxylic acid groups on the molecular chain of PANIA polymer and formed the ester groups, which made the Acid-CNT/PANIA composite having lower relative content of carboxylic acid groups than the PANIA polymer. The amide-groups on the surface of Amid-CNT had reacted with the carboxylic acid groups on the molecular chain of PANIA polymer, which made the Amid-CNT/PANIA composite having lower relative content of carboxylic acid groups than the PANIA polymer. After in situ polymerization, the CNT could be homogeneously dispersed into composite by Scanning electron microscopy (SEM) analysis. The interfacial interaction between the Amid-CNT and acrylonitrile (co-)polymer composite was stronger than that of the Acid-CNT/acrylonitrile (co-)polymer composite by Raman spectrum analysis.
     The effects of functional CNT on the aggregation structure were studied. For the PAN homopolymer, the addition of CNT decreased the degree of crystallization, and improved the size of crystalline for the composite. For the PANIA polymer, the addition of CNT increased the degree of crystallization and the size of crystalline for the composite, respectively. The CNT/PANIA composite fiber had lower degree of crystallization than the PANIA fiber during spinning. However, the composite nascent fiber had higher size of crystalline than the PANIA nascent fiber. For the first-drafting fiber and precursor fiber, the composite had lower size of crystalline than the PANIA fiber. The Amid-CNT has bigger influence compared with the Acid-CNT on the size of crystalline during spinning. The degree of orientation for CNT in the composite fiber increased with the drafting, which made the composite having lower crystal region orientation than the PANIA fiber. But the composite had higher nitrile group orientation than the PANIA fiber. The Amid-CNT/PANIA composite precursor fiber had helical conformation, and the PANIA precursor fiber only had zigzag conformation by meridional scan analysis.
     The acrylonitrile (co-)polymer took place complex reactions during the processing of heat treatment. The effects of different function CNT on those evolving were characterized by FTIR spectrum, DSC and SEM images. The Amid-CNT/PAN composite had lower initiation temperature and cyclization temperature than PAN homopolymer in air atmosphere. The Acid-CNT/PANIA composite had lower evolved heat than the PANIA polymer, but the Amid-CNT/PANIA composite had higher evolved heat than the PANIA polymer in air atmosphere. Moreover, the addition of CNT decreased the glass transition temperature of acrylonitrile (co-)polymer. During the spinning, the Amid-CNT/PANIA composite fiber had lower initiation temperature, cyclization temperature and evolved heat compared with PANIA fiber in air atmosphere. After the same heat treatment in air atmosphere, the Amid-CNT/PANIA composite fiber had higher relative cyclization ratio and density compared with PANIA fiber. For the exothermic effect of the heated fiber, the Acid-CNT/PANIA composite fiber had higher evolved heat than the PANIA fiber, and the Amid-CNT/PANIA composite fiber had lower evolved heat. The break sections of composite fiber with heat treatment became irregular compared with the heated PANIA fiber by SEM image analysis.
     The effects of the different function CNT on the kinetics for the PANIA fiber during heat chemical reaction were studied by non-isothermal DSC methods. The results showed that addition of CNT improved the activation energy of the cyclization reaction compared with PANIA fiber in nitrogen atmosphere. The activation energy of the Acid-CNT/PANIA composite fiber, Amid-CNT/PANIA composite fiber and PANIA fiber is 177.62KJ/mol, 158.30KJ/mol and 156.45KJ/mol, respectively. In air atmosphere, the activation energy of cyclization reaction for the PANIA fiber, Acid-CNT/PANIA composite fiber and Amid-CNT/PANIA composite fiber is 211.18KJ/mol,200.39KJ/mol and 149.76KJ/mol, respectively. The activation energy of oxygen reaction for the PANIA fiber, Acid-CNT/PANIA composite fiber and Amid-CNT/PANIA composite fiber is 136.74KJ/mol,140.63KJ/mol and 143.58KJ/mol, respectively. The addition of CNT did not greatly influence the order reaction for the PANIA fiber during heat treatment, which was close to the first order reaction.
引文
[1]Treacy M M J, Ebbsen T W, Gibson J M. Exceptionally high young's modulus observed for individual carbon nanotubes[J]. Nature,1996,381(6584):678-680.
    [2]Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes[J]. Science,1997,277(5334):1971-1975.
    [3]Iijima S, Brabec C, Maiti A, et al. Structural flexibility of carbon nanotubes[J]. Journal of Chemical Physics,1996,104(5):2089-2092.
    [4]Barros E B, Jorio A, Samsonidze G G, et al. Review on the symmetry related properties of carbon nanotubes[J]. Physics Reports,2006,431(6):261-302.
    [5]Stroscio J A, Freenstra R M. Scanning tunneling microscopy[M]. New York,1993.
    [6]Rochefort A, Salahub D R, Avouris P. The effect of structural distortions on the electronic structure of carbon nanotubes[J]. CHemical Physics Letters,1998,297(1-2):45-50.
    [7]Rochefort A, Avouris P, Lesage F, et al. Electrical and mechanical properties of distorted carbon nanotubes[J]. Physical Review B,1999,60(19):13824-13830.
    [8]Dai H, Wong E W, Lieber C M. Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes[J]. Science,1996,272(5261):523-526.
    [9]Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters,2000,84(20):4613-4616.
    [10]Hone J, Whitney M, Zettl A. Thermal conductivity of single-walled carbon nanotubes[J]. Synthetic Metals,1999,103(1-3):2498-2499.
    [11]Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters,2003,3(2):269-273.
    [12]Ning J, Zhang J, Pan Y, et al. Surfactants assisted processing of carbon nanotube-reinforced SiO2 matrix composites[J]. Ceramics International,2004,30(1):63-67.
    [13]Bandyopadhyaya R, Nativ-Roth R, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions[J]. Nano Letters,2002,2(1):25-28.
    [14]Bergin S D, Nicolosi V, Cathcart H, et al. Large populations of individual nanotubes in surfactant based dispersions without the need for ultracentrifugation[J]. Journal of Physical Chemistry C, 2008,112(4):972-977.
    [15]Sun Z, Nicolosi V, Rickard D, et al. Quantitative evalution of surfactant stabilized single-walled carbon nanotubes:dispersion quality and its correlation with zeta potential[J]. Journal of Physical Chemistry C,2008,112(29):10692-10699.
    [16]Kato H, Mizuno K, Shimada M, et al. Observations of bound Tween80 surfactant molecules on single-walled carbon nanotubes in an aqueous solution[J]. Carbon,2009,47(15):3434-3440.
    [17]Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes[J]. Angewandte Chemie, International Edition,2001,40(9): 1721-1725.
    [18]Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature,1994,372(6502):159-162.
    [19]Lago R M, Tsang S C, Lu K L, et al. Filling carbon nanotubes with small palladium metal crystallites:the effect of surface acid groups[J]. Chemical Communications,1995,13: 1355-1356.
    [20]Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes[J]. Science,1998,280(5367):1253-1256.
    [21]Zhao B, Hu H, Niyogi S, et al. Chromatographic purification and properties of soluble single-walled carbon nanotubes[J]. Journal of Americal Chemical Society,2001,123(47): 11673-11677.
    [22]Sun J, Gao L, Li W. Colloidal processing of carbon nanotube/alumina composites[J]. Chemistry of Materials,2002,14(12):5169-5172.
