铁盐催化甲基丙烯酸甲酯和苯乙烯的原子转移自由基聚合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜盐催化的电子转移生成催化剂的原子转移自由基聚合(Activators Generated by Electron Transfer for ATRP, AGET ATRP)和引发剂连续再生催化剂原子转移自由基聚合(Initiators for Continuous Activator Regeneration ATRP, ICAR ATRP)是在正向ATRP和反向ATRP的基础上发展起来ATRP新技术。在这些反应体系中仍采用有机卤化物作为引发剂,易保存的高氧化态的过渡金属铜盐(Cu(II))为失活剂,而低氧化态的过渡金属盐催化剂(Cu(I))则在体系中由Cu(II)和还原剂(AGET ATRP)或者常规自由基引发剂(ICAR ATRP)通过氧化还原反应而原位产生。因此催化剂的活性更高,所需的催化剂用量可以大大下降。常规自由基引发剂一般为AIBN,还原剂通常为多糖类有机化合物(如葡萄糖),维生素C以及异辛酸亚锡等易得、无毒化合物。这些方法还有一些优点,如对AGET ATRP而言,由于还原剂只选择性地与高氧化态的过渡金属盐(Cu(II))反应而不与有机卤化物和单体进行反应,这样在原位产生低氧化态的过渡金属盐的过程中就不会影响到有机卤化物和低氧化态的过渡金属盐(Cu(I))之间的反应。尤其重要的是由于还原剂还可以与反应体系中的氧气导致的过渡金属氧化产物进行反应,因此在进行ATRP聚合之前,只要加入适量的还原剂(去除和氧气反应的消耗量),则体系则不必像正向和反向ATRP那样事先要对反应体系进行除氧,这对工业过程来说则意义非常。
     考虑到铁盐催化体系比铜催化体系具有很好的生物相容性,本论文围绕着铁盐催化的AGET ATRP和ICAR ATRP开展了一系列研究工作。主要研究内容包括:采用维生素C(VC)为还原剂,FeCl_3.6H_2O为催化剂,三苯基膦(PPh_3)、亚氨基二乙酸(IDA)以及三-(3,6-二氧庚基)胺(TDA-1)为配体,2-溴异丁酸乙酯(EBiB)、溴化苄(BB)、1,3,5-(2'-溴-2'-异丁酰氧)苯(BMPB)或者α-溴代乙苯(PEBr)为引发剂,以甲基丙烯酸甲酯(MMA)或者苯乙烯(St)为模板单体,首次报道了Fe(III)盐催化的AGET ATRP和ICAR ATRP,并采用端基分析和扩链反应证明了该反应体系的”活性”/可控聚合特征。另外在已掌握的铁盐催化的AGET ATRP规律的基础上,把这一方法应用于在生物领域具有广泛应用前景的碳纳米管的改性,在碳纳米管上可控地接枝上了聚合物壳层。
     通过对上述体系的研究得到的主要结论如下:
     (1)采用VC为还原剂,FeCl_3.6H_2O为催化剂,PPh_3为配体,MMA为单体,EBiB为引发剂,N,N-二甲基甲酰胺(DMF)为溶剂,首次报道了Fe(Ⅲ)盐催化的AGET ATRP。该AGET ATRP反应体系在极性溶剂DMF中的反应速率较非极性溶剂甲苯中的要快,但前者对MMA聚合的可控性较后者要差。PMMA的端基分析和扩链反应证明了该反应的”活性”/可控的聚合特征。
     (2)采用FeCl_3.6H_2O/IDA为催化剂,VC为还原剂,EBiB为引发剂,DMF为溶剂,在空气氛围下进行了MMA的AGET ATRP,建立了以低毒的有机酸为配体的铁盐催化的AGET ATRP反应体系。研究了空气氛围下不同VC用量下的MMA的AGET ATRP的动力学,并提出了空气氛围下铁盐催化AGET ATRP的聚合机理。在有氧条件下的聚合,还原剂VC可以起到很关键的作用。聚合结果表明在相同氧气浓度下,增加VC用量聚合速率加快。
     (3)以溴化苄为引发剂,FeCl_3·6H_2O为催化剂,PPh_3为配体,VC为还原剂,在110℃研究了铁盐催化体系作用下无氧条件下苯乙烯AGET ATRP本体聚合动力学。聚合物数均分子量随着单体转化率的提高而线性增长,分子量分布比较窄(PDI = 1.14-1.31),呈现了“活性”/可控聚合特征。
     (4)建立了以FeCl_3·6H_2O为催化剂,VC为还原剂,TDA-1为配位剂,BMPB为引发剂的铁盐引发体系。该体系催化的苯乙烯的AGET ATRP可以在有限的氧气存在下进行,且表现出了典型的“活性”/可控自由基聚合特征:聚合速率与单体浓度呈一级动力学关系,聚合物的分子量随单体转化率的提高而线性增长并接近相应的理论分子量,且聚合物的分散性指数维持较窄(一般在1.3以下)。另外,该催化体系即使在铁盐用量为引发剂用量5%的情况仍能较好地控制苯乙烯的AGET ATRP,是一个较为高效的铁盐催化体系。
     (5)建立了以FeCl_3·6H_2O为催化剂,TDA-1为配位剂,PEBr为引发剂,在无常规热引发剂存在条件下的苯乙烯和甲基丙烯酸甲酯的ICAR ATRP体系,提出了热引发ICAR ATRP的聚合机理。研究结果表明,即使三价铁盐的用量降低到50 ppm,苯乙烯的聚合仍能可控。在MMA的聚合中,由于氧分子与MMA单体共聚而成的过氧化物能扮演热引发剂的角色,因此氧气的存在能促进聚合速率提高。
     (6)建立了以FeCl_3·6H_2O为催化剂,TDA-1为配体,VC为还原剂的铁盐催化的表面AGET ATRP方法。成功地采用该方法在多壁碳纳米管(MWCNTs)接枝上了不同的聚合物。通过TEM证明得到的MWCNTs@PS为核壳结构。经四氢呋喃抽提后的MWCNTs@PS水解去功能化结果以及拉曼光谱都证明了改性的MWCNTs和PS是通过共价键连接的。然而尽管接枝PS的分子量具有可控性,但由于碳纳米管本身结构特点使接枝上的PS的PDI比传统的ATRP得到的PS要宽。
Two kinds of novel methods, activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) and initiators for continuous activator regeneration ATRP (ICAR ATRP) catalyzed by copper, have been developed by combining the advantages of normal ATRP and reverse ATRP. In the two polymerization systems, an alkyl halide is used as an initiator, and a transition metal complex in its oxidatively stable state (Cu(II)) is used as a catalyst. The activators (Cu(I)) with higher activity are produced by the in situ reduction of the copper(II) complexes with nontoxic and easily available glucose, vitamin C (VC), tin(II) 2-ethylhexanoate (Sn(EH)2) and other reducing agents for AGET ATRP or with a conventional radical initiator such as 2,2'-azobis(isobutyronitrile) (AIBN) for ICAR ATRP. It is noted that the reducing agents do not generate initiating radicals but are exclusively used for the reduction of Cu(II) to Cu(I) activating species for AGET ATRP process. In addition, the reducing agents can simultaneously reduce the oxide of a transition metal complex formed with oxygen to activating species, which makes it possible to conduct AGET ATRP in the presence of a limited amount of air. It will be much important for the industrial process.
     In this dissertation, a series of works about iron-mediated AGET ATRP and ICAR ATRP were conducted in view of the better biocompatibility and low toxicity of iron catalysts as compared with copper ones. And we reported the iron-mediated AGET ATRPs and ICAR ATRP for the first time using VC as the reducing agent, FeCl_3.6H_2O as the catalyst, triphenylphosphine (PPh_3), iminodiacetic acid (IDA) and tris(3,6-dioxaheptyl) amine (TDA-1) as the ligands, ethyl 2-bromoisobutyrate (EBiB), benzyl bromide (BB), 1,3,5-(2'-bromo-2'-methylpropionato) benzene (BMPB) and (1-bromoethyl)benzene (PEBr) as the initiators, methyl methacrylate (MMA) or styrene (St) as the monomer. End-chain analyses and chain extension experiments confirmed the features of“living”/controlled radical polymerization of the iron-mediated polymerization systems. We also applied the iron-mediated AGET ATRP technique to the surface modification of the carbon nanotubes with potential application as biomaterials, and a controlled polymer layer was grafted onto the surfaces.
     The following conclusions were drawn according to the detailed studies:
     1. Iron-mediated AGET ATRP of MMA was first developed using FeCl_3.6H_2O as the catalyst, PPh_3 as the ligand, EBiB as the initiator and VC as the reducing agent. It was found that the polymerization rate in DMF was faster than that in toluene; however, the latter polymerization system had better controllability over the molecular weight and molecular weight distribution than the former. The“living”features of the polymerization system were confirmed by analysis of the chain end and chain extension of PMMA.
     2. A novel iron-mediated AGET ATRP system in DMF was developed using low toxic organic acid of IDA as the ligand, FeCl_3.6H_2O as the catalyst, EBiB as the initiator, VC as the reducing agent and MMA as the monomer in the presence of a limited amount of air. The kinetics of AGET ATRP of MMA was investigated using different amount of VC in the presence of a limited amount of air, and the plausible polymerization mechanism was drawn correspondingly. The reducing agent VC played a key role for the polymerization of MMA in the presence of a limited amount of air. Increasing the amount of VC increased the polymerization rate of MMA under the same oxygen concentration.
     3. An iron-mediated bulk AGET ATRP of St was developed using BB as the initiator, FeCl_3·6H_2O as the catalyst, PPh_3 as the ligand and VC as the reducing agent. The kinetics was studied in the absence of oxygen at 110oC. The results showed that the number-average molecular weight of the PS increased with monomer conversion linearly and the molecular weight distribution kept low (PDI = 1.14-1.31), demonstrating the features of“living”/controlled radical polymerization.
     4. A highly active iron-based catalyst system for the bulk AGET ATRP of St was obtained using FeCl_3·6H_2O as the catalyst, TDA-1 as the ligand, BMPB as the initiator and VC as the reducing agent in the presence of limited amounts of air. The results of the polymerizations demonstrated the features of‘living’/controlled radical polymerization, such as first order kinetic plot, the number-average molecular weights being close to their corresponding theoretical values and increasing linearly with monomer conversion, and narrow polydispersity indices (PDI = 1.18-1.26), and the controlled polymerization of St was also obtained even if 5 mol-% of catalyst was used.
     5. ICAR ATRPs for St and MMA were developed using FeCl_3·6H_2O as the catalyst, TDA-1 as the ligand and PEBr as the initiator in the absence of any thermal radical initiator, and the corresponding polymerization mechanism was provided. The results demonstrated that the polymerization of St could be carried out successfully even if the amount of iron catalyst increased to 50 ppm. In the polymerization of MMA, oxygen was used to form in situ thermal radical initiators, MMA peroxides, which were generated from the interpolymerization of molecular oxygen and MMA monomer; therefore it could enhance the polymerization rate of MMA.
     6. A surface-initiated AGET ATRP system was developed on the surface of multiwall carbon nanotubes (MWCNTs) using FeCl_3·6H_2O as the catalyst, TDA-1 as the ligand and VC as the reducing agent, and different polymers were successfully grafted onto the surfaces. The core-shell structure of MWCNTs@PS was observed by TEM. Both Raman spectra and the results of hydrolysis of MWCNTs@PS (after extraction by THF) confirmed that the PS chains were covalently tethered onto the surfaces of the MWCNTs. The molecular weights grafted onto the MWCNTs were controlled by the polymerization conditions, but the polydispersity indices were broad (PDI ~2.0) due to the special structure of the MWCNTs.
引文
1. Szwarc, M.; Levy, M.; Milkovich, R. Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers. J. Am. Chem. Soc. 1956, 78, 2656-2657.
    2. Aida, T.; Inoue, S. Living Polymerization of Epoxides with Metalloporphyrin and Synthesis of Block Copolymers with Controlled Chain Lengths. Macromolecules 1981, 14, 1162-1166.
    3. Webster, O. W.; Hertler, W. R.; Sogah, D. Y. Group-Transfer Polymerization. 1. A New Concept for Addition Polymerization with Organosilicon Initiators. J. Am. Chem. Soc. 1983, 105, 5706-5708.
    4. Miyamoto, M.; Sawamoto, M.; Higashimura, T. Living Polymerization of Isobutyl Vinyl Ether with Hydrogen Iodide/Iodine Initiating System. Macromolecules 1984, 17, 265-268.
    5. Faust, R.; Kennedy, J. P. Living Carbocationic Polymerization Demonstration of the Living Polymerization of Isobutylene. Polym. Bull. 1986, 15, 317-323.
    6. Fayt, R.; Forte, R.; Teyssié,P. New Initiator System for the Living Anionic Polymerization of Tert-alkyl Acrylates. Macromolecules 1987, 20, 1442-1444.