    [23]Jiang L Q, Gao L. Modified carbon nanotubes:an effective way to selective attachment of gold nanoparticles[J]. Carbon,2003,41(15):2923-2929.
    [24]周小平,余腊妹,郭乔辉,et a1.多壁碳纳米管的表面修饰及其在溶剂中的分散性[J].化工新型材料,2009,37(6):61-62.
    [25]Viswanathan H, Chakrapani N, Yang H, et al. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites[J]. Journal of Americal Chemical Society,2003,125(31): 9258-9259.
    [26]Tong X, Liu C, Cheng H M, et al. Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization[J]. Journa of Applied Polymer Science, 2004,92(6):3697-3700.
    [27]Qin S H, Qin D Q, Ford W T, et al. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate[J]. Macromolecules,2004,37(11):3965-3967.
    [28]Liu Y, Yao Z, Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling[J]. Macromolecules,2005,38(4):1172-1179.
    [29]王志苗,白世河,王学晨,et al熔融共混法制备PA66/碳纳米管复合纤维的结构与性能[J].化工新型材料,2008,36(10):64-66.
    [30]夏清明,张清华,董艳,et al碳纳米管/聚乙烯/聚苯乙烯多相复合材料的制备及导电性能研究[J].化工新型材料,2008,36(5):24-26.
    [31]Dondero W E, Gorga R E. Morphological and mechanizal properties of carbon nanotube/polymer composites via melt compounding[J]. Journal of Polymer Science, Part B:Polymer Physics, 2006,44(5):864-878.
    [32]Anoop A K, Agarwal U S, Joseph R. Carbon nanotubes-reinforced PET nanocomposite by melt-compounding[J]. Journa of Applied Polymer Science,2007,104(5):3090-3095.
    [33]Pegel S, Poetschke P, Petzold G, et al. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts[J]. Polymer,2008,49(4):974-984.
    [34]Bose S, Bhattacharyya A R, Chawley M, et al. Melt mixed composites of poly(ethylene-co-methacrylic acid) ionomers and multiwall carbon nanotubes:influence of specific interactions[J]. Journal of Nanoscience and Nanotechnology,2008,8(4):1721-1727.
    [35]Bao H, Guo Z, Yu J. Electrical, resistivity, crystallization and mechanical properties of polypropylene/multi-walled carbon nanotube/calcium carbonate composites prepared by melt mixing[J]. Chinese Journal of Polymer Science,2009,27(3):393-398.
    [36]Wu D, Sun Y, Zhang M. Kinetics study on melt compounding of carbon nanotube/polypropylene nanocomposites[J]. Journal of Polymer Science, Part B:Polymer Physics,2009,47(6):608-618.
    [37]Shi J H, Yang B X, Goh S H. Covalent functionalization of multiwalled carbon nanotubes with poly(styrene-co-acrylonitrile) by reactive melt blending[J]. European Polymer Journal,2009, 45(4):1002-1008.
    [38]Kim J Y, Park H S, Kim S H. Multiwall-carbon nanotube reinforced poly(ethylene terephthalated) nancomposites by melt compounding[J]. Journa of Applied Polymer Science, 2007,103(3):1450-1457.
    [39]Liu T, Phang I Y, Shen L, et al. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites[J]. Macromolecules,2004,37(19):7214-7222.
    [40]Zhang W D, Shen L, Phang I Y, et al. Carbon nanotubes reinforeced nylon-6 composited prepared by simple melt-compounding[J]. Macromolecules,2004,37(2):256-259.
    [41]Hunley M T, Poetschke P, Long T E. Melt dispersion and electrospinning of non-functionalized multiwalled carbon nanotubes in thermoplastic polyurethane[J]. Macromolecules Rapid Communications,2009,30(24):2102-2106.
    [42]Bangarusampath D S, Ruckdaeschel H, Altstaedt V, et al. Rheology and properties of melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites[J]. Polymer, 2009,50(24):5803-5811.
    [43]Han M S, Lee Y K, Lee H S, et al. Electrical, morphological and rheological properties of carbon nanotubes[J]. Chemical Engineering Science,2009,64(22):4649-4656.
    [44]Huang S, Wang M, Liu T, et al. Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotubes nanocomposites prepared by melt compounding[J]. Polymer Engineering & Science,2009,49(6):1063-1068.
    [45]潘玮,张慧勤,陈燕.多壁碳纳米管/聚甲基丙烯酸甲酯复合材料的结构与导电性能[J].化工新型材料,2008,36(4):50-51.
    [46]Zhu B, Xie H, Xu Z, et al. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites[J]. Composites Science and Technology,2006,66(3-4): 548-554.
    [47]Wang W Y, Luo G H, Wei F, et al. Electrical conductivity and thermal properties of acrylonitrile-butadiene-styrene filled with multiwall carbon nanotubes[J]. Polymer Engineering & Science,2009,49(11):2144-2149.
    [48]Kim B S, Bae S H, Park Y H, et al. Preparation and characterization of polyimide/carbon nanotube composites[J]. Macromolecular Research,2007,15(4):357-362.
    [49]Chen L, Pang X J, Qu M Z, et al. Fabrication and characterization of polycarbonate/carbon nanotubes composites[J]. Composites, Part A:Applied Science and Manufacturing,2006, 37A(9):1485-1489.
    [50]Zhang X, Liu T, Sreekumar T V, et al. Polyvinyl alcohol/SWNT composite film[J]. Nano Letters, 2003,3(9):1285-1288.
    [51]Ruan S L, Gao P, Yang X G, et al. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes[J]. Polymer,2003,44(19):5643-5645.
    [52]Zhang X, Liu T, Sreekumar T V, et al. Poly(vinyl alcohol)/SWNT composite film[J]. Nano Letters,2003,3(9):1285-1288.
    [53]刘家安,周亮,刘吉平.低温聚苯胺/碳纳米管复合材料的制备[J].化工新型材料,2004,32(5):13-15.
    [54]Kong H, Gao C, Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J]. Journal of Americal Chemical Society,2004,126(2): 412-413.
    [55]Xia H, Wang Q, Qiu G. Polymer encapsulated carbon nantoubes prepared through ultrasonically initieated in situ emulsion polymerization[J]. Chemistry of Materials,2003,15(20):3879-3886.
    [56]Zhang W, Yang M J. Dispersion of carbon nanotubes in polymer matrix by in-situ emulsion polymerization[J]. Journal of Materials Science,2004,3915(4921-4922).
    [57]Hu C Z Q Justice R, Schaefer D W,et al. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization[J]. Polymer,2005,46(14): 5125-5132.
    [58]Jiang X, Bin Y, Matsuo M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization[J]. Polymer,2005,46(18):7418-7424.
    [59]Zeng H, Gao C, Wang Y, et al. In situ polymerization approach to multiwalled carbon nanotubes reinforced nylon 1010 composites:mechanical properties and crystallization behavior[J]. Polymer,2006,47(1):113-122.
    [60]Funck A, Kaminsky W. Polypropylene carbon nanotube composites by in situ polymerization[J]. Composites Science and Technology,2007,67(5):906-915.
    [61]Jana R N, Cho J W. Thermal stability and molecular interaction of polyurethane nanocomposites prepared by in situ polymerization with functionalized multiwalled carbon nanotubes[J]. Journa of Applied Polymer Science,2008,108(5):2857-2864.
    [62]Pande S, Mathur R B, Singh B P, et al. Synthesis and characterization of multiwalled carbon nanotubes polymethyl mechacrylated composites prepared by in situ polymerization[J]. Polymer Composites,2009,30(9):1312-1317.
    [63]Patole A S, Patole S P, Yoo J B, et al. Effective in situ synthesis and characteristics of polystyrene nanoparticle-covered multiwall carbon nanotube composite[J]. Journal of Polymer Science, Part B:Polymer Physics,2009,47(15):1523-1529.
    [64]Kwon S M, Kim H S, Myung S J, et al. Poly(emthyl methacrylate)/multiwalled carbon nanotubes microspheres fabricated via in situ dispersion polymerization[J]. Journal of Polymer Science, Part B:Polymer Physics,2007,46(2):182-189.
    [65]贾志杰,王正元,徐才录.碳纳米管的加入对PMMA强度和导电性能的影响[J].材料开发与应用,1998,13(6):22-26.
    [66]Jia Z, Wang Z, Xu C, et al. Study on poly(methyl methacrylate)/carbon nanotube composites[J]. Materials Science and Engineering,1999, A271(1-2):395-400.
    [67]Kwon J, Kim H. Comparison of the properties of waterborne polyurethane/multi walled carbon nanotube and acid-treated multi walled carbon nanotube composites prepared by in situ polymerization[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2005,43(17): 3973-3985.
    [68]Gao J, Zhao B, Itkis M E, et al. Chemical engineering of the single-walled carbon
    nanotube-nylon 6 interface[J]. Journal of the American Chemical Society,2006,128(23): 7492-7496.
    [69]Haggenmueller R, Du F, Fischer J E, et al. Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites[J].Polymer,2006,47(7):2381-2388.
    [70]Hu N, Zhou H, Dang G, et al. Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization[J]. Polymer International,2007,56(5):655-659.
    [71]Du Y, Hu N, Zhou H, et al. Dispersion of multi-walled carbon nanotubes in poly(aryl ether ketone) obtained by in situ polymerization[J]. Polymer International,2009,58(7):832-837.
    [72]Hu Y, Wu L, Shen J, et al. Amino-functionalized multiple-walled carbon nanotubes polyimide nanocomposite films fabricated by in situ polymerization [J]. Journa of Applied Polymer Science, 2008,110(2):701-705.
    [73]Kim H S, Park B H, Yoon J S, et al. Nylon 610/functionalized multiwalled carbon nanotubes composites by in situ interfacial polymerization[J]. Materials Letters,2007,61(11-12): 2251-2254.
    [74]Gojny F H, Nastalcsyk J, Roslaniec Z, et al. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites[J]. CHemical Physics Letters,2003,370(5-6):820-824.
    [75]Wang B, Li J, Wang H, et al. Rheological behavior of spinning dope of multiwalled carbon nanotube/polyacrylonitrile composites[J]. Macromolecular Symposia,2004,216:189-194.
    [76]王川,邢哲,夏延致,et al.多壁碳纳米管的处理及其在芳纶1313中的分散[J].功能材料,2009,40(2):325-327.
    [77]Sreekumar T V, Liu T, Min B G, et al. Polyacrylonitrile single-walled carbon nanotube composite fibers[J]. Advanced Materials,2004,16(1):56-61.
    [78]Hobbie E K, Wang H, Kim H, et al. Orientation of carbon nanotubes in sheared polymer melt[J]. Physics of Fluids,2003,15(5):1196-1202.
    [79]Wood J R, Zhao Q, Wagner H D. Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy[J]. Composites, Part A:Applied Science and Manufacturing,2001, 32A(3-4):391-399.
    [80]Wu T M, Chen E C. Crystallization behavior of poly(ε-caprolactone)/multiwalled carbon nanotube composites [J]. Journal of Polymer Science, Part B:Polymer Physics,2006,44(3): 598-606.
    [81]Bhattacharyya A R, Sreekumar T V, Liu T, et al. Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite[J]. Polymer,2003,44(8):2373-2377.
    [82]Trujillo M, Arnal M L, Mueller A J, et al. Thermal and morphological characterization of nanocomposites prepared by in situ polymerization of high density polyethylene on the carbon nanotubes[J]. Macromolecules,2007,40(17):6268-6276.
    [83]Xie X L, Aloys K, Zhou X P, et al. Ultrahigh molecular mass polyethylene/carbon nanotube composites, crystallization and melting properties[J]. Journal of Thermal Analysis and Calorimetry,2003,74(1):317-323.
    [84]Saeed K, Park S Y, Haider S, et al. In situ polymerization of multi-walled carbon nanotube/nylon-6 nanocomposites and their electrospun nanofibers[J]. Nanoscale Research Letters,2009,4(1):39-46.
    [85]Vega J F, Martinez-Salazar J, Trujillo M, et al. Rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites[J]. Macromolecules,2009, 42(13):4719-4727.
    [86]戴剑锋,张超,王青,et al.反复拉伸法制备单壁碳纳米管定向排列的SWCNT/PMMA复合材料[J].新型碳材料,2008,23(3):201-204.
    [87]Blake R, Gun'ko Y K, Coleman J, et al. A generic organometallic approache toward ultra-strong carbon nanotube polymer composites[J]. Journal of the American Chemical Society,2004, 126(33):10226-10227.
    [88]Gao J, Itkis M E, Yu A, et al. Continuous spinning of single-walled carbon nanotube nylon composite fiber[J]. Journal of Americal Chemical Society,2005,127(11):3847-3854.
    [89]Liu L, Barber A H, Nuriel S, et al. Mechanical properties of functionalized single-walled carbon nanotube/poly(viny alcohol) nanocomposites[J]. Advanced Functional Materials,2005,15(6): 975-980.
    [90]Peeterbreck S, Laoutid F, Taulemesse J M, et al. Mechanical properties and flame-retardant behavior of ethylene viny acetate/high-density polyethylene coated carbon nanotube nanocomposites[J]. Advanced Functional Materials,2007,17(15):2787-2791.
    [91]Cadek M, Coleman J N, Barron V, et al. Morphological and mechanical properties of carbon nanotube reinforced semicrystalline and amorphous polymer composites[J]. Applied Physics Letters,2002,81(27):5123-5125.
    [92]Chang T E, Jensen L R, Kisliuk A, et al. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite[J]. Polymer,2005,46(2):439-444.
    [93]Jin S H, Park Y B, Yoon K H. Rheological and mechanical properties of surface modified multi-walled carbon nanotube filled PET composite[J]. Composites Science and Technology, 2007,67(15-16):3434-3441.
    [94]吴鹏飞,李宏伟,高绪珊,et al改性多壁碳纳米管/PA6纤维的制备及力学性能[J].合成纤维工业,2006,29(5):7-10.
    [95]Gorga R, Cohen R. Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes[J]. Journal of Polymer Science, Part B:Polymer Physics, 2004,42(14):2690-2702.
    [96]Mo T C, Wang H W, Chen S Y, et al. Synthesis and characterization of polyimide/multi-walled carbon nanotube nanocomposites[J]. Polymer Composites,2008,29(4):451-457.