    7. Reetz, M.T. New Method For the Anionic Polymerization ofα-Ofolefins. Angew. Chem. 1988, 100, 1026-1030.
    8. Hadjichristidis, N.; Iatrou, H.; Pispas, S.; Pitsikalis, M. Anionic Polymerization: High Vacuum Techniques. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3211-3234.
    9. Jagur-Grodzinski, J. Functional Polymers by Living Anionic Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2116-2133.
    10. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Mays, J. Macromolecular Architectures by Living and Controlled/Living Polymerizations. Prog. Polym. Sci. 2006, 31, 1068-1132.
    11. Puskas, J. E.; Kaszas, G. Living Carbocationic Polymerization of Resonance-Stabilized Monomers. Prog. Polym. Sci. 2000, 25, 403-452.
    12. Aoshima, S.; Kanaoka, S. A Renaissance in Living Cationic Polymerization. Chem. Rev. 2009, 109, 5245-5287.
    13. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization ofα-Amino AcidN-Carboxyanhydrides. Chem. Rev. 2009, 109, 5528-5578.
    14. Brittain, W. J. Review of Group-Transfer Polymerization. Rubber Chem.Technol. 1992, 65, 580-600.
    15. Rathnayake, H. P.; Emrick, T. Grafting-from Nanoparticles Using Aldol Group Transfer Polymerization. Macromolecules 2008, 41, 2969-2971.
    16.丘坤元.自由基聚合近20年的发展.高分子通报2008,7,15-28.
    17. Otsu, T.; Yoshida, M. Role of Initiator-Transfer Agent-Terminator (Iniferter) in Radical Polymerizations: Polymer Design by Organic Disulfides as Iiniferters. Makromol. Chem. Rapid Commun. 1982, 3, 127-132.
    18. Otsu, T.; Yoshida, M.; Tazaki, T. A Model for Living Radical Polymerization. Makromol. Chem. Rapid Commun. 1982, 3, 133-140.
    19. Reghunadhan, C.P. ; Clouet, G. Thermal Iniferters. Their Concept and Application in Free Radical Polymerization. J. Macromol. Sci.- Rev. Macromol. Chem.Phys. 1991, C31 (2-3), 311-340.
    20. Sebenik, A. Living Free-Radical Block Copolymerization Using Thio-Iniferters. Prog. Polym. Sci. 1998, 23, 875-917.
    21. Otsu, T. Iniferter Concept and Living Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2121-2136.
    22. Moad, G.; Rizzardo, E.; Solomon, D.H. Selectivity of the Reaction of Free Radicals with Styrene. Macromolecules 1982, 15, 909-914.
    23. Solomom,D.H.; Rizzardo, E.; Cacili, P. Free Radical Polymerization and the Produced Polymers. US4581429, 1985.
    24. Georges, M.K.; Vergin, R.P.N.; Kazmaier, P.M.; Harmer, G.K. Narrow Molecular Weight Resins by a Free-Radical Polymerization Process. Macromolecules 1993, 26, 2987-2988.
    25. Hawker, C. J.; Bosman, A.W.; Harth, E. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chem. Rev. 2001, 101,3661-3688.
    26. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)rutheniumⅡ/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating system: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721-1723.
    27. Wang, J. -S.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Mental Complexs. J. Am.Chem. Soc. 1995, 117, 5614-5615.
    28. Percec, V.; Narboiu, B. "Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl. Macromolecules 1995, 28, 7970-7972.
    29. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Ayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang S. H. Living Free-Radical Polymerization by Reversible AdditionFragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559-5562.
    30. Lowe, A. B.; McCormick, C. L. Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization and the Synthesis of Water-Soluble (Co)Polymers under Homogeneous Conditions in Organic and Aqueous Media. Prog. Polym. Sci. 2007, 32, 283-351.
    31. Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process: A Second Update. Aust. J. Chem. 2009, 62, 1402-1472.
    32. Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J. Q.; Perrier, S. Bioapplications of RAFT Polymerization. Chem. Rev. 2009, 109, 5402-5436.
    33. Smith, A. E.; Xu, X.; McCormick, C. L. Stimuli-Responsive Amphiphilic (Co)Polymers via RAFT Polymerization. Prog. Polym. Sci. 2010, 35, 45-93.
    34. Destarac, M.; Brochon, C.; Catala, J. -M.; Wilczewska, A.; Zard, S. Z. Macromolecular Design via the Interchange of Xanthates (MADIX): Polymerization of Styrene with O-ethyl Xanthates as Controlling Agents. Macromol. Chem. Phys. 2002, 203, 2281-2289.
    35. Inatsugi, T.; Matsuda, M.; Destarac, M. Macromolecular Design by Interchange of Xanthate (MADIX)-Background, Design, and Applications. Kobunshi Ronbunshu 2007, 64, 863-882.
    36. Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25°C. J. Am. Chem. Soc. 2006, 128, 14156.
    37. Lligadas, G.; Percec, V. SET-LRP of Acrylates in the Presence of Radical Inhibitors. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3174-3181.
    38. Zhang, Z. B.; Wang, W. X.; Xia, H. D.; Zhu, J.; Zhang, W.; Zhu, X. L. Single-Electron Transfer Living Radical Polymerization (SET-LRP) of Methyl Methacrylate (MMA) with a Typical RAFT Agent as an Initiator. Macromolecules 2009, 42, 7360-7366.
    39. Wang, W. X.; Zhang, Z. B.; Zhu, J.; Zhou, N. C.; Zhu, X. L. Single Electron Transfer-Living Radical Polymerization of Methyl Methacrylate in Fluoroalcohol: DualControl over Molecular Weight and Tacticity. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6316-6327.
    40. Sven, F.; Rosen, B. M.; Percec, V. SET-LRP of Acrylates in Air. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1190-1196.
    41. Rosen, B. M.; Percec, V. Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization. Chem. Rev. 2010, in press.
    42. Hasegawa, J.; Kanamori, K.; Nakanishi, K.; Hanada, T.; Yamago, S. Pore Formation in Poly(divmylbenzene) Networks Derived from Organotellurium-Mediated Living Radical Polymerization. Macromolecules 2009, 42, 1270-1277.
    43. Yamago, S.; Iida, K.; Yoshida, J. Tailored Synthesis of Structurally Defined Polymers by Organotellurium-Mediated Living Radical Polymerization (TERP): Synthesis of Poly(meth)acrylate Derivatives and Their Di- and Triblock Copolymers. J. Am. Chem. Soc. 2002, 124, 13666-13667.
    44. Yamago, S.; Iida, K.; Yoshida, J. Organotellurium Compounds as Novel Initiators for Controlled/Living Radical Polymerizations. Synthesis of Functionalized Polystyrenes and End-Group Modifications. J. Am. Chem. Soc. 2002, 124, 2874-2875.
    45. Yamago, S.; Iida, K.; Nakajima, M.; Yoshida, J.–I. Practical Protocols for Organotellurium-Mediated Living Radical Polymerization by in Situ Generated Initiators from AIBN and Ditellurides. Macromolecules 2003, 36, 3793-3796.
    46. Sugihara, Y.; Kagawa, Y.; Yamago, S.; Okubo, M. Organotellurium-Mediated Living Radical Polymerization in Miniemulsion. Macromolecules 2007, 40, 9208-9211.
    47. Yamago, S.; Kayahara, E.; Kotani, M.; Ray, B.; Kwak, Y.; Goto, A.; Fukuda, T. Highly Controlled Living Radical Polymerization through Dual Activation of Organobismuthines. Angew. Chem. Int. Ed. 2007, 46, 1304-1306.
    48. Ray, B.; Kotani, M.; Yamago, S. Highly Controlled Synthesis of Poly(N-vinylpyrrolidone) and its Block Copolymers by Organostibine-Mediated Living Radical Polymerization. Macromolecules 2006, 39, 5259-5265.
    49. Yamago, S.; Ray, B.; Iida, K.; Yoshida, J.; Tada, T.; Yoshizawa, K.; Kwak, Y.; Goto, A.; Fukuda, T. Highly versatile organostibine mediators for living radical polymerization. J. Am. Chem. Soc. 2004, 126, 13908-13909.
    50. Bradford, B. W.; George, P.; Shakti, L. M. Living Radical Polymerization of Acrylates by Organocobalt Porphyrin Complexes. J. Am. Chem. Soc. 1994, 116, 7943-7944.
    51. Detrembleur, C.; Debuigne, A.; Bryaskova, R.; Charleux, B.; Jér?me, R. Cobalt-Mediated Radical Polymerization of Vinyl Acetate in Miniemulsion: Very FastFormation of Stable Poly(vinyl acetate) Latexes at Low Temperature. Macromol. Rapid Commun. 2006, 27, 37-41.
    52. Detrembleur, C.; Stoilova, O.; Bryaskova, R.; Debuigne, A.; Mouithy-Mickalad, A.; Jér?me, R. Preparation of Well-Defined PVOH/C60 Nanohybrids by Cobalt-Mediated Radical Polymerization of Vinyl Acetate. Macromol. Rapid Commun. 2006, 27, 498-504.
    53. Yamago, S. Precision Polymer Synthesis by Degenerative Transfer Controlled/Living Radical Polymerization Using Organotellurium, Organostibine, and Organobismuthine Chain-Transfer Agents. Chem. Rev. 2009, 109, 5051-5068.
    54. Wang, J.S.; Matyjaszewski, K. "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. Macromolecules 1995, 28, 7572-7573.
    55. Gromada, J.; Matyjaszewski, K. Simultaneous Reverse and Normal Initiation in Atom Transfer Radical Polymerization. Macromolecules 2001, 34, 7664-7671.
    56. Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W. A.; Tsarevsky, N. V. Diminishing Catalyst Concentration in Atom Transfer Radical Polymerization with Reducing Agents. PNAS 2006,103, 15309-15314.
    57. Jakubowski, W.; Matyjaszewski K. Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization. Macromolecules 2005, 38, 4139-4146.
    58. Jakubowski, W.; Min, K.; Matyjaszewski K. Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene. Macromolecules 2006, 39, 39-45.
    59. Goto, A.; Fukuda, T. Kinetics of Living Radical Polymerization. Prog. Polym. Sci. 2004, 29, 329-385.
    60. Braunecker, W. A.; Matyjaszewski, K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Prog. Polym. Sci. 2007, 32, 93-146.
    61. Shen, Y. Q.; Tang, H. D.; Ding, S.J. Catalyst Separation in Atom Transfer Radical Polymerization. Prog. Polym. Sci. 2004, 29, 1053-1078.
    62. Matyjaszewski, K.; Xia, J. H. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921-2990.
    63. Ouchi, M.; Terashima, T.; Sawamoto, M. Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis. Chem. Rev. 2009, 109, 4963-5050.
    64. Cunningham, M. F. Controlled/Living Radical Polymerization in Aqueous Dispersed Systems. Prog. Polym. Sci. 2008, 33, 365-398.
    65. Zetterlund, P. B.; Kagawa, Y.; Okubo, M. Controlled/Living Radical Polymerization in Dispersed Systems. Chem. Rev. 2008, 108, 3747-3794.
    66. Gao, H. F.; Matyjaszewski, K. Synthesis of Functional Polymers with Controlled Architecture by CRP of Monomers in the Presence of Cross-Linkers: From Stars to Gels. Prog. Polym. Sci. 2009, 34, 317-350.
    67. Shen Y. Q.; Zhu S. P.; Pelton R. Packed Column Reactor for Continuous Atom Transfer Radical Polymerization: Methyl Methacrylate Polymerization Using Silica Gel Supported Catalyst. Macromol. Rapid Commun. 2000, 21, 956-959.
    68. Shen Y. Q.; Zhu S. P. Continuous Atom Transfer Radical Block Copolymerization of Methacrylates. AIChE J. 2002, 48, 2609-2619.
    69. Zhang, M.; Ray W. H. Modeling of“Living”Free-Radical Polymerization Processes. I. Batch, Semibatch, and Continuous Tank Reactors. J. Appl. Polym. Sci. 2002, 86, 1630-1662.
    70. Wu, T.; Mei, Y. Cabral, J. T.; Xu, C.; Beers K. L. A New Synthetic Method for Controlled Polymerization Using a Microfluidic System. J. Am. Chem. Soc. 2004, 126, 9880-9881.
    71. Schork, F. J.; Smulders W. On the Molecular Weight Distribution Polydispersity of Continuous Living-Radical Polymerization. J. Appl. Polym. Sci. 2004, 92, 539-542.
    72. Wu, T.; Mei, Y. Xu, C.; Byrd, H. C. M.; Beers K. L. Block Copolymer PEO-b-PHPMA Synthesis Using Controlled Radical Polymerization on a Chip. Macromol. Rapid Commun. 2005, 26, 1037-1042.
    73. Noda T.; Grice, A. J.; Levere, M. E.; Haddleton D. M. Continuous Process for ATRP: Synthesis of Homo and Block Copolymers. Eur. Polym. J. 2007, 43, 2321-2330.