    [97]Guo S, Zhang C, Wang W, et al. Preparation and characterization of polyurethane/multiwalled carbon nanotube composites[J]. Polymers & Polymer Composites,2008,16(8):501-507.
    [98]曹素芝,孙晓刚,李静,et al碳纳米管/环氧树脂复合材料的导电性能研究[J].化工新型材料,2007,35(6):51-52.
    [99]黄大庆,丁鹤雁,刘俊能.碳纳米管/导电聚苯胺纳米复合纤维的合成与表征[J].功能材料,2003,34(2):164-166.
    [100]方芳,张清华,常振军,et al碳纳米管/聚苯乙烯复合材料的制备及导电性能研究[J].功能材料,2007,38(4):659-661.
    [101]李健,高绪珊,童俨.含碳纳米管导电PET纤维的研究[J].合成纤维工业,2004,27(4):16-18.
    [102]Grossiord N, Loos J, Meuldijk J, et al. Conductive carbon nanotube/polymer composites: spectroscopic monitoring of the exfoliation process in water[J]. Composites Science and Technology,2007,67(5):778-782.
    [103]Munoz E, Suh D S, Collins S, et al. Highly conducting carbon nanotube.polyethyleneimine composite fibers[J]. Advanced Materials,2005,17(8):1064-1067.
    [104]Liu L, Ly J, Han S, et al. Snthesis and electronic properties of individual single-walled carbon
    nanotube/polypyrrole composite nanocables[J]. Advanced Materials,2005,17(22):2727-2732.
    [105]Ding S, Lu X, Zheng J, et al. Synthesis, characterization and electrical properties of poly(o-toluidine)/multiwalled carbon nanotube composites[J]. Materials Science & Engineering, B:Solid-State Materials for Advanced Technology,2006,135(1):10-14.
    [106]Yu A, Ramesh P, Un X, et al. Enhanced thermal conductivity in hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials,2008,20(24): 4740-4744.
    [107]Han J T, Kim S Y, Woo J S, et al. Transparent, conductive, and superhydrophobic films from stabilized carbon nanotube/silane sol mixture solution[J]. Advanced Materials,2008,10(19): 3724-3727.
    [108]郭振福,高绪珊,童俨.碳纳米管/聚酯抗静电纤维的制备和性能[J].合成纤维,2007,15:15-17.
    [109]潘胜强,刘玲,黄争鸣MWNTs/PU复合超细纤维的热性能及导电性能[J].复合材料学报,2009,26(2):79-84.
    [110]Maity A, Ray S S. Conducting nanocomposites of poly(N-vinylcarbazole) with single-walled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology,2008,8(4):1728-1734.
    [111]Du F, Fischer J E, Winey K I. Coagulation method for preparing single-walled carbon nanotube/poly(methy methacrylate) composites and their modulus, electrical conductivity, and thermal stability [J]. Journal of Polymer Science, Part B:Polymer Physics,2003,41(24): 3333-3338.
    [112]Xu Y, Ray G, Abdel-Magid B. Thermal behavior of single-walled carbon nanotube polymer-matrix composites[J]. Composites, Part A:Applied Science and Manufacturing,2006, 37(1):114-121.
    [113]Saeed K, Park S Y. Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization[J]. Journa of Applied Polymer Science,2007,106(6):3729-3735.
    [114]Qi Y N, Xu F, Sun L X. Thermal stability and glass transition behavior of PANI/MWNT composites[J]. Journa of Thermal Analysis and Calorimetry,2008,94(1):137-141.
    [115]朱慧君,金俊弘,李光,et al. MWNTs/PBO共混纤维的制备及性能[J].复合材料学报,2008,25(4):40-44.
    [116]Hu Y, Shen J, Qin C, et al. Synthesis and properties of the amino-functionalized multiple-walled carbon nanotubes/polyimide nanocomposites[J]. Polymer Composites,2009,30(4):374-380.
    [117]潘玮,张慧勤,陈燕.碳纳米管/聚丙烯腈导电纤维的结构与性能[J].合成纤维工业,2006,10:1-3.
    [118]董艳,张清华,李静,et al.聚丙烯腈/多壁碳纳米管共混纤维的研制[J].合成纤维,2008,4:1-4.
    [119]洪炳墩,王彪,王华平,et al.碳纳米管/聚丙烯腈原液的制备及可纺性[J].功能高分子学报,2005,18(4):617-622.
    [120]郑成斐,杨胜林,李光,et al.碳纳米管在聚丙烯腈中的分散状态[J].功能高分子学报,2004,17(1):25-29.
    [121]Pirlot C, Willems I, Fonseca A, et al. Preparation and characterization of carbon nanotube/polyacrylonitrile composites[J]. Advanced Engineering Materials,2002,4(3):109-114.
    [122]Pirlot C, Mekhalif Z, Fonseca A, et al. Surface modifications of carbon nanotube.polyacrylonitrile composite films by proton beams[J]. CHemical Physics Letters,2003, 372(3-4):595-602.
    [123]Titchenal N, Naguib N, ye H, et al. Next-generation carbon fibers by electrospinning of PAN and MWNT nanocomposite[J]. Polymer Preprint,2003,44(2):115-116.
    [124]Guo H, Sreekumar T V, liu T, et al. Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films[J]. Polymer,2005,46(9):3001-3005.
    [125]Han S J, Kim B, Suh K D. Electrorheological properties of poly(acrylonitrile) microspheres coated with multiwall carbon nanotubes[J]. Materials Letters,2007,61(18):3995-3999.
    [126]Chae H G, Sreekumar T V, Uchida T, et al. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber[J]. Polymer,2005,46(24):10925-10935.
    [127]Chae H G, Minus M L, Kumar S. Orientated and exfoliated single wall carbon nanotubes in polyacrylonitrile[J]. Polymer,2006,47(10):3494-3504.
    [128]Weisenberger M C, Grulke E A, Jacques D, et al. Enhanced mechanical properties of polyacrylonitrile/multiwalled carbon nanotube composite fibers[J]. Journal of Nanoscience and Nanotechnology,2003,3(6):535-539.
    [129]Min B G, Sreekumar T V, Uchida T, et al. Oxidatie stabilization of PAN/SWNT composite fiber[J]. Carbon,2005,43(3):599-604.
    [130]Sreekumar T V, Chandra L, Srivastava A, et al. Oxidative stabilization of polyacrylonitrile in the presence of functionalized carbon nanotubes[J]. Carbon,2007,45(5):1114-1116.
    [131]Chae H G, Minus M L, Radheed R, et al. Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers[J]. Polymer,2007,48(13): 3781-3789.
    [1]Wang C, Guo Z, Fu S, et al. Polymers containing fullerence or carbon nanotube strucutres[J]. Progress in Polymer Science,2004,29(11):1079-1141.
    [2]Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials,2006,18(6):689-706.
    [3]Islam M F, Rojad E, Bergey D M, et al. High weight fraction surfactant solubilization of single-walled carbon nanotubes in water[J]. Nano Letters,2003,3(2):269-273.
    [4]Zhang M, Su L, Mao L. Surfactant functionalization of carbon nantoubes (CNTs) for layer-by layer assembling of CNT multilyer films and fabrication of gold nanopartical/CNT nanohybrid[J]. Carbon,2005,44(2):276-283.