    74. Müller, M.; Cunningham, M. F.; Hutchinson R. A. Continuous Atom Transfer Radical Polymerization in a Tubular Reactor. Macromol. React. Eng. 2008, 2, 31-36.
    75. Tsarevsky, N. V.; Matyjaszewski, K. Environmentally Benign Atom Transfer Radical Polymerization: Towards "Green" Processes and Materials. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5098-5112.
    76. Tsarevsky, N. V.; Matyjaszewski, K. Green: Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials. Chem. Rev. 2007, 107, 2270-2299.
    77. Xu, F. J.; Neoh, K.G.; Kang, E.T. Bioactive Surfaces and Biomaterials via Atom Transfer Radical Polymerization. Prog. Polym. Sci. 2009, 34, 719-761.
    78. Coessens, V.; Pintauer, T.; Matyjaszewski K. Functional Polymers by Atom Transfer Radical Polymerization. Prog. Polym. Sci. 2001, 26, 337-377.
    79. Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Responsive Polymers in Controlled Drug Delivery. Prog. Polym. Sci. 2008, 33, 1088-1118.
    80. McCormick, C. L.; Kirkland, S. E.; York, A. W. Synthetic Routes to Stimuli-Responsive Micelles, Vesicles, and Surfaces via Controlled/Living Radical Polymerization. Polym. Rev. 2006, 46, 421-443.
    81. Barbey, R.; Lavanant, L.; Paripovic, D.; Schüwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H. -A. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chem. Rev. 2009, 109, 5437-5527.
    82. Kamigaito, M.; Ando, T.; Sawamoto M. Metal-Catalyzed Living Radical Polymerization. Chem. Rev. 2001, 101, 3689-3745.
    83. Matyjaszewski, K.; Davis, T. P. Handbook of Radical Polymerization. Wiley-interscience 2001, chapter 11, p537-543.
    84. Ando, T.; Kamigaito, M.; Sawamoto, M. Design of Initiators for Living Radical Polymerization of Methyl Methacrylate Mediated by Ruthenium(II) Complex. Tetrahedron 1997, 53, 15445-15457.
    85. Matyjaszewski, K.; Wang, J.-L.; Grimaud, T.; Shipp, D. A. Controlled/"Living" Atom Transfer Radical Polymerization of Methyl Methacrylate Using Various Initiation Systems. Macromolecules 1998, 31, 1527-1534.
    86. Matyjaszewski, K.; Shipp, D. A.; Wang, J.-L.; Grimaud, T.; Patten, T. E. Utilizing Halide Exchange to Improve Control of Atom Transfer Radical Polymerization. Macromolecules 1998, 31, 6836-6840.
    87. Neumann, A.; Keul, H.; Hocker, H. Atom Transfer Radical Polymerization (ATRP) of Styrene and Methyl Methacrylate with , -Dichlorotoluene as Initiator; a Kinetic Study. Macromol. Chem. Phys. 2000, 201, 980-984.
    88. Kotani, Y.; Kamigaito, M.; Sawamoto, M. In Controlled/Living Radical Polymerization; Matyjaszewski, K., Ed.; ACS Symposium Series 768; American Chemical Society: Washington, DC, 2000; Chapter 12, pp 168-181.
    89. Ando, T.; Kamigaito, M.; Sawamoto, M. Iron(II) Chloride Complex for Living Radical Polymerization of Methyl Methacrylate. Macromolecules, 1997, 30, 4507-4510.
    90. Wang, J.-S.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process. Macromolecules 1995, 28, 7901-7910.
    91. Granel, C.; Dubois, P.; Jéróme, R.; Teyssié, Ph. Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(II)Complex and Different Activated Alkyl Halides. Macromolecules 1996, 29, 8576-8582.
    92. Uegaki, H.; Kotani, Y.; Kamigato, M.; Sawamoto, M. Nickel-Mediated Living Radical Polymerization of Methyl Methacrylate. Macromolecules 1997, 30(8), 2249-2253.
    93. Uegaki, H.; Kotani, Y.; Kamigato, M.; Sawamoto, M. NiBr2(Pn-Bu3)2-Mediated Living Radical Polymerization of Methacrylates and Acrylates and their Block or Random Copolymerizations. Macromolecules 1998, 31, 6756-6761.
    94. Lecomte, Ph.; Drapier, I.; Dubois, Ph.; Teyssié, Ph.; Jéróme, R. Controlled Radical Polymerization of Methyl Methacrylate in the Presence of Palladium Acetate, Triphenylphosphine, and Carbon Tetrachloride. Macromolecules 1997, 30, 7631-7633.
    95. Moineau, G.; Granel, C.; Dubois, P.; Jér?me, R.; Teyssié, P. Controlled Radical Polymerization of Methyl Methacrylate Initiated by an Alkyl Halide in the Presence of the Wilkinson Catalyst. Macromolecules 1998, 31, 542-544.
    96. Petrucci, M. G. L.; Lebuis, A.-M.; Kakkar, A. K. Rhodium(I) Mixed CO/Phosphine/Amine Complexes: Synthesis, Structure, and Reactivity. Organometallics 1998, 17, 4966-4975.
    97. Uegaki, H.; Kotani, Y.; Kamigaito, M.; Sawamoto, M. In Transition Metal Catalysis in Macromolecular Design; Boffa, L. S.; Novak, B. M. Eds. ACS Symposium Series 760; American Chemical Society: Washington, DC, 2000; Chapter 12, pp 196-206.
    98. Destarac, M.; Matyjaszewski, K.; Boutevin, B. Polychloroalkane Initiators in Copper-Catalyzed Atom Transfer Radical Polymerization of (meth)Acrylates. Macromol. Chem. Phys. 2000, 201, 265-272.
    99. Destarac, M.; Boutevin, B.; Matyjaszewski, K. In Controlled/Living Radical Polymerization; Matyjaszewski, K., Ed.; ACS Symposium Series 768; American Chemical Society: Washington, DC, 2000; Chapter 17, pp 234-247.
    100. Nishikawa, T.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization in Water and Alcohols: Suspension Polymerization of Methyl Methacrylate with RuCl2(PPh3)3 Complex. Macromolecules 1999, 32, 2204-2209.
    101. Senoo, M.; Kotani, Y.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of N,N-Dimethylacrylamide with RuCl2(PPh3)3-Based Initiating Systems. Macromolecules 1999, 32, 8005-8009.
    102. Louie, J.; Grubbs, R. H. Highly Active Iron Imidazolylidene Catalysts for Atom Transfer Radical Polymerization. Chem. Commun. 2000, 1479-1480.
    103. Matyjaszewski, K.; Wei, M.; Xia, J.; McDermott, N. E. Controlled/"Living" Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes.Macromolecules 1997, 30, 8161-8164.
    104. Petten T. E.; Xia J. H.; Abernathy T.; Matyjaszewski, K. Polymers with Very Low Polydispersities from Atom Transfer Radical Polymerization. Science 1996, 272, 866-868.
    105. Kotani, Y.; Kamigaito, M.; Sawamoto, M. Re(V)-Mediated Living Radical Polymerization of Styrene: ReO2I(PPh3)2/R-I Initiating Systems. Macromolecules 1999, 32, 2420-2424.
    106. Matyjaszewski, K.; Wang, J.-L.; Grimaud, T.; Shipp, D. A. Controlled/“Living”Atom Transfer Radical Polymerization of Methyl Methacrylate Using Various Initiation Systems. Macromolecules 1998, 31, 1527-1534.
    107. Kajiwara, A.; Matyjaszewski, K., Kamachi, M. Simultaneous EPR and Kinetic Study of Styrene Atom Transfer Radical Polymerization (ATRP). Macromolecules 1998, 31, 5695-5701.
    108. Wang, J. L.; Grimaud, T.; Matyjaszewski, K. Kinetic Study of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules 1997, 30, 6507-6512.
    109. Tang, W.; Matyjaszewski, K. Effects of Initiator Structure on Activation Rate Constants in ATRP. Macromolecules 2007, 40, 1858-1863.
    110. Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K. Understanding Atom Transfer Radical Polymerization: Effect of Ligand and Initiator Structures on the Equilibrium Constants. J. Am. Chem. Soc. 2008, 130, 10702-10713.
    111. Ando, T.; Kato, M.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex: Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions. Macromolecules 1996, 29, 1070-1072.
    112. Takahashi, H.; Ando, T.; Kamigaito, M.; Sawamoto, M. Half-Metallocene-Type Ruthenium Complexes as Active Catalysts for Living Radical Polymerization of Methyl Methacrylate and Styrene. Macromolecules 1999, 32, 3820-3823.
    113. Kotani, Y.; Kamigaito, M.; Sawamoto, M. FeCp(CO)2I: A Phosphine-Free Half-Metallocene-Type Iron(II) Catalyst for Living Radical Polymerization of Styrene. Macromolecules 1999, 32, 6877-6880.
    114. Kotani, Y.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Styreneby Half-Metallocene Iron Carbonyl Complexes. Macromolecules 2000, 33, 3543-3549.
    115. Haddleton, D. M.; Jasieczek, C. B.; Hannon, M. J.; Shooter, A. J. Atom Transfer Radical Polymerization of Methyl Methacrylate Initiated by Alkyl Bromide and 2-Pyridinecarbaldehyde Imine Copper(I) Complexes. Macromolecules 1997, 30, 2190-2193.
    116. Moineau, G.; Minet, M.; Dubois, Ph.; Teyssié, Ph.; Senninger, T.; Jéróme, R. Controlled Radical Polymerization of (Meth)acrylates by ATRP with NiBr2(PPh3)2 as Catalyst. Macromolecules 1999, 32, 27-35.
    117. Uegaki, H.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Methyl Methacrylate with a Zerovalent Nickel Complex, Ni(PPh3)41. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3003-3009.
    118. Shen, Y.; Zhu, S.; Zeng, F.; Pelton, R. H. Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine. Macromolecules 2000, 33, 5427-5431.
    119. Liu, Y.; Wang, L.; Pan, C. Synthesis of Block Copoly(styrene-b-p-nitrophenyl methacrylate) and Its Derivatives by Atom Transfer Radical Polymerization. Macromolecules 1999, 32, 8301-8305.
    120. Wang, X.-S.; Luo, N.; Ying, S.-K. Controlled/Living Polymerization of MMA Promoted by Heterogeneous Initiation System (EPN-X-CuX-Bpy). J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 1255-1263.
    121. Teodorescu, M.; Matyjaszewski, K. Controlled Polymerization of (Meth)acrylamides by Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 2000, 21, 190-194.
    122. Kotani, Y.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Para-Substituted Styrenes and Synthesis of Styrene-Based Copolymers with Rhenium and Iron Complex Catalysts. Macromolecules 2000, 33, 6746-6751.
    123. Ando, T.; Kamigaito, M.; Sawamoto, M. Reversible Activation of Carbon?Halogen Bonds by RuCl2(PPh3)3: Halogen Exchange Reactions in Living Radical Polymerization. Macromolecules 2000, 33, 2819-2824.
    124. Reining, B.; Keul, H.; H?cker, H. Chloro-Telechelic Poly(ethylene oxide)s as Initiators for the Atom Transfer Radical Polymerization (ATRP) of Styrene and Methyl Methacrylate: Structural Features That Affect the Initiation Efficiency.Polymer 1999, 40, 3555-3563.
    125. Rajendrakumar, K.; Dhamodharan, R. Ambient Temperature Atom Transfer Radical Copolymerization of Tetrahydrofurfuryl Methacrylate and Methyl Methacrylate: Reactivity Ratio Determination. Eur. Polym. J. 2009, 45, 2685-2694.
    126. Ng, Y. -H.; Hong, H.; Wong, S. -Y.; Lim, K. -S.; Chai, C. L. L. Successful Cu-Mediated Atom Transfer Radical Polymerization in the Absence of Conventional Chelating Nitrogen Ligands. Macromolecules 2010, 43, 592-594.
    127. Takahashi, H.; Ando, T.; Kamigaito, M.; Sawamoto, M. RuH2(PPh3)4: An Active Catalyst for Living Radical Polymerization of Methyl Methacrylate at or above Room Temperature. Macromolecules 1999, 32, 6461-6465.
    128. Nishikawa, T.; Ando, T.; Kamigaito, M.; Sawamoto, M. Evidence for Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex: Effects of Protic and Radical Compounds and Reinitiation from the Recovered Polymers1. Macromolecules 1997, 30, 2244-2248.
    129. Matyjaszewski, K.; Jo, S. M.; Paik, H.-j.; Gaynor, S. G. Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization. Macromolecules 1997, 30, 6398-6400.
    130. Matyjaszewski, K.; Jo, S. M.; Paik, H. -j.; Shipp, D. A. An Investigation into the CuX/2,2‘-Bipyridine (X = Br or Cl) Mediated Atom Transfer Radical Polymerization of Acrylonitrile. Macromolecules 1999, 32, 6431-6438.
    131. Rademacher, J. T.; Baum, M.; Pallack, M. E.; Brittain, W. J.; Simonsick, Jr., W. J. Atom Transfer Radical Polymerization of N,N-Dimethylacrylamide. Macromolecules 2000, 33, 284-288.
    132. Percec, V.; Kim, H.-J.; Barboiu, B. Scope and Limitations of Functional Sulfonyl Chlorides as Initiators for Metal-Catalyzed“Living”Radical Polymerization of Styrene and Methacrylates. Macromolecules 1997, 30, 8526-8528.
    133. Percec, V.; Barboiu, B.; Kim, H.-J. Arenesulfonyl Halides: A Universal Class of Functional Initiators for Metal-Catalyzed“Living”Radical Polymerization of Styrene(s), Methacrylates, and Acrylates. J. Am. Chem. Soc. 1998, 120, 305-316.
    134. Feiring, A. E.; Wonchoba, E. R.; Davidson, F.; Percec, V.; Barboiu, B. Fluorocarbon-Ended Polymers: Metal Catalyzed Radical and Living Radical Polymerizations Initiated by Perfluoroalkylsulfonyl Halides. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3313-3335.
    135. Grimaud, T.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization of Methyl Methacrylate by Atom Transfer Radical Polymerization. Macromolecules 1997, 30, 2216-2218.
    136. Destarac, M.; Alric, J.; Boutevin, B. The Importance of the Nature of Initiator and Solvent in Atom Transfer Radical Polymerization of Methyl Methacrylate Catalyzed by Copper(I) N-alkyl-2-Pyridylmethanimine Complexes . Macromol. Rapid Commun. 2000, 21, 1337-1341.
    137. Matsuyama, M.; Kamigaito, M.; Sawamoto, M. Sulfonyl Chlorides as Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methyl Methacrylate . J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 3585-3589
    138. Grigoras, C.; Percec, V. Arenesulfonyl Bromides: The Second Universal Class of Functional Initiators for the Metal-Catalyzed Living Radical Polymerization of Methacrylates, Acrylates, and Styrenes. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 319-330.
    139. Percec, V.; Grigoras, C. Arenesulfonyl Iodides: The Third Universal Class of Functional Initiators for the Metal-Catalyzed Living Radical Polymerization of Methacrylates and Styrenes. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3920-3931.
    140. Jewrajka, S. K.; Mandal B. M. Living Radical Polymerization. 1. The Case of Atom Transfer Radical Polymerization of Acrylamide in Aqueous-Based Medium. Macromolecules 2003, 36, 311-317.
    141. Gurr, P. A.; Mills, M. F.; Qiao, G. G.; Solomon, D. H. Initiator Efficiency in ATRP: The Tosyl Chloride/CuBr/PMDETA System. Polymer 2005, 46, 2097-2104.
    142. Jiang, J.G.; Zhang, K.D.; Zhou, H.; Atom Transfer Radical Polymerization Initiated by N-Bromosuccinimide. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5811-5816.
    143. Percec, V.; Grigoras, C. N-Chloro Amides, Lactams, Carbamates, and Imides. New Classes of Initiators for the Metal-Catalyzed Living Radical Polymerization of Methacrylates. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5283-5299.
    144. Chen, X. P; Qiu, K. Y. Controlled/'Living' Radical Polymerization of MMA via in situ ATRP Process. Chem. Commun. 2000, 3, 233-234.
    145. Li, P.; Qiu, K. Y. In situ Atom Transfer Radical Polymerization of Styrene with a Tetraethylthiuram Disulfide/Copper Bromide/2, 2′-Bipyridine Initiating System. J. Polym. Chem. Part A: Polym. Chem. 2001, 39, 4001-4008.
    146. Qiu, K. Y.; Li, P.; Chen, X. P. Atom Transfer Radical Polymerization of Vinyl Monomers in the Presence of Tetraethylthiuram Disulfide. Macromol. Symp., 2003, 195, 33-38.
    147. Li, P.; Qin, S. H.; Qin, D. Q.; Qiu, K. Y. Preparation of Vinyl Polymers Bearing Photo-Labile Diethylthiocarbamoylthiyl (S2CNEt2) Groups via ATRP. Polym. Int. 2004, 53, 756-765.
    148. Li, P.; Qiu, K. Y. Nickel-Mediated Living Radical Polymerization of Styrene in Conjunction with Tetraethylthiuram Disulfide. Polymer 2002, 43, 5873-5877.
    149. Zhang, W.; Zhu, X. L.; Zhu, J.; Chen, J. Y. Atom Transfer Radical Polymerization of Styrene Using a Novel Initiator Ethyl 2-N, N-(Diethylamino)dithiocarbamoyl-Butyrate. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 32-41.
    150. Zhang, W.; Zhou, N. C.; Zhu, J.; Sun, B.; Zhu, X. L. Synthesis of Well-defined Naphthalene and Photo-liable Group Labeled Polystyrene via ATRP. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 510-518.
    151. Kwak, Y.; Matyjaszewski, K. Effect of Initiator and Ligand Structures on ATRP of Styrene and Methyl Methacrylate Initiated by Alkyl Dithiocarbamate. Macromolecules 2008, 41, 6627-6635.
    152. Zhang, Z. B.; Zhang, W.; Zhu, X. L.; Cheng, Z. P.; Zhu, J.‘‘Living’’/Controlled Free Radical Polymerization of MMA in the Presence of Cobalt(II) 2-Ethylhexanoate: A Switch from RAFT to ATRP Mechanism. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5722-5730.
    153. Zhu, X. L.; Zhou, N. C.; He, X. M.; Cheng, Z. P.; Lu, J. M. Atom Transfer Radical Bulk Polymerization of Methyl Methacrylate under Microwave Irradiation. J. Appl. Polym. Sci. 2003, 88, 1787-1793.
    154. Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-Catalyzed Living Radical Polymerization: Discovery and Developments. Chem. Rec. 2004, 4, 159-175.
    155. Brandts, J. A. M.; van de Geijn, P.; van Faassen, E. E.; Boersma, J.; van Koten, G. Controlled Radical Polymerization of Styrene in the Presence of Lithium Molybdate(V) Complexes and Benzylic Halides. J. Organomet. Chem. 1999, 584, 246-253.
    156. Weiser, M. S.; Mülhaupt, R. Cobalt(II) Octanoate and Cobalt(II) Perfluorooctanoate Catalyzed Atom Transfer Radical Polymerization of Styrene in Toluene and Fluorous Media - A Versatile Route to Catalyst Recycling and Oligomer Formation. J. Polym.Sci. Part A: Polym. Chem. 2005, 43, 3804-3813.
    157. Xia, J.; Zhang, X.; Matyjaszewski, K. Effect of Ligands on Copper-Mediated Atom Transfer Radical Polymerization. ACS Symp. Ser. 2000, 760, 207-223.
    158. Xia, J.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator. Macromolecules 1997, 30, 7692-7696.
    159. Xia, J. H.; Matyjaszewski, K. Homogeneous Reverse Atom Transfer Radical Polymerization of Styrene Initiated by Peroxides. Macromolecules 1999, 32, 5199-5202.
    160. Matyjaszewski, K.; Patten, T.E.; Xia, J. Controlled/"Living" Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene. J. Am. Chem. Soc. 1997, 119, 674-680.
    161. Davis, K. A.; Paik, H. J.; Matyjaszewaki, K. Kinetic Investigation of the Atom Transfer Radical Polymerization of Methyl Acrylate. Macromolecules 1999, 32, 1767-1776.
    162. Amass, A. J.; Wyres, C. A.; Colclough, E.; Marcia Hohn, I. N-alkyl-2-Pyridinemethanimine Mediated Atom Transfer Radical Polymerisation of Styrene: the Transition from Heterogeneous to Homogeneous Catalysis. Polymer 2000, 41, 1697-1702.
    163. Zhang, H.; Klumperman, B.; Ming, W.; Fisher, H.; Van der Linde, R. Effect of Cu(II) on the Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules 2001, 34, 6169-6173.
    164. Percec, V.; Barboiu, B.; Neumann, A.; Ronda, J. C.; Zhao, M. Y. Metal-Catalyzed "Living" Radical Polymerization of Styrene Initiated with Arenesulfonyl Chlorides. From Heterogeneous to Homogeneous Catalysis. Macromolecules 1996, 29, 3665-3668.
    165. Wang, G.; Zhu XL, Cheng ZP, Zhu Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate with FeCl3/Pyromellitic Acid. Eur. Polym. J. 2003, 39, 2161-2165.
    166. Zhu, S. M.; Yan, D. Y. New Ligands for Atom-Transfer Radical Polymerization. Macromol. Rapid Commun. 2000, 21, 1209-1213.
    167. Zhu, S.; Yan, D.; Zhang, G.; Li, M. Controlled/“Living”Radical Polymerization of Styrene Catalyzed by FeCl2/Succinic Acid. Macromol Chem Phys. 2000, 201,2666-2669.
    168. Hou, C.; Qu, R. J.; Ji, C. N.; Wang, C. H.; Sun, C. M. ATRP of Acrylonitrile Catalyzed by FeCl2/Succinic Acid under Microwave Irradiation. J. Appl. Polym. Sci. 2006, 101, 1598-1601.
    169. Hou, C.; Ying, L.; Wang, C. G.. Atom Transfer Radical Polymerization of Acrylonitrile. J. Appl. Polym. Sci. 2006, 99, 1050-1054.
    170. Zhu, S.; Yan, D. Atom Transfer Radical Polymerization of Methyl Methacrylate Catalyzed by IronII Chloride/Isophthalic Acid System. Macromolecules 2000, 33, 8233-8238.
    171. Zhu, S.; Xiao, G.; Yan, D. Synthesis of Aromatic Polyethersulfone-Based Graft Copolyacrylates via ATRP Catalyzed by FeCl2/Isophthalic Acid. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2943-2950.
    172. Hou, C.; Guo, Z. L.; Liu, J. S.; Ying, L.; Geng, D. D. Atom-Transfer Radical Polymerization of Acrylonitrile under Microwave Irradiation. J. Appl. Polym. Sci. 2007, 104, 1382-1385.
    173. Teodorescu, M.; Gaynor, S. G.; and Matyjaszewski, K. Halide Anions as Ligands in Iron-Mediated Atom Transfer Radical Polymerization. Macromolecules 2000, 33, 2335-2339.
    174. Ishio, M.; Katsube, M.; Ouchi, M.; Sawamoto, M,; Inoue, Y. Active, Versatile, and Removable Iron Catalysts with Phosphazenium Salts for Living Radical Polymerization of Methacrylates. Macromolecules 2009, 42, 188-193.
    175. Haddleton, D. M.; Crossman, M. C.; Dana, B. H.; Duncalf, D. J.; Heming, A. M.; Kukulj, D.; Shooter, A. J. Atom Transfer Polymerization of Methyl Methacrylate Mediated by Alkylpyridylmethanimine Type Ligands, Copper(I) Bromide, and Alkyl Halides in Hydrocarbon Solution. Macromolecules 1999, 32, 2110-2119.
    176. Xia, J.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands. Macromolecules 1997, 30, 7697-7700.
    177. Teodorescu, M.; Matyjaszewski, K. Atom Transfer Radical Polymerization of (Meth)acrylamides. Macromolecules 1999, 32, 4826-4831.
    178. Xia, J.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization. Atom Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes. Macromolecules ,1999, 32, 2434-2437.
    179. Xia, J.; Gaynor, S. G.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization of Acrylates at Ambient Temperature. Macromolecules 1998, 31, 5958-5959.
    180. Queffelec, J.; Gaynor, S. G.; Matyjaszewski, K. Optimization of Atom Transfer Radical Polymerization Using Cu(I)/Tris(2-(dimethylamino)ethyl)amine as a Catalyst. Macromolecules 2000, 33, 8629-8639.
    181. Destarac, M; Bessiere, J. M., Boutevin, B.; Transition Metal Catalyzed Atom Transfer Radical Polymerization : from Heterogeneous to Homogeneous catalysis Using 1,10-phenantroline and its deviatives as New Copper(I) Ligands. Microml. Rapid. Commun. 1997, 18, 967-974.
    182. Cheng, G. L.; Hu, C. P.; Ying S. K. Kinetics of Heterogeneous Atom Transfer Radical Polymerization of Styrene by Using Bis(1,10-phenanthroline) Copper Bromide. Macromol. Rapid Commun. 1999, 20, 303-307.
    183. Brar A. S., Kaur S. Tetramethylguanidino-tris(2-aminoethyl)amine: A Novel Ligand for Copper-Based Atom Transfer Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5906-5922.
    184. Ding, S. J.; Shen, Y. Q.; Radose M. A New Tetradentate Ligand for Atom Transfer Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3553-3562.
    185. Tsarevsky, N. V.; Braunecker, W. A.; Matyjaszewski, K. Electron Transfer Reactions Relevant to Atom Transfer Radical Polymerization. J. Organomet. Chem. 2007, 692, 3212-3222.
    186. Braunecker, W. A.; Matyjaszewski, K. Recent Mechanistic Developments in Atom Transfer Radical Polymerization. J. Mol. Cat. A: Chem. 2006, 254, 155-164.