    [5]Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of orientated carbon nanotubes[J]. Science,2000,290(5495):1331-1334.
    [6]Sinani V A, Gheith M K, Yaroslavov A A, et al. Aqueous dispersions of single-wall and multiwalel carbon naotubes with designed amphiphilic polycations[J]. Journal of the American Chemical Society,2005,127(10):3463-3472.
    [7]Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions[J]. Nano Letters,2002,2(1):25-28.
    [8]Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes[J]. Science,1998,280(5367):1253-1256.
    [9]Zhao B, Hu H, Niyogi S, et al. Chromatographic purification and properties of soluble single-walled carbon nanotubes[J]. Journal of the American Chemical Society,2001,123(47): 11673-11677.
    [10]Fu K, Huang W J, Lin Y, et al. Defunctionalization of functionalized carbon nanotubes[J]. Nano Letters,2001,1(8):438-441.
    [11]Liu M, Yang Y, Zhu T, et al. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid[J]. Carbon,2005,43(7):1470-1478.
    [12]Tasis D, Tagmatarchis N, Georgakilas V, et al. Soluble carbon nanotubes[J]. Chemistry-A European Journal,2003,9(17):4000-4008.
    [13]Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes[J]. Science,1998,282(5386):95-98.
    [14]Tzavalas S, Drakonakis V, Mouzakis D E, et al. Effect of carboxy-functionalized multiwall nanotubes (MWNT-COOH) on the crystallization and chain conformations of poly(ethylene terephthalate) PET in PET-MWNT nancomposites[J]. Macromolecules,2006,39(26):9150-9156.
    [15]Olalde B, Aizpurua J M, Garcia A, et al. Single-walled carbon nanotubes and multiwalled carbon nanotubes functionalized with poly(l-lactic acid):a comparative study[J]. Journal of Physics Chemistry C,2008,112(29):10663-10667.
    [16]Yang Y, Xie X, Yang Z, et al. Controlled synthesis and novel solution rheology of hyperbranched poly(urea-urethane)-functionalized multiwalled carbon nanotubes[J]. Macromolecules,2007, 40(16):5858-5867.
    [17]Rasheed A, Dadmun M D, Ivanov I, et al. Improving dispersion of single-walled carbon nanotubes in a polymer matrix using specific interactions[J]. CHemistry of Materials,2006, 18(15):3513-3522.
    [18]Cui J, Wang W P, You Y Z, et al. Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization[J]. Polymer,2004,45(26):8717-8721.
    [19]Shulga Y M, Tien T C, Huang C C, et al. XSP study of fluorinated carbon multi-walled nanotubes[J]. Journal of Electron Spectroscopy and Related Phenomena,2007,160(1-3):22-28.
    [20]Lee W H, Kim S J, Lee W J, et al. X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material[J]. Applied Surface Science,2001,181(1-2):121-127.
    [21]Wang Q, Han Y, Wang Y, et al. Effects of surfactant structure on the stability of carbon nanotubes in aqueous solution[J]. Journal of Physics Chemistry B,2008,112(24):7227-7233.
    [22]Kocharova N, Jarkko L, Lukkari J, et al. Self-assembled carbon nanotubes on gold: polarization-modulated infrared reflection-absorption spectroscopy, high-resolution X-ray photoemission spectroscopy, and near-edge X-ray absorption fine structure spectroscopy study[J]. Langmuir,2008,24(7):3235-3243.
    [23]Meng H, Sui G X, Fang P F, et al. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6[J], Polymer,2008,49(2): 610-620.
    [24]Yang D Q, Rochette J F, Sacher E. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication[J]. Journal of Physical Chemistry B,2005,109(16):7788-7794.
    [25]Li W, Liang C, Zhou W, et al. Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells[J]. The Journal of Physical Chemistry B,2003,107(26):6292-6299.
    [26]Zhai Z, Zhang Z, Li B, et al. Study of the structure and properties of carbon nanotubes for the negative materials of Li-ion battery[J]. Nanoscience,2007,12(1):45-48.
    [27]Sankaran M, Viswanathan B. Hydrogen storage in boron substituted carbon nanotubes[J]. Carbon,2007,45(8):1628-1635.
    [28]Luo Y L, Fan L H, Gao G L, et al. Fe3O4/PANI/P(MAA-co-NVP) multilayer composite microspheres with electric and magnetic features. Assembly and characterization[J]. Journal of Nanoscience and Nanotechnology,2009,9(11):6439-6452.
    [29]Lee G H, Park J G, Sung Y M, et al. Enhanced cycling performance of an FeO/Fe3O4 nanocomposite electrode for lithium-ion batteries[J]. Nanotechnology,2009,20(29): 295201-295205.
    [30]Zhu A, Luo X, Dai S. Chitosan-poly(acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptithecin loading and release[J]. Journal of Materials Research,2009,24(7): 2307-2315.
    [31]Souza F A G, Jorio A, Samsonidze G G,et al. Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes[J]. Nanotechnology,2003, 14(10):1130-1139.
    [32]Xu H, Wang X, Zhang Y, et al. Single step in situ preparation of polymer grafted multiwalled carbon nanotube composites under 60Co γ-Ray irradiation[J]. CHemistry of Materials,2006, 18(13):2929-2934.
    [33]Doom S K, Zheng L, O'Connell M J, et al. Raman spectroscopy and imaging of ultralong carbon nanotubes[J]. Journal of Physical Chemistry B,2005,109(9):3751-3758.
    [34]Nelson D J, Rhoads H, Brammer C. Characterizing covalently sidewall-functionalized SWNT[J]. Journal of Physics Chemistry C,2007,111(48):17872-17878.
    [35]Kim U J, Furtado C A, Liu X, et al. Raman and IR spectroscopy of chemically processed singl-walled carbon nanotubes[J]. Journal of the American Chemical Society,2005,127(44): 15437-15445.
    [36]Liu Y L, Chen W H. Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization[J]. Macromolecules,2007,40(25): 8881-8886.
    [37]Ma J, Wang J N. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach[J]. CHemistry of Materials,2008,20(9):2895-2902.
    [38]Osswald S, Flahaut E, Gogotsi Y. In situ raman spectroscopy study of oxidation of double- and single-wall carbon nanotubes[J]. CHemistry of Materials,2006,18(6):1525-1533.
    [39]Martinez M T, Callejas M A, Benito A M, et al. Sensitivity of single wall carbon nanotubes to oxidative processing:structural modification, intercalation nad functionalisation[J]. Carbon,203, 41(12):2247-2256.
    [40]Chattopadhyay J, Chakraborty S, Mukherjee A, et al. SET mechanism on the functionalization of single-walled carbon nanotubes[J]. Journal of Physical Chemistry C,2007,111(48): 17928-17932.
    [41]Dresselhaus M S, Dresselhaus G, Jorio A. Raman spectroscopy of carbon nanotubes in 1997 and 2007[J]. Journal of Physical Chemistry C,2007,111(48):17887-17893.
    [42]Tchoul M N, Ford W T, Lolli G, et al. Effect of mild nitric acid oxidation on dispersability, size and structure of single-walled carbon nanotubes[J]. CHemistry of Materials,2007,19(23): 5765-5772.