    187. Singha, N. K.; Klumperman, B. Atom-Transfer Radical Polymerization of Methyl Methacrylate (MMA) Using CuSCN as the Catalyst. Macromol. Rapid Commun. 2000, 21, 1116-1120.
    188. Matyjaszewski, K.; Wei, M.; Xia, J.; Gaynor, S. G. Atom Transfer Radical Polymerization of Styrene Catalyzed by Copper Carboxylate Complexes. Macromol. Chem. Phys. 1998, 199, 2289-2292
    189. Percec, V.; Asandei, A. D.; Asgarzadeh, F.; Bera, T. K.; Barboiu, B. CuI and CuII Salts of Group VIA Elements as Catalysts for Living Radical Polymerization Initiated with Sulfonyl Chlorides. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3839-3843.
    190. Fuji, Y.; Watanabe, K.; Baek, K-Y; Ando, T.; Kamigaito, M.; Sawamoto, M.Controlled Radical Polymerization of 2-Hydroxyethyl Methacrylate with a Hydrophilic Ruthenium Complex and the Synthesis of Amphiphilic Random and Block Copolymers with Methyl Methacrylate. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2055-2065.
    191. Simal, F.; Demonceau, A.; Noels, A. F. Highly Efficient Ruthenium-Based Catalytic Systems for the Controlled Free-Radical Polymerization of Vinyl Monomers. Angew. Chem., Int. Ed. 1999, 38, 538-540.
    192. Simal, F.; Sebille, S.; Hallet, L.; Demonceau, A.; Noels, A. F. Evaluation of Ruthenium-Based Catalytic Systems for the Controlled Atom Transfer Radical Polymerisation of Vinyl Monomers. Macromol. Symp. 2000, 161, 73-86.
    193. Simal, F.; Jan, D.; Demonceau, A.; Noels, A. F. In Controlled/Living Radical Polymerization From Synthesis to Materials; Matyajszewski, K., Ed.; ACS Symposium Series 768; American Chemical Society: Washington, DC, 2000; Chapter 16, p 223.
    194. Kotani, Y.; Kamigaito, M.; Sawamoto, M. Living Radical Polymerization of Styrene by Half-Metallocene Iron Carbonyl Complexes. Macromolecules 2000, 33, 3543 -3549.
    195. Gibson, V. C.; O’Reilly, R. K.; Reed, W.; Wass, D. F.; White, A. J. P.; Williams, D. J. Four-Coordinate Iron Complexes Bearing -Diimine Ligands: Efficient Catalysts for Atom Transfer Radical Polymerisation (ATRP). Chem. Commun. 2002, 1850-1851.
    196. O'Reilly, R. K.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Design of Highly Active Iron-Based Catalysts for Atom Transfer Radical Polymerization: Tridentate Salicylaldiminato Ligands Affording near Ideal Nernstian Behavior. J. Am. Chem. Soc. 2003, 125, 8450-8451.
    197. Zhang H; Schubert, U.S. An Efficient Iron-Based Catalyst Bearing N-Alkyl-2-Pyridylmethanimine Ligand for Atom Transfer Radical Polymerization. Chem. Commun. 2004, 858-859.
    198. Zhang H, Schubert, U.S. Iron Halide Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate with N-Alkyl-2-Pyridylmethanimine as the Ligand. .J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 4882-4894.
    199. Ibrahim, K.; Yliheikkil K.; Abu-Surrah, A.; Lofgren, B.; Lappalainen, K.; Leskel, M.; Repo, T.; Sepp, J. Polymerization of Methyl Methacrylate in the Presence of Iron(II) Complex with Tetradentate Nitrogen Ligands under Conditions of Atom TransferRadical Polymerization. Eur. Polym. J. 2004, 40, 1095-1104.
    200. Wang, G.; Zhu, X. L.; Zhu, J.; Cheng, Z. P. Iron-Mediated Atom Transfer Radical Polymerization of Styrene with Tris(3,6-dioxaheptyl) Amine as a Ligand. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 483-489.
    201. Hou, C.; Ying, L.; Wang, C. G. Atom Transfer Radical Polymerization of Acrylonitrile. J. Appl. Polym. Sci. 2006, 99, 1050-1054.
    202. Li, Z.; Li, H.; Zhang, Y.; Xue, M.; Zhou, L.; Liu, Y. A Hybrid Supported Nickel Catalyst for the Controlled Radical Polymerization of Methyl Methacrylate. Appl. Catal.,A 2005, 292, 61-67.
    203. Le Grognec, E.; Claverie, J.; Poli, R. Radical Polymerization of Styrene Controlled by Half-Sandwich Mo(III)/Mo(IV) Couples: All Basic Mechanisms Are Possible. J. Am. Chem. Soc., 2001, 123, 9513-9524.
    204. Stoffelbach, F.; Poli, R.; Richard, P. Half-Sandwich Molybdenum(III) Compounds Containing Diazadiene Ligands and Their Use in the Controlled Radical Polymerization of Styrene. J. Organomet. Chem. 2002, 663, 269-276.
    205. Stoffelbach, F.; Haddleton, D. M.; Poli, R. Controlled Radical Polymerization of Alkyl Acrylates and Styrene Using a Half-Sandwich Molybdenum(III) Complex Containing Diazadiene Ligands. Eur. Polym. J. 2003, 39, 2099-2105.
    206. Maria, S.; Stoffelbach, F.; Mata, J.; Daran, J.-C.; Richard, P.; Poli, R. The Radical Trap in Atom Transfer Radical Polymerization Need Not Be Thermodynamically Stable. A Study of the MoX3(PMe3)3 Catalysts..J. Am. Chem. Soc. 2005, 127, 5946-5956.
    207. Maria, S.; Biedron, T.; Poli, R.; Kubisa, P. Atom Transfer Radical Polymerization of Methyl Acrylate with Molybdenum Halides as Catalysts in an Ionic Liquid. J. App. Polym. Sci. 2007, 105, 278-281.
    208. Hua, J; Li, X.; Li, Y.-S.; Xu, l.; Li, Y.-X. Atom Transfer Radical Polymerization of Butadiene Using MoO2Cl2/PPh3 as the Catalyst. J. App. Polym. Sci. 2007, 104, 3517-3522.
    209. Endo, K.; Yachi, A. Molecular-weight-controlled polymerization of styrene with Mn(acac)3 in combination with organic halides. Polym. Bull. 2001, 46, 363-369.
    210. Koumura, K.; Satoh, K.; Kamigaito, M. Manganese-Based Controlled/Living Radical Polymerization of Vinyl Acetate, Methyl Acrylate, and Styrene: Highly Active, Versatile, and Photoresponsive Systems. Macromolecules 2008, 41, 7359-7367.
    211. Braunecker, W. A.; Itami, Y.; Matyjaszewski, K. Osmium-Mediated Radical Polymerization. Macromolecules 2005, 38, 9402-9404.
    212. Braunecker, W. A.; Brown, W. C.; Morelli, B. C.; Tang, W.; Poli, R.; Matyjaszewski, K. Origin of Activity in Cu-, Ru-, and Os-Mediated Radical Polymerization. Macromolecules 2007, 40, 8576-8585.
    213. Debuigne, A.; Caille, J.-R.; Jéróme, R. Highly Efficient Cobalt-Mediated Radical Polymerization of Vinyl Acetate. Angew. Chem., Int. Ed. 2005, 44, 1101-1104.
    214. Debuigne, A.; Caille, J.-R.; Jéróme, R. Synthesis of End-Functional Poly(vinyl acetate) by Cobalt-Mediated Radical Polymerization. Macromolecules 2005, 38, 5452-5458.
    215. Wang, B.; Zhuang, Y.; Luo, X.; Xu, S.; Zhou, X. Controlled/“Living”Radical Polymerization of MMA Catalyzed by Cobaltocene. Macromolecules 2003, 36, 9684-9686.
    216. Matsubara, K.; Matsumoto, M. Cobalt(I)-Mediated Living Radical Polymerization of Methyl Methacrylate. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4222-4228.
    217. Kameda, N. Living Radical Polymerization of Methyl Methacrylate with a Rhodium(III) Complex-Organic Halide System in Dimethyl Sulfoxide. Polym. J. 2006, 38, 516-522.
    218. Moineau, G.; Dubois, P.; Jéróme, R.; Senninger, T.; Teyssié, Ph. Alternative Atom Transfer Radical Polymerization for MMA Using FeCl3 and AIBN in the Presence of Triphenylphosphine: An Easy Way to Well-Controlled PMMA. Macromolecules 1998, 31, 545-547.
    219. Zhu, S.; Yan, D.; Zhang, G. Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate with a New Catalytic System, FeCl3/Isophthalic Acid. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 765-774.
    220. Yi, Z.; Pan, K.; Jiang, L.; Zhang, J.; Dan, Y. Copper-Based Reverse ATRP Process of Styrene in Mixed Solvents. Eur. Polym. J. 2007, 43, 2557-2563.
    221. Cheng, Z. P.; Zhu, X. L.; Chen, G. J.; Xu, W. J.; Lu,J. M. Reverse Atom Transfer Radical Solution Polymerization of Methyl Methacrylate under Pulsed Microwave Irradiation. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3823-3834.
    222. Cheng, Z. P.; Zhu, X. L.; Zhang, L. F.; Zhou, N. C.; Xue, X. R. RATRP of MMA in AIBN/FeCl3/PPh3 Initiation System under Microwave Irradiation. Polym. Bull. 2003, 49, 363-369.
    223. Chen, H.; Liang, Y.; Wang, M.; Lü, P.; Xuan, Y. Reverse ATRP of Ethyl Acrylate with Ionic Liquids as Reaction Medium. Chem. Eng. J. 2009, 147, 297-301.
    224. Deepak, V. D.; Asha, S. K. Self-Organization-Induced Three-Dimensional Honeycomb Pattern in Structure-Controlled Bulky Methacrylate Polymers: Synthesis, Morphology, and Mechanism of Pore Formation. J. Phys. Chem. B 2006, 110, 21450-21459.
    225. Wang, W. X.; Yan, D. Y.; Jiang, X. L.; Detrembleur, C.; Lecomte, P.; Jéróme, R. Reverse Atom-Transfer Radical Polymerization at Room Temperature. Macromol. Rapid Commun. 2001, 22, 439-443.
    226. Qiu, K.–Y.; Li, P. New Initiation Systems for Atom Transfer Radical Polymerization. Chinese J. Polym. Sci. 2004, 22, 99-110.
    227. Li, P.; Qiu, K.-Y. Copper(II) Compound Catalyzed Living Radical Polymerization of Methyl Methacrylate in the Presence of Benzoyl Peroxide. Macromolecules 2002, 35(23), 8906-8908.
    228.秦东奇,钦曙辉,丘坤元.镍体系(NiCl2/PPh3)催化的反向原子转移自由基聚合.高分子学报2002, 1, 108-112.
    229. Zhu, S.; Wang, W.; Tu, W.; Yan, D. Reverse Atom Transfer Radical Polymerization of Styrene Using BPO as the Initiator under Heterogeneous Conditions. Acta Polym. 1999, 50, 267-269.
    230. Zilg, C.; Thomann, R.; Baumert, M.; Finter, J.; Mülhaupt, R. Organic/Inorganic Hybrid Materials and Nanocomposites Based Upon Layered Silicates Modified with Cyclic Amidines. Macromol. Rapid Commun. 2000, 21, 1214-1219.
    231. Chen, X. -P.; Qiu, K. -Y. Synthesis of Well-Defined Poly(methyl methacrylate) by Radical Polymerization with a New Initiation System TPED/FeCl3/PPh3. Macromolecules 1999, 32, 8711-8715.
    232. Chen, X. -P.; Qiu, K. -Y. Synthesis of Well-defined Polystyrene by Radical Polymerization Using 1,1,2,2-Tetraphenyl-1,2-Ethanediol/FeCl3/PPh3 Initiation System. J. Appl. Polym. Sci. 2000, 77, 1607-1613.
    233. Qin, D. -Q.; Qin, S. -H.; Qiu, K. -Y. Living/Controlled Radical Polymerization of Styrene with a New Initiating System: DCDPS/FeCl3/PPh3. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 101-107.
    234. Qin, D. -Q.; Qin, S. -H.; Chen, X. -P.; Qiu, K. -Y. Living/Controlled Radical Polymerization of Methyl Methacrylate by Reverse ATRP with DCDPS/FeCl3/PPh3Initiating System. Polymer 2000, 41, 7347-7353.
    235. Qin, D. -Q.; Qin, S. -H.; Qiu, K. -Y. A Reverse ATRP Process with a Hexasubstituted Ethane Thermal Iniferter Diethyl 2,3-Dicyano-2,3-di(p-tolyl)succinate as the Initiator. Macromolecules 2000, 33, 6987-6992.