    [43]Keogh S M, Hedderman T G, Gregan E, et al. Spectroscopic analysis od single-walled carbon nanotubes and semiconjugated polymer composites[J]. Journal of Physical Chemistry B,2004, 108(20):6233-6241.
    [44]Shen K, Curran S, Xu H, et al. Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion:a combined TEM and resonant micro-raman spectroscopy study[J]. Journal of Physical Chemistry B,2005,109(10):4455-4463.
    [45]Dettlaff-Weglikowska U, Skakalova V, Graupner R, et al. Effect of SOC12 treatment on electrical and mechanical properties of single-wall carbon nanotube networks[J]. Journal of the American Chemical Society,2005,127(14):5125-5231.
    [46]Price B K, Tour J M. Functionalization of single-walled carbon nanotubes "on water"[J]. Journal of the American Chemical Society,2006,128(39):12899-12904.
    [47]Torres J, Perry C C, Wagner A J, et al. Interaction of chlorine radicals with polyethylene and hydrocarbon thin films under vacuum conditions-a comparison with atomic oxygen reactivity [J]. Surface Science,2003,543(1-3):75-86.
    [48]Leftwich T R, Teplyakov A V. Calibration of computationally predicted N 1 s binding energies by comparison with X-ray photoelectron spectroscopy measurements[J]. Journal of Electron Spectroscopy and Related Phenomena,2009,175(1-3):31-40.
    [49]Zhang W, Carravetta V, Plekan O, et al. Electronic structure of aromatic amino acids studied by soft X-ray spectroscopy [J]. Journal of Chemical Physics,2009,131(3):35101-35111.
    [50]Gohier A, Point A, Djouadi M A, et al. ERDA and structural characterization of orientated multiwalled carbon nanotubes[J]. Journal of Physical Chemistry C,2007,111(28):10353-30358.
    [51]Pirlot C, Mekhalif Z, Fonseca A, et al. Surface modifications of carbon nanotube/polyacrylonitrile composite films by proton beams[J]. Chemical Physics Letters,2003, 372(3-4):595-602.
    [52]Wang Q, Han Y, Wang Y, et al. Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution[J]. Journal of Physical Chemistry B,2008,112(24):7227-7233.
    [53]Shen J, Huang W, Wu L, et al. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes[J]. Composites, Part A:Applied Science and Manufacturing,2007,38A(5):1331-1336.
    [54]Utsumi S, Kanamaru M, Honda H, et al. RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS[J]. Journal of Colloid and Interface Science, 2007,308(1):276-284.
    [55]Zhou Z, Dou X, Ci L, et al. Temperature dependence of the raman spectra of individual carbon nanotubes[J]. Journal of Physical Chemistry B,2006,110(3):1206-1209.
    [56]Skakalova V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and raman spectra of single-walled carbon nanotubes[J]. Journal of Physical Chemistry B,2005,109(15):7174-7181.
    [57]Zhang Q, Li J, Zhao X, et al. Preparation of characterization of alkylated carbon nanotube/polyimide nanocomposites[J]. Polymer International,2009,58(5):557-563.
    [1]Wang C C, Guo Z X, Fu S K, et al. Polymers containing fullerene or carbon nanotube structures[J]. Progress in Polymer Science,2004,29(11):1079-1141.
    [2]Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced materials,2006,18(6):689-706.
    [3]Yang B X, Pramoda K P, Xu G Q, et al. Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes[J]. Advanced Functional Materials,2007, 17(13):2062-2069.
    [4]Moniruzzaman M, Winey K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules,2006,39(16):5194-5205.
    [5]Sreekumar T V, Liu T, Min B G, et al. Polyacrylonitrile single-walled carbon nanotube composite fibers[J]. Advanced materials,2004,16(1):58-61.
    [6]Grossiord N, Loos J, Regev O, et al. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites[J]. Chemistry of Materials,2006,18(5):1089-1099.
    [7]Tasis D, Tagmatarchis N, Georgakilas V, et al. Soluble carbon nanotubes[J]. Chemistry-A European Journal,2003,9(17):4000-4008.
    [8]Cadek M, Coleman J N, Ryan K P, et al. Reinforcement of polymers with carbon nanotuebs:the role of nanotube surface area[J]. Nano Letters,2004,4(2):353-356.
    [9]Zeng H L, Gao C, Wang Y P, et al. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites:Mechanical properties and crystallization behavior[J]. Polymer,2006,47(1):113-122.
    [10]Sahoo N G, Cheng H K F, Li L, et al. Specific functionalization of carbon nanotubes for advanced polymer nanocomposites[J]. Advanced Functional Materials,2009,19(24):3962-3971.
    [11]Kim J, Hong S M, Kwak S, et al. Physcial properties of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes[J]. Physical Chemistry Chemcial Physics,2009,11(46):10851-10859.
    [12]Pande S, Mathur R B, Singh B P, et al. Synthesis and characterization of multiwalled carbon nanotubes-polymethy methacrylate composites prepared by in situ polymerization method[J]. Polymer Composites,2009,30(9):1312-1317.
    [13]Liu M, Zhu T, Li Z, et al. One-step in situ synthesis of poly(methyl methacrylate)-grafted single-walled carbon nanotube composites[J]. Journal of Physical Chemistry C,2009,113(22): 9670-9675.
    [14]Choi J Y, Han S W, Huh W S, et al. In situ grafting of carboxylic acid-terminated hyperbranched poly(ether-ketone) to the surface of carbon nanotubes[J]. Polymer,2007,48(14):4034-4040.
    [15]Hu N, Zhou H, Dang G, et al. Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization[J]. Polymer International,2007,56(5):655-659.
    [16]Liang F, Beach J M, Kobashi K, et al. In situ polymerization initiated by single-walled carbon nanotube salts[J]. Chemistry of Materials,2006,18(20):4764-4767.
    [17]Cui L, Tarte N H, Woo S I. Synthesis and characterization of PMMA/MWNT nanocomposites prepared by in situ polymerization with Ni(acac) catalyst[J]. Macromolecules,2009,42(22): 8649-8654.
    [18]Pande S, Mathur R B, Singh B P, et al. Synthesis and characterization of multiwalled carbon nanotubes-polymethyl methacrylate composite prepared by in situ polymerization[J]. Polymer Composites,2009,30(9):1312-1317.
    [19]Du Y, Hu N, ZHou H, et al. Dispersion of multi-walled carbon nanotubes in poly(aryl ether ketone) obtained by in situ polymerization[J]. Polymer International,2009,58(7):832-837.
    [20]Trujillo M, Arnal M L, Mueller A J, et al. Thermal fractionation and isothermal crystallization of polyethylene nanocomposites prepared by in situ polymerization[J]. Macromolecules,2008, 41(6):2087-2095.
    [21]Bajaj P, Sreekumar T V, Sen K. Thermal behavior of acrylonitrile copolymers having methacrylic and itaconic acid comonomers[J]. Polymers,2001,42(4):1707-1718.
    [22]Devasia R, Reghunadhan N C P, Ninan K N. Solvent and kinetic penultimat unit effects in the copolymerization of acrylonitrile with itaconic acid[J]. European Polymer Journal,2002,38(10): 2003-2010.