    236. Ferro, R.; Milione, S.; Caruso, T.; Grassi, A. Iron(III) Complexes of Bidentate Nitrogen Ligands as Catalysts in Reverse Atom Transfer Radical Polymerization of Styrene. J. Mol. Cat. A: Chem. 2009, 307, 128-133.
    237. Chen, X. -P.; Qiu, K. -Y. A Novel ATRP Initiating System Fe(dtc)3/FeCl3/PPh3 for MMA Polymerization. Chem. Commun. 2000, 1403-1404.
    238. Chen, H.; Ji, C.; Qu, R.; Wang, C.; Sun, C.; Zhou, W.; Yu, M. An Iron-Based Reverse ATRP Process for the Living Radical Polymerization of Acrylonitrile. J. Appl. Polym. Sci. 2007, 105, 1575-1580.
    239. Chen, H.; Liang, Y.; Hao, Z.; Chen, L.; Pan, Z. Reverse ATRP of Methacrylonitrile with Diethyl 2,3-Dicyano-2,3-Diphenyl Succinate/SmCl3/Lactic Acid. J. Macromol. Sci., Part A: Pure Appl. Chem. 2010, 47, 172-176.
    240. Chen, H.; Chen, L.; Hao, Z.; Fu, X.; Lu, Z. A Copper-Based Reverse ATRP Process for the Living Radical Polymerization of 4-Vinylpyridine: Discussion on Optimum Reaction Conditions. J. Macromol. Sci., Part A: Pure Appl. Chem. 2009, 46, 832-836.
    241. Acar, A. E.; Ya?ci, M. B.; Mathias, L. J. Adventitious Effect of Air in Atom Transfer Radical Polymerization: Air-Induced (Reverse) Atom Transfer Radical Polymerization of Methacrylates in the Absence of an Added Initiator. Macromolecules 2000, 33, 7700-7706.
    242. Cheng, Z. P.; Zhu, X. L.; Zhou, N. C.; Lu, J. M. Living/Controlled Radical Autopolymerization of Styrene in the Presence of CuCl2 and 2,2'-Bipyridine. J. Appl. Polym. Sci. 2003, 90, 1532-1538.
    243. Qiu, J.; Gaynor, S. G.; Matyjaszewski, K. Emulsion Polymerization of n-Butyl Methacrylate by Reverse Atom Transfer Radical Polymerization. Macromolecules 1999, 32, 2872-2875.
    244. Wang, L. -P.; Wang, Y. -P.; Pei, X. -W.; Peng, B. Synthesis of Poly(methyl methacrylate)-b-Poly(N-isopropylacrylamide) (PMMA-b-PNIPAM) Amphiphilic Diblock Copolymer Brushes on Halloysite Substrate via Reverse ATRP. React. Funct. Polym. 2008, 68, 649-655.
    245. Saikia, P. J.; Goswami, A.; Baruah, S. D. Transition Metal-Catalyzed Atom Transfer Radical Polymerization of Stearyl Methacrylate in the Presence of Carbon Tetrabromide and a Conventional Radical Initiator. J. Appl. Polym. Sci. 2002, 86, 386-394.
    246. Li, M.; Min, K.; Matyjaszewski, K. ATRP in Waterborne Miniemulsion via a Simultaneous Reverse and Normal Initiation Process. Macromolecules 2004, 37, 2106-2112.
    247. Li, M.; Jahed, N. M.; Min, K.; Matyjaszewski, K. Preparation of Linear and Star-Shaped Block Copolymers by ATRP Using Simultaneous Reverse and Normal Initiation Process in Bulk and Miniemulsion. Macromolecules 2004, 37, 2434-2441.
    248. Braunecker, W. A.; Matyjaszewski, K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Prog. Polym. Sci. 2007, 32, 93-146.
    249. Mueller, L.; Jakubowski, W.; Tang, W.; Matyjaszewski, K. Successful Chain Extension of Polyacrylate and Polystyrene Macroinitiators with Methacrylates in an ARGET and ICAR ATRP. Macromolecules 2007, 40, 6464-6472.
    250. Plichta, A.; Li, W. W.; Matyjaszewski, K. ICAR ATRP of Styrene and Methyl Methacrylate with Ru(Cp*)Cl(PPh3)2. Macromolecules 2009, 42, 2330-2332.
    251. Min, K.; Gao, H. F.; Matyjaszewski, K. Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET). J. Am. Chem. Soc. 2005, 127, 3825-3830.
    252. Min, K.; Jakubowski, W.; Matyjaszewski, K. AGETATRP in the Presence of Air in Miniemulsion and in Bulk. Macromol. Rapid Commun. 2006, 27, 594-598.
    253. Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M. L.; Woodworth, B. E. Zerovalent Metals in Controlled/“Living”Radical Polymerization. Macromolecules 1997, 30, 7348-7350.
    254. De Vries, A.; Klumperman, B.; De Wet-Roos, D.; Sanderson, R. D. The Effect of Reducing Monosaccharides on the Atom Transfer Radical Polymerization of Butyl Methacrylate. Macromol. Chem. Phys. 2001, 202, 1645-1648.
    255. Gnanou, Y.; Hizal, G. Effect of Phenol and Derivatives on Atom Transfer Radical Polymerization in the Presence of Air. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 351-359.
    256. Min, K.; Matyjaszewski, K. Atom Transfer Radical Polymerization in Microemulsion. Macromolecules 2005, 38, 8131-8134.
    257. Hizal, G.; Tunca, U.; Aras, S.; Mert, H. Air-Stable and Recoverable Catalyst for Copper-Catalyzed Controlled/Living Radical Polymerization of Styrene; In Situ Generation of Cu(I) Species via Electron Transfer Reaction. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 77-87.
    258. Tang, H. D.; Radosz, M.; Shen, Y. Q. CuBr2/N,N,N′,N′-Tetra[(2-pyridal) methyl]ethylenediamine/Tertiary Amine as a Highly Active and Versatile Catalyst for Atom-Transfer Radical Polymerization via Activator Generated by Electron Transfer. Macromol. Rapid Commun. 2006, 27, 1127-1131.
    259. Min, K.; Gao, H. F.; Matyjaszewski, K. Development of an ab Initio Emulsion Atom Transfer Radical Polymerization: From Microemulsion to Emulsion. J. Am. Chem. Soc. 2006, 128, 10521-10526.
    260. Wu, D. X.; Yang, Y. F.; Cheng, X. H.; Liu, L.; Tian, J.; Zhao, H. Y. Mixed Molecular Brushes with PLLA and PS Chains Prepared by AGET ATRP and Ring-Oping Polymerization. Macromolecules 2006, 39, 7513-7519.
    261. Min, K.; Yu, S.; Lee, H.; Mueller, L.; Sheiko, S.; Matyjaszewski, K. High Yield Synthesis of Molecular Brushes via ATRP in Miniemulsion. Macromolecules 2007, 40, 6557-6563.
    262. Esteves, A. C. C.; Bombalski, L.; Trindade, T.; Matyjaszewski, K. Barros-Timmons A. Polymer Grafting from CdS Quantum Dots via AGET ATRP in Miniemulsion. Small 2007, 3, 1230-1236.
    263. Gao, H. F.; Min, K.; Matyjaszewski, K. Characterization of Linear and 3-Arm Star Block Copolymers by Liquid Chromatography at Critical Conditions. Macromol. Chem. Phys. 2006, 207, 1709-1717.
    264. Jakubowski, W.; Matyjaszewski, K. New Segmented Copolymers by Combination of Atom Transfer Radical Polymerization and Ring Opening Polymerization. Macromol. Symp. 2006, 240, 213-223.
    265. Oh, J. K.; Matyjaszewski, K. Synthesis of Poly(2-hydroxyethyl methacrylate) in Protic Media through Atom Transfer Radical Polymerization Using Activators Generated by Electron Transfer. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3787-3796.
    266. Oh, J. K.; Dong, H.; Zhang, R.; Matyjaszewski, K.; Schlaad, H. Preparation of Nanoparticles of Double-Hydrophilic PEO-PHEMA Block Copolymers by AGET ATRP in Inverse Miniemulsion. J. Polym. Sci., Part A: Polym. Chem. 2007, 45,4764-4772.
    267. Li, W.; Min, K.; Matyjaszewski, K.; Stoffelbach, F.; Charleux, B. PEO-Based Block Copolymers and Homopolymers as Reactive Surfactants for AGET ATRP of Butyl Acrylate in Miniemulsion. Macromolecules 2008, 41, 6387-6392.
    268. Stoffelbach, F.; Belardi, B.; Santos, J. M. R. C. A.; Tessier, L.; Matyjaszewski, K.; Charleux, B. Use of an Amphiphilic Block Copolymer as a Stabilizer and a Macroinitiator in Miniemulsion Polymerization under AGET ATRP Conditions. Macromolecules 2007, 40, 8813-8816.
    269. Zhao, H. Y.; Kang, X. L.; Liu, L. Comb-Coil Polymer Brushes on the Surface of Silica Nanoparticles. Macromolecules 2005, 38, 10619-10622.
    270. Oh, J. K.; Perineau, F.; Matyjaszewski, K. Kinetics of Enzymatic Ring-Opening Polymerization ofε-Caprolactone in Supercritical Carbon Dioxide. Macromolecules 2006, 39, 8003-8010.
    271. Yamamura, Y.; Matyjaszewski, K. Methylaluminoxane as a Reducing Agent for Activators Generated by Electron Transfer ATRP. J. Macromol. Sci.: Part A: Pure and Appl. Chem. 2007, 44, 1035-1039.
    272. Taniguchi, T.; Kasuya, M.; Kunisada, Y.; Miyai, T.; Nagasawa, H.; Nakahira, T. Surface Modification of Polymer Latex Particles by AGET ATRP of a Styrene Derivative Bearing a Lactose Residue. Colloids and Surfaces B: Biointerfaces 2009, 71, 194-199.
    273. Kwiatkowski, P.; Jurczak, J.; Pietrasik, J.; Jakubowski, W.; Mueller, L.; Matyjaszewski, K. High Molecular Weight Polymethacrylates by AGET ATRP under High Pressure. Macromolecules 2008, 41, 1067-1069.
    274. Stoffelbach, F.; Griffete, N.; Buiab, C.; Charleux, B. Use of a Simple Surface-Active Initiator in Controlled/Living Free-Radical Miniemulsion Polymerization under AGET and ARGET ATRP Conditions. Chem. Commun. 2008, 4807-4809.
    275. Tan, Y.; Yang, Q. B.; Sheng, D. K.; Su, X. F.; Xu, K.; Song, C. L.; Wang, P. X. AGET ATRP of Acrylamide in Aqueous Media. e-Polymers 2008, no. 025.
    276. Oh, J. K.; Min, K.; Matyjaszewski, K. Preparation of Poly(oligo(ethylene glycol) monomethyl ether methacrylate) by Homogeneous Aqueous AGET ATRP. Macromolecules 2006, 39, 3161-3167.
    277. Grignard, B.; Jér?me, C.; Calberg, C.; Jér?me, R.; Wang, W. X.; Howdle, S. M.; Detrembleur, C. Dispersion Atom Transfer Radical Polymerization of VinylMonomers in Supercritical Carbon Dioxide. Macromolecules 2008, 41, 8575-8583.
    278. Qian H.; He, L. Surface-Initiated Activators Generated by Electron Transfer for Atom Transfer Radical Polymerization in Detection of DNA Point Mutation. Anal. Chem. 2009, 81, 4536-4542.
    279. Dong, H. C.; Mantha, V.; Matyjaszewski, K. Thermally Responsive PM(EO)2MA Magnetic Microgels via Activators Generated by Electron Transfer Atom Transfer Radical Polymerization in Miniemulsion. Chem. Mater. 2009, 21, 3965-3972.
    280. Hu, Z. Q.; Shen, X. R.; Qiu, H. Y.; Lai, G. Q.; Wu, J. R.; Li, W. Q. AGET ATRP of Methyl Methacrylate with Poly(ethylene glycol) (PEG) as Solvent and TMEDA as Both Ligand and Reducing Agent. Eur. Polym. J. 2009, 45, 2313-2318.
    281. Oh, J. K.; Perineau, F.; Charleux, B.; Matyjaszewski, K. AGET ATRP in Water and Inverse Miniemulsion: A Facile Route for Preparation of High-Molecular-Weight Biocompatible Brush-Like Polymers. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1771-1781.
    282. Pintauer, T.; Matyjaszewski, K. Atom Transfer Radical Addition and Polymerization Reactions Catalyzed by ppm Amounts of Copper Complexes. Chem. Soc. Rev. 2008, 37, 1087-1097.
    283. Jakubowski, W.; Matyjaszewski, K. Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers. Angew. Chem. 2006, 118, 4594-4598.
    284. Min, K.; Gao, H. F.; Matyjaszewski, K. Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP. Macromolecules 2007, 40, 1789-1791.
    285. Jakubowski, W.; Kirci-Denizli, B.; Gil, R. R.; Matyjaszewski, K. Polystyrene with Improved Chain-End Functionality and Higher Molecular Weight by ARGET ATRP. Macromol. Chem. Phys. 2008, 209, 32-39.
    286. Tanaka, K.; Matyjaszewski, K. Controlled Copolymerization of n-Butyl Acrylate with Nonpolar 1-Alkenes Using Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization. Macromolecules 2007, 40, 5255-5260.
    287. Chen, H.; Yang, L. X.; Liang, Y.; Hao, Z. H.; Lu, Z. X. ARGET ATRP of Acrylonitrile Catalyzed by FeCl3/Isophthalic Acid in the Presence of Air. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3202-3207.
    288. Dong, H. C.; Matyjaszewski, K. ARGET ATRP of 2-(Dimethylamino)ethylMethacrylate as an Intrinsic Reducing Agent. Macromolecules 2008, 41, 6868-6870.
    289. Matyjaszewski, K.; Dong, H.; Jakubowski, W.; Pietrasik, J.; Kusumo, A. Grafting from Surfaces for“Everyone”: ARGET ATRP in the Presence of Air. Langmuir 2007, 23, 4528-4531.
    290. Li, W. W.; Gao, H. F.; Matyjaszewski, K. Influence of Initiation Efficiency and Polydispersity of Primary Chains on Gelation during Atom Transfer Radical Copolymerization of Monomer and Cross-Linker. Macromolecules 2009, 42, 927-932.
    291. Jonsson, M.; Nystr?m, D.; Nordin, O.; Malmstr?m, E. Surface Modification of Thermally Expandable Microspheres by Grafting Poly(glycidyl methacrylate) Using ARGET ATRP. Eur. Polym. J. 2009, 45, 2374-2382.
    292. Chan, N.; Cunningham, M. F.; Hutchinson, R. A. ARGET ATRP of Methacrylates and Acrylates with Stoichiometric Ratios of Ligand to Copper. Macromol. Chem. Phys. 2008, 209, 1797-1805.
    293. Zhang, L. F.; Tang, H. D.; Tang, J. B.; Shen, Y. Q.; Meng, L. G.; Radosz, M.; Arulsamy, N. Pentadentate Copper Halide Complexes Have Higher Catalytic Activity in Atom Transfer Radical Polymerization of Methyl Acrylate Than Hexadentate Complexes. Macromolecules 2009, 42, 4531-4538.
    294. Kwak, Y.; Matyjaszewski, K. ARGET ATRP of Methyl Methacrylate in the Presence of Nitrogen-Based Ligands as Reducing Agents. Polym. Int. 2009, 58, 242-247.
    295. Nanda, A. K.; Hong, S. C.; Matyjaszewski, K. Concurrent Initiation by Air in the Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromol. Chem. Phys. 2003, 204, 1151-1159.
    296. Zhang, Z. B.; Zhu, X. L.; Zhu, J.; Cheng, Z. P.; Zhu, S. P. Thermal-Initiated Reversible Addition-Fragmentation Chain Transfer Polymerization of Methyl Methacrylate in the Presence of Oxygen. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3343-3354.
    297. Zhang, L. F.; Cheng, Z. P.; Shi, S. P.; Li, Q. H.; Zhu, X. L. AGET ATRP of Methyl Methacrylate Catalyzed by FeCl3/Iminodiacetic Acid in the Presence of Air. Polymer 2008, 49, 3054-3059.
    298. Zhang, L. F.; Cheng, Z. P.; Tang, F.; Li, Q.; Zhu, X. L. Iron(III)-Mediated ATRP of Methyl Methacrylate Using Activators Generated by Electron Transfer. Macromol. Chem. Phys. 2008, 209, 1705-1713.
    299. Zhang, L. F.; Cheng, Z. P.; Lü, Y. T.; Zhu, X. L. A Highly Active Iron-Based Catalyst System for the AGET ATRP of Styrene. Macromol. Rapid Commun. 2009, 30, 543-547.
    300. Bai, L. J.; Zhang, L. F.; Zhu, J.; Cheng, Z. P.; Zhu, X. L. Iron-Mediated ICAR ATRP of Styrene and Methyl Methacrylate in the Absence of Thermal Radical Initiator. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2002-2008.
    301. Matyjaszewski, K.; Davis, T. P.“Handbook of Radical Polymerization”, Wiley-Interscience: Hoboken, NJ, 2002.
    302. Patten, T. E.; Matyjaszewski, K. Copper(I)-Catalyzed Atom Transfer Radical Polymerization. Acc. Chem. Res. 1999, 32, 895-903.
    303. Madruga, E. L. From Classical to Living/Controlled Statistical Free-Radical Copolymerization. Prog. Polym. Sci. 2002, 27, 1879-1924.
    304. Hong, S. C.; Matyjaszewski, K. Fundamentals of Supported Catalysts for Atom Transfer Radical Polymerization (ATRP) and Application of an Immobilized/Soluble Hybrid Catalyst System to ATRP. Macromolecules 2002, 35, 7592-7605.
    305. Kubisa, P. Application of Ionic Liquids as Solvents for Polymerization Processes. Prog. Polym. Sci. 2004, 29, 3-12.
    306. Saleh, N.; Sirk, K.; Liu, Y.; Phenrat, T.; Dufour, B.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V. Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media. Environ. Eng. Sci. 2007, 24, 45-57.
    307. Pietrasik, J.; Dong, H.; Matyjaszewski, K. Synthesis of High Molecular Weight Poly(styrene-co-acrylonitrile) Copolymers with Controlled Architecture. Macromolecules 2006, 39, 6384-6390.
    308. Matyjaszewski, K.; Tsarevsky, N. V.; Braunecker, W. A.; Dong, H.; Huang, J.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J. A. Role of Cu0 in Controlled/“Living”Radical Polymerization. Macromolecules 2007, 40, 7795-7806.
    309. Jin, S. P.; Liu, M. Z.; Chen, S. L.; Gao, C. M. Salt-Induced Micelle Behavior of Poly(sodium acrylate)-block-Poly(N-isopropylacrylamide) by ATRP. Macromol. Chem. Phys. 2008, 209, 410-416.
    310. Yamamoto, K.; Miwa, Y.; Tanaka, H.; Sakaguchi, M.; Shimada, S. Living Radical Graft Polymerization of Methyl Methacrylate to Polyethylene Film with Typical and Reverse Atom Transfer Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3350-3359.
    311. Saenz-Galindo, A.; Textle, H. M.; Jasso, A. R.; Torres-Lubián, J. R. Cp*RuCl(2-CH2=CHCN)(PPh3): A Novel Catalyst for Atom Transfer Radical Polymerization of Styrene and the Effect of Et2NH as Additive. .J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 676-680.
    312. Wakioka, M.; Beak, K. -Y.; Ando, T.; Kamigaito, M.; Sawamoto, M. Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(I) Complex. Macromolecules 2002, 35, 330-333.
    313. Detrembleur, C.; Teyssié, P.; Jéromê, R. Control of the Radical Polymerization of tert-Butyl Methacrylate in Water by a Novel Combination of Sodium Nitrite and Iron(II) Sulfate. Macromolecules 2002, 35, 1611-1621.
    314. Gibson, V. C.; O’Reilly, R. K.; Wass, D. F.; White, A. J. P.; Williams, D. J. Polymerization of Methyl Methacrylate Using Four-Coordinate (α-Diimine)iron Catalysts: Atom Transfer Radical Polymerization vs Catalytic Chain Transfer. Macromolecules 2003, 36, 2591-2593.
    315. Chen, J.; Chu, J.; Zhang, K. D. Atom Transfer Radical Polymerizations of Methyl Methacrylate Catalyzed by EBiB/SnCl2·2H2O(FeCl2·4H2O)/FeCl3·6H2O /MA5-DETA Systems. Polymer 2004, 45, 151-155.
    316. Wang, G.; Zhu, X. L.; Cheng, Z. P.; Zhu, J. New ligands for the Fe(III)-Mediated Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate. .J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2912-2921.
    317. Sarbu, T.; Matyjaszewski, K. ATRP of Methyl Methacrylate in the Presence of Ionic Liquids with Ferrous and Cuprous Anions. Macromol. Chem. Phys. 2001, 202, 3379-3391.
    318. Xia, J.; Paik, H. -j.; Matyjaszewski, K. Polymerization of Vinyl Acetate Promoted by Iron Complexes. Macromolecules 1999, 32, 8310-8314.
    319. Gobelt, B.; Matyjaszewski, K. Diimino- and Diaminopyridine Complexes of CuBr and FeBr2 as Catalysts in Atom Transfer Radical Polymerization (ATRP). Macromol. Chem. Phys. 2000, 201, 1619-1624.
    320. Gorelik, S.; Kanner, J. Oxymyoglobin Oxidation and Membranal Lipid Peroxidation Initiated by Iron Redox Cycle. J. Agri. Food Chem. 2001, 49, 5939-5944.
    321. Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth, B. E. Controlled Radical Polymerization in the Presence of Oxygen. Macromolecules 1998, 31, 5967-5969.
    322. Jiang, J. G.; Lu, X. Y.; Lu, Y. Stereospecific Preparation of Polyacrylamide with Low Polydispersity by ATRP in the Presence of Lewis acid .Polymer 2008, 49, 1770-1776.
    323. Hou, C.; Qu, R. G.; Liu, J. S.; Guo, Z. L.; Wang, C. H.; Ji, C. N.; Sun, C. M.; Wang, C. G. Reverse ATRP of Acrylonitrile with Diethyl 2,3-Dicyano-2,3-Diphenyl Succinate/FeCl3/Iminodiacetic Acid. Polymer 2006; 47, 1505-1510.
    324. Li, G.; Zhu, X. L.; Zhu, J.; Cheng, Z. P.; Zhang, W. Homogeneous Reverse Atom Transfer Radical Polymerization of Glycidyl Methacrylate and Ring-Opening Reaction of the Pendant Oxirane Ring. Polymer 2005; 46, 12716-12721.
    325. Hou, C.; Liu, J. S.; Wang, C. G. Reverse Atom-Transfer Radical Polymerization of Acrylonitrile Catalyzed by FeCl3/Iminodiacetic Acid. Polym. Int. 2006, 55, 171-175.
    326. Hou, C.; Qu, R. J.; Wang, C. H.; Zhou, W. Y.; Liu, L.; Qi, Y. X. Reverse Atom Transfer Radical Polymerization of Acrylonitrile under Microwave Irradiation. J. Appl. Polym. Sci. 2008, 107, 2646-2650.
    327. Ibrahim, K.; L?fgren, B.; Sepp?l?, J. Towards More Controlled Poly(n-butyl methacrylate) by Atom Transfer Radical Polymerization. Eur. Polym. J. 2003, 39, 939-944.
    328. O’Reilly, R. K.; Shaver, M. P.; Gibson, V. C.; White, A. J. P.α-Diimine, Diamine, and Diphosphine Iron Catalysts for the Controlled Radical Polymerization of Styrene and Acrylate Monomers. Macromolecules 2007, 40, 7441-7452.
    329. Ferro, R.; Milione, S.; Bertolasi, V.; Capacchione, C.; Grassi A. Iron Complexes of Bis(oxazoline) Ligand as Novel Catalysts for Efficient Atom Transfer Radical Polymerization of Styrene. Macromolecules 2007, 40, 8544-8546.
    330. Xue, Z. G.; Lee, B. W.; Noh, S. K.; Lyoo, W. S. Pyridylphosphine Ligands for Iron-Based Atom Transfer Radical Polymerization of Methyl Methacrylate and Styrene. Polymer 2007, 48, 4704-4714.
    331. Pyun, J.; Matyjaszewski, K. Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living”Radical Polymerization. Chem Mater. 2001, 13, 3436-3448.
    332. Davis, K. A.; Matyjaszewski, K. Statistical, gradient, block, and graft copolymers by controlled/living radical polymerizations. Adv. Polym. Sci. 2002, 159, 2-166.
    333. Matyjaszewski, K. Macromolecular Engineering: From Rational Design through Precise Macromolecular Synthesis and Processing to Targeted Macroscopic Material Properties. Prog. Polym. Sci. 2005, 30, 858-875.
    334. Kabachii, Y. A.; Kochev, S. Y.; Bronstein, L. M.; Blagodatskikh, I. B.; Valetsky, P. M. Atom Transfer Radical Polymerization with Ti(III) Halides and Alkoxides. Polym. Bull. 2003, 50, 271-278.
    335. Opstal, T.; Verpoort, F. Synthesis of Highly Active Ruthenium Indenylidene Complexes for Atom-Transfer Radical Polymerization and Ring-Opening-Metathesis Polymerization. Angew. Chem., Int. Ed. 2003, 42, 2876-2879.
    336. Zhao, X.; Luo, X.; Li, B.; Song, H.; Xu, S.; Wang, B. A New Ruthenium Complex with Benz[f]Indenyl Ligand for Living Radical Polymerization. Eur. Polym. J. 2008, 44, 3264-3270.