    [23]Devasia R, Reghunadhan N C P, Sivadasan P, et al. Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer:an isothermal differential scanning calorimetry
    kinetic study[J]. Journal of Applied Polymer Science,2003,88(4):915-920.
    [24]Sui X M, Giordani S, Prato M, et al. Effect of carbon nanotubes surface modification on dispersion and structural properties of electrospun fibers[J]. Applied Physics Letters,2009, 95(23):23111-233113.
    [25]Koval'chuk A A, Shevchenko V G, Shchegolikhin A N, et al. Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites[J]. Macromolecules,2008,41(20):7536-7542.
    [26]Jeong J Y, Lee H J, Kang S W, et al. Nylon 610/functionalized multiwalled carbon nanotube composite prepared from in-situ interfacial polymerization[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2008,46(18):6041-6050.
    [27]Hu Y, Wu L, Shen J, et al. Amino-functionalized mutliple-walled carbon nanotubes-polyimide nanocomposite films fabricated by in situ polymerization[J]. Journal Applied Polymer Science, 2008,110(2):701-705.
    [28]Mun S J, Jung Y M, Kim J C, et al. Poly(ethylene terephthalate) nanocomposite fibers with functionalized multiwalled carbon nanotubes via in-situ polymerization[J]. Journal Applied Polymer Science,2008,109(1):638-646.
    [29]Kim H S, Park B H, Yoon J S, et al. Nylon 610/functionalized multiwalled carbon nanotubes composites by in situ interfacial polymerization[J]. Materials Letters,2007,61(11-12): 2251-2254.
    [30]Jia Z, Wang Z, Xu C, et al. Study of poly(methyl methacrylate)/carbon nanotube composites[J]. Materials Science and Engineering,1999, A271(1-2):395-400.
    [31]Zhao C, Hu G, Justice R, et al. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization[J]. Polymer,2005,46(14):5125-5132.
    [32]Gojny F H, Wichmann M H G, Fiedler B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study[J]. Composite Science and Technology,2005,65(15-16):2300-2313.
    [33]Sreekumar T V, Chandra L, Srivastava A, et al. Oxidative stabilization of polyacrylonitrile in the presence of functionalzied carbon nanotubes[J]. Carbon,2007,45(5):1114-1116.
    [34]Bajaj P, Paliwal D K, Gupta A K. Influence of metal ions on structure and properties of acrylic fibers[J]. Journal of Applied Polymer Science,1998,67(9):1647-1659.
    [35]Devasia R, Nair C P R, Sadhana R, et al. Fourier transform infrared and wide-angle X-ray diffraction studied of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile-co-itaconic aicd)[J]. Journal of Applied Polymer Science,2006,100(4): 3055-3062.
    [36]Sharifnejad F, Bahrami S H, Noorpanah P. Kinetics studies on copolymerization of acrylonitrile vinyl acids by solvent-water suspension polymerization[J]. Journal of Applied Polymer Science, 2005,97(3):1284-1291.
    [37]Minagawa M, Miyano K, Takahashi M. Infrared characteristic absorption bands of highly isotactic polyacrylonitrile[J]. Macromolecules,1988,21(8):2387-2391.
    [38]Mccann J T, Lim B, Ostermann R, et al. Carbon nanotubes by electrospinning with a polyelectrolyte and vapor deposition polymerization[J]. Nano Letters,2007,7(8):2470-2474.
    [39]Guo G, Yang D, Wang C, et al. "Fishing" polymer brushes on singl-walled carbon nanotubes by in-situ free radical polymerization in a poor solvent[J]. Macromolecules,2006,39(26): 9035-9040.
    [40]Liu Y L, Chen W H. Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization[J]. Macromolecules,2007,40(25): 8881-8886.
    [41]Gao C, Jin Y, Kong H, et al. Polyurea-functionalized multiwalled carbon nanotubes:synthesis, morphology, and raman spectroscopy[J]. Journal of Physical Chemistry B,2005,109(24): 11925-11932.
    [42]Huang Y S, Koening J L. Raman spectra of polyacrylonitrile[J]. Applied Spectroscopy,1971, 25(6):620-622.
    [43]Ma H Y, Tong L F, Xu Z B, et al. Functionalizing carbon nanotubes by grafting on intumescent flame retardant:nanocomposite synthesis, morphology, rheology, and flammability[J]. Advanced Functional Materials,2008,18(3):414-421.
    [44]Bahr J L, Yang J P, Kosynkin D V, et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts:A bucky paper electrode[J]. Journal of the American Chemical Society,2001,123(27):6536-6542.
    [45]Edwards H G M, Hoskins A R, Johnson A F, et al. Raman spectroscopic studies of the polyacrylonitrile-zinc complexes in aqueous solutions of zinc chloride and bromide[J]. Polymer International,1993,30(1):25-32.
    [46]Utsumi S, Kanamaru M, Honda H, et al. RBM band shift-evidenced dispersion mechanism of singl-wall carbon nanotube bundles with NaDDBS[J]. Journal of Colloid and Interface Science, 2007,308(1):276-284.
    [47]Lucas M, Young R J. Effect of residual stresses upon the raman radical bresthing modes of nanotubes in epoxy composites[J]. Composite Science and Technology,2007,67(5):840-843.
    [48]Longhurst M J, Quirke N. The environmental effect on the radical breathing mode of carbon nanotubes in water[J]. Journal of CHemical Physics,2006,124(23):234701-234708.
    [49]Bredeau S, Peeterbroeck S, Bonduel D, et al. From carbon nanotube coating to high-performance polymer nanocomposites[J]. Polymer International,2008,57(4):547-553.
    [50]Ham H T, Choi Y S, Jeong N, et al. Singlewall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization[J]. Polymer,2005,46(17):6308-6315.
    [51]Guo H, Zhu H, Lin H, et al. Synthesis of polyaniline/multi-walled carbon nanotube nanocomposites in water/oil microemulsion[J]. Materials Letters,2008,62(24):3919-3921.
    [1]洪炳墩,王彪,王华平,et al.碳纳米管/聚丙烯腈原液的制备及可纺性[J].功能高分子学报, 2005,18(4):617-622.
    [2]Screekumar T V, Liu T, Min B G. Polyacrylonitrile single-walled carbon nanotube composite fibers[J]. Advanced Materials,2004,16(1):58-61.
    [3]Bell J P, Dumbleton J H. Changes in the structure of wet-spun acrylic fibers druing processing[J]. Textile Research Journal,1971,41(3):196-203.
    [4]Bashir Z. Thermoreversible gelation and plasticization of polyacrylonitrile[J]. Polymer,1992, 33(20):4304-4313.
    [5]Vaisman L, Larin B, Davidi I. Processing and characterization of extruded drawn MWNT-PAN composite filaments[J]. Composite Part A:Applied Science and Manufacturing,2007,38A(5): 1354-1362.
    [6]Chae H, Minus M, Kumar S. Oriented and exfoliated single wall carbn nanotubes in polyacrylonitrile[J]. Polymer,2006,47(10):3494-3504.
    [7]Yamane A, Sawai D, Kameda T, et al. Development of high ductility and tensile properties upon two-stage draw of ultrahigh molecular weight poly(acrylonitrile)[J]. Macromolecules,1997, 30(14):4170-4178.
    [8]Sawai D, Yamane A, Kameda T, et al. Uniaxial drawing of isotactic poly(acrylonitrile): development of oriented structure and tensile properties[J]. Macromolecules,1999,32(17): 5622-5630.
    [9]Sawai D, Kanamoto T, Yamazaki H, et al. Dynamci mechanical relaxations in poly(acrylonitrile) with different stereoregularities[J]. Macromolecules,2004,37(8):2839-2846.
    [10]Wood J R, Zhao Q, Wagner H D. Orientation of carbon nanotubes in polymers and its detection by raman spectroscopy[J]. Composite Part A:Applied Science and Manufacturing,2001, 32A(3-4):391-399.
    [11]Davidson J A, Jung H T, Hudson S D. Investigation of molecular orientation in melt-spun high acrylonitrile fibers[J]. Polymer,2000,41(9):3357-3364.
    [1]Gupta A K, Paliwal D K, Bajaj P. Effect of an acidic comonomer on thermooxidative stabilization of polyacrylinitrile[J]. Journal of Applied Polymer Science,1995,58(7):1161-1174.
    [2]Gupta A K, Paliwal D K, Bajaj P. Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile[J]. Journal of Applied Polymer Science,1996,59(12): 1819-1826.
    [3]Yu M, Wang C, Zhao Y, et al. Thermal properties of acrylonitrile/itaconic acid polymers in oxidative and nonoxidative atmospheres[J]. Journal of Applied Polymer Science,2010,116(2): 1207-1212.
    [4]Bajaj P, Sreekumar T V, Sen K. Thermal behavior of acrylonitrile copolymers having methacrylic and itaconic acid comonomers[J]. Polymer,2001,42(4):1707-1718.
    [5]Raskovic V, Marinkovic S. Temperature dependence of process during oxidation of PAN fibers[J]. Carbon,1975,13(6):535-538.
    [6]张寿春,温月芳,杨永岗,et al.衣康酸铵改性对聚丙烯腈热性能的影响[J].高分子材料科学与工程,2004,20(3):103-106.
    [7]Ouyang Q, Cheng L, Wang H, et al. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile[J]. Polymer Degradation and Stability,2008,93(8): 1415-1421.
    [8]Bang Y H, Lee S, Cho H H. Effect of methyl acrylate composition on the microstructure changed of high molecular weight polyacrylonitrile for heat treatment[J]. Journal of Applied Polymer Science,1998,68(13):2205-2213.
    [9]Bahrami S H, Bajaj P, Sen K. Thermal behavior of acrylonitrile carboxylic acid copolymers[J]. Journal of Applied Polymer Science,2003,88(3):685-698.
    [10]耿丽,杨逢源,张海龙,et al.碳纳米管/聚丙烯腈复合纤维热处理过程中结构演变规律研究[J].化工新型材料,2009,37(8):66-68.
    [11]Min B G, Sreekumar T V, Uchida T, et al. Oxidative stabilization of PAN/SWNT composite fiber[J]. Carbon,2005,43(3):599-604.
    [14]Bashir Z. Polyacrylonitrile, an unusual linear homopolymer with two glass transitions[J]. Indian Journal of Fibre & Textile Research,1999,24(1):1-9.
    [15]Bashir Z, Rastogi S. The explanation of the increase in slope at the Tg in the plot of d-spacing versus temperature in polymerization[J]. Journal of Macromolecular Science Physics,2005, B44(1):55-78.
    [1]Watt W, Johnson W. Mechanism of oxidation of polyacylonitrile fibers[J]. Nature,1975, 257(5523):210-212.
    [2]Fitzer E, Mueller D J. Influence of oxygen on the chemical reactions during stabilization of PAN as carbon fiber precursor[J]. Carbon,1975,13(1):63-69.
    [3]Collins G L, Thomas N W, Williams G E. Kinetics relationships between heat generation and nitrile consumption in the reaction of poly(acrylonitrile) in air at 265℃[J]. Carbon,1988,26(5): 671-679.
    [4]Liang Y, Chen H, Wang F. Degradation kinetics of acrylonitrile/ammonium acrylate copolymers[J]. Journal of Applied Polymer Science,2006,100(6):4649-4653.
    [5]宋会青,温月芳,杨永岗,et al. DSC法研究聚丙烯腈纤维的环化反应动力学[J].合成纤维工业,2008,31(3):12-14.
    [6]Ouyang Q, Cheng L, Wang H, et al. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile[J]. Polymer Degradation and Stability,2008,93(8): 1415-1421.
    [7]Devasia R, Nair C P R, Sivadasan P, et al. Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer:An isothermal differential scanning calorimetry kinetic study[J]. Journal of Applied Polymer Science,2003,88(4):915-920.
    [8]Lin S Y, Chen E C, Liu K Y, et al. Isothemal crystallization behavior of polyamide 6, 6/multiwalled carbon nanotube nanocomposites[J]. Polymer Engineering & Science,2009, 49(12):2447-2453.
    [9]Abdalla M, Dean D, Robinson P, et al. Cure behavior of epoxy/MWCNT nanocomposites:The effect of nanotube surface modification[J]. Polymer Degradation and Stability,2008,49(15): 3310-3317.
    [10]Li L, Li C Y, Ni C, et al. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon contents[J]. Polymer,2007,48(12):3452-3460.
    [11]Jin J, Song M, Pan F. A DSC study of effect of carbon nanotubes on crystallisation behavior of poly(ethylene oxide)[J]. Thermochimica Acta,2007,456(1):25-31.
    [12]Mitchell C A, Krishnamoorti R. Non-isothermal crystallization of in situ polymerized poly(ε-caprolactone) functionalzied-SWNT nanocomposites[J]. Polymer,2005,46(20): 8796-8804.
    [13]Xu G, Du L, Wang H, et al. Nonisothermal crystallization kinetics and thermomechanical properties of multiwalled carbon nanotube-reinforced poly(ε-caprolactone) composites[J]. Polymer International,2008,57(9):1052-1066.
    [14]Meng H, Sui G, Xie G, et al. Non-isothermal crystallization kinetics of polyamide 6/diamine-modified MWNTs nanocomposite[J]. Journal of Materials Science & Technology, 2009,25(2):145-150.
    [15]Li J, Fang Z, Zhu Y, et al. Isothermal crystallization kinetics and melting behavior of multiwalled carbon nanotubes/polyamide-6 composites[J]. Journal of Applied Polymer Science,2007,105(6): 3531-3542.
    [16]Xie H, Liu B, Yuan Z, et al. Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry [J]. Journal of Polymer Science, Part B:Polymer Physics,2004,42(20):3701-3712.
    [17]Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957, 29(11):1702-1706.
    [18]王凌侃,陆一尘,陈麟,et al.环氧改性氰酸脂树脂固化动力学的研究[J].热固性树脂,2009,24(1):31-33.
    [19]刘春林,张兰芬,龚方红,et al.不饱和聚酯/复合引发体系非等温固化动力学研究[J].热固 性树脂,2009,24(3):10-12.
    [20]程鹏,吕建,王建,et al环氧电工塑料的固化反应动力学研究[J].热固性树脂,2009,24(3):32-35.
    [21]李芝华,卢健体,丑纪能,et al聚氨酯改性TDE-85/E-51环氧树脂的固化反应[J].高分子材料科学与工程,2009,25(5):26-28.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.