    337. Mecerreyes, D.; Moineau, G.; Dubois, P.; Jerome, R.; Hedrick, J. L.; Hawker, C. J.; Malmstrom, E. E.; Trollsas, M. Simultaneous Dual Living Polymerizations: A Novel One-Step Approach to Block and Graft Copolymers. Angew. Chem. Int. Ed. 1998, 37, 1274-1276.
    338. Carrot, G.; Hilborn, J.; Hedrick, J. L.; Trollsas, M. Novel Initiators for Atom Transfer Radical and Ring-Opening Polymerization: A New General Method for the Preparation of Thiol-Functional Polymers. Macromolecules 1999, 32, 5171-5173.
    339. Gao, C.; Muthukrishnan, S.; Li, W.; Yuan, J.; Xu, Y.; Mu1ller, A. H. E. Linear and Hyperbranched Glycopolymer-Functionalized Carbon Nanotubes: Synthesis, Kinetics, and Characterization. Macromolecules 2007, 40, 1803-1815.
    340. Shao, Q.; Sun, H.; Pang, X.; Shen, Q. A Neutral Ni(II) Acetylide-Mediated Radical Polymerization of Methyl Methacrylate Using the Atom Transfer Radical Polymerization Method. Eur. Polym. J. 2004, 40, 97-102.
    341. Duquesne, E.; Degée, Ph. Habiman, J.; Dubois, Ph. Supported Nickel Bromide Catalyst for Atom Transfer Radical Polymerization (ATRP) of Methyl Methacrylate. Chem. Commun. 2004, 640-641.
    342. Luo, X.; Zhang, Y.; Zhao, X.; Zhang, M.; Xu, S.; Wang, B. Controlled/Living Radical Polymerization of Styrene Catalyzed by Cobaltocene. Polymer 2008, 49, 3457-3461.
    343. Xiong, M.; Zhang, K.; Chen, Y. ATRP of 3-(Triethoxysilyl)Propyl Methacrylate and Preparation of“Stable”Gelable Block Copolymers. Eur. Polym. J. 2008, 44, 3835-3841.
    344. Tong, L.; Shen, Z.; Zhang, S.; Li, Y.; Lu, G.; Huang, X. Synthesis and Characterization of Perfluorocyclobutyl Aryl Ether-Based Amphiphilic Diblock Copolymer. Polymer 2008, 49, 4534-4540.
    345. Gong, H.; Huang, W.; Zhang, D.; Gong, F.; Liu, C.; Yang, Y.; Chen, J.; Jiang, B. Studies on the Development of Branching in ATRP of Styrene and Acrylonitrile in the Presence of Divinylbenzene. Polymer 2008, 49, 4101-4108.
    346. Gong, R.; Maclaughlin, S.; Zhu, S. Surface Modification of Active Metals through Atom Transfer Radical Polymerization Grafting of Acrylics. Appl. Surf. Sci. 2008, 254, 6802-6809.
    347. Hou, C.; Qu, R.; Sun, C.; Ji, C.; Wang, C.; Ying, L.; Jiang, N.; Xiu, F.; Chen, L. Novel Ionic Liquids as Reaction Medium for ATRP of Acrylonitrile in the Absence of any Ligand. Polymer 2008, 49, 3424-3427.
    348. Luo, R.; Sen, A. Electron-Transfer-Induced Iron-Based Atom Transfer Radical Polymerization of Styrene Derivatives and Copolymerization of Styrene and Methyl Methacrylate. Macromolecules 2008, 41, 4514-4518.
    349. Tang, F.; Zhang, L. F.; Zhu, J.; Cheng, Z. P.; Zhu, X. L. Surface Functionalization of Chitosan Nanospheres via Surface-Initiated AGET ATRP Mediated by Iron Catalyst in the Presence of Limited Amounts of Air. Ind. Eng. Chem. Res. 2009, 48, 6216-6223.
    350. Ibrahim, K.; Starck, P.; L?fgren, B.; Sepp?l?, J. Synthesis and Characterization of Amphiphilic Triblock Copolymers by Iron-Mediated Atom Transfer Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5049-5061.
    351. Moad, G.; Solomon, D. H. The Chemistry of Free Radical Polymerization; Pergamon: Oxford, 1995; p 92.
    352. Fukuda, T.; Terauchi, T.; Goto, A.; Ohno, K.; Tsujii, Y.; Miyamoyo, T.; Kobatake, S.; Yamada, B. Mechanisms and Kinetics of Nitroxide-Controlled Free Radical Polymerization. Macromolecules 1996, 29, 6393-6398.
    353. Kothe, T.; Fischer, H. Formation Rate Constants of the Mayo Dimer in the Autopolymerization of Styrene. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 4009-4013.
    354. Lutz, J. F.; Matyjaszewski, K. Kinetic Modeling of the Chain-End Functionality in Atom Transfer Radical Polymerization. Macromol. Chem. Phys. 2002, 203, 1385-1395.
    355. Nabifara, A.; McManusa, N. T.; Vivaldo-Limab, E.; Lonac, L. M. F.; Penlidisa, A. Thermal Polymerization of Styrene in the Presence of TEMPO. Chem. Eng. Sci. 2009, 64, 304-312.
    356. Mayo, F. R. The Dimerization of Styrene. J. Am. Chem .Soc. 1968, 90, 1289-1295.
    357. Cheng, Z. P.; Zhu, X. L.; Zhou, N. C.; Zhu, J.; Zhang, Z. B. Atom Transfer Radical Polymerization of Styrene under Pulsed Microwave Irradiation. Radiat. Phys. Chem. 2005, 72, 695-701.
    358. Matyjaszewski, K. Ed. Advances in Controlled/Living Radical Polymerization; Vol.
    854, American Chemical Society: Washington, DC, 2003.
    359. Patten, T. E.; Matyjaszewski, K. Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials. Adv. Mater. 1998, 10, 901-915.
    360. Xue, Z.; Oh, H. S.; Noh, S. K.; Lyoo, W. S. Phosphorus Ligands for Iron(III)-Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromol. Rapid Commun. 2008, 29, 1887-1894.
    361. Shi, G. Y.; Pan, C. Y. Synthesis of Well-Defined Figure-of-Eight-Shaped Polymers by a Combination of ATRP and Click Chemistry. Macromol. Rapid Commun. 2008, 29, 1672-1678.
    362. Yi, Z.; Zhang, Y.; Chen, Y.; Xi, F. Synthesis of Novel Rod-Coil Amphiphilic Block Copolymers PAA-b-DPS with Fréchet-Type Dendronized Polystyrene and Poly(acrylic acid). Macromol. Rapid Commun. 2008, 29, 757-762.
    363. Loschonsky, S.; Couet, J.; Biesalski, M. Synthesis of Peptide/Polymer Conjugates by Solution ATRP of Butylacrylate Using an Initiator-Modified Cyclic D-alt-L-Peptide. Macromol. Rapid Commun. 2008, 29, 309-315.
    364. Xue, Z.; Linh, N. T. B.; Noh, S. K.; Lyoo, W. S. Phosphorus‐Containing Ligands for Iron(III)‐ Catalyzed Atom Transfer Radical Polymerization. Angew. Chem. Int. Ed. 2008, 47, 6426-6429
    365. Satoh, K.; Aoshima, H.; Kamigaito, M. Iron(III) chloride/R-Cl/tributylphosphine for metal-catalyzed living radical polymerization: A unique system with a higher oxidation state iron complex. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6358-6363.
    366. Qiu, J.; Matyjaszewski, K.; Thouin, L.; Amatore, C. Cyclic Voltammetric Studies of Copper Complexes Catalyzing Atom Transfer Radical Polymerization. Macromol Chem Phys. 2000, 201, 1625-1631.
    367. Matyjaszewski, K.; Goebelt, B.; Paik, H. -J.; Horwitz, C. P. Tridentate Nitrogen-Based Ligands in Cu-Based ATRP: A Structure?Activity Study. Macromolecules 2001, 34, 430-440.
    368. Schroeder, G.; Leska, B.; Gierczyk, B.; Eitner, K.; Wojciechowski, G.; Rozalski, B.; Bartl, F.; Brzezinski, B. Studies of Complexation of Metal Cations by Tris(3,6-Dioxaheptyl)amine in Solution. J. Mol. Struct. 1999, 508, 129-138.
    369. Li, J.; Li, M.; Li, S.; Ren, C.; Cui, D.; Wang, Y.; Tang, T. Styrene Polymerization Catalyzed by Metal Porphyrin Complex/MAO for in situ Synthesizing Polystyrene Containing Air Stable -Cation Radicals. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 1240-1248.
    370. Pintauer, T.; Matyjaszewski, K. Structural Aspects of Copper Catalyzed Atom Transfer Radical Polymerization. Coord. Chem. Rev. 2005, 249, 1155-1184.
    371. Xue, Z.; Noh, S. K.; Lyoo, W. S. 2-[(Diphenylphosphino)methyl]pyridine as Ligand for Iron-Based Atom Transfer Radical Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2922-2935.
    372. Xue, Z.; He, D.; Noh, S. K.; Lyoo, W. S. Iron(III)-Mediated Atom Transfer Radical Polymerization in the Absence of Any Additives. Macromolecules 2009, 42, 2949-2957.
    373. Nising, P.; Meyer, T.; Carloff, R.; Wicker, M. Thermal Initiation of MMA in High Temperature Radical Polymerizations. Macromol. Mater. Eng. 2005, 290, 311-318.
    374. Barnes, C. E. Mechanism of Vinyl Polymerization. I. Role of Oxygen. J. Am. Chem. Soc. 1945, 67, 217-220.
    375. Barnes, C. E.; Elofson, R. M.; Jones, G. D. Role of Oxygen in Vinyl Polymerization. II. Isolation and Structure of the Peroxides of Vinyl Compounds. J. Am. Chem. Soc. 1950, 72, 210-215.
    376. Lehrle. R. S.; Shortland, A. A Study of the Purification of Methyl Methacrylate Suggests that the ''Thermal'' Polymerisation of This Monomer is Initiated by Adventitious Peroxides. Eur. Polym. J. 1988, 24, 425-429.
    377. Matyjaszewski, K.; Paik, H.-j.; Zhou, P.; Diamanti, S. J. Determination of Activation and Deactivation Rate Constants of Model Compounds in Atoms Transfer Radical Polymerization. Macromolecules 2001, 34, 5125-5131.
    378. Iijima, S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354, 56-58.
    379.王国建,屈泽华,化学法修饰碳纳米管,化学进展2006, 10,1305-1308.
    380. Pei, X. W; Xia, Y, Q.; Liu, W. M.; Hao, J. C. Polyelectrolyte-Grafted Carbon Nanotubes: Synthesis, Reversible Phase-Transition Behavior, and Tribological Properties as Lubricant Additives. J. Polym. Sci. Part A: Polym. Chem. 2008, 46,7225-7237.
    381. Shanmugharaj, A. M.; Bae, J. H.; Nayak, R. R.; Ryu, S. H. Preparation of Poly(styrene-co-acrylonitrile)-Grafted Multiwalled Carbon Nanotubes via Surface-Initiated Atom Transfer Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2008, 45, 460-470.
    382. Hao, K.; Gao, C.; Yan, D. Y. Functionalization of Multiwalled Carbon Nanotubes by Atom Transfer Radical Polymerization and Defunctionalization of the Products. Macromolecules 2004, 37, 4022-4030.
    383. Hao, K.; Gao, C.; Yan, D. Y. Constructing Amphiphilic Polymer Brushes on the Convex Surfaces of Multi-Walled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization. J. Mater. Chem. 2004, 14, 1401-1405.
    384. Wu, H. X.; Tong, R.; Qiu, X. Q. Functionalization of Multiwalled Carbon Nanotubes with Polystyrene under Atom Transfer Radical Polymerization Conditions. Carbon 2007, 45, 152-159.
    385. Lee, H. J.; Oh, S. J.; Choi, J. Y.; Kim, J. W.; Han, J.; Tan, L. S.; Baek, J. B. In Situ Synthesis of Poly(ethylene terephthalate) (PET) in Ethylene Glycol Containing Terephthalic Acid and Functionalize Multiwalled Carbon Nanotubes (MWNTs) as an Approach to MWNT/PET Nanocomposite. Chem. Mater 2005, 17, 5057-5064.
    386. Viswanathan, G.; Chakrapan, N.; Yang, H.; Wei, B.; Chung, H.; Cho, K.; Ryu, C. Y.; Ajayan, P. M. Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites. J. Am. Chem. Soc. 2003, 125, 9258-9259.
    387. Wu, W.; Zhang, S.; Li, Y.; Li, J.; Liu, L.; Qin, Y.; Guo, Z. X.; Dai, L.; Ye, C.; Zhu, D. B. PVK-Modified Single-Walled Carbon Nanotubes with Effective Photo Induced Electron Transfer. Macromolecules 2003, 36, 6286-6288.
    388. Shaffer, M. S. P.; Koziol, K. Polystyrene Grafted Multi-Walled Carbon Nanotubes. Chem. Commun. 2002, 2074-2075.
    389.肖奇,何尚锦,刘丽伟,有机无机杂化网络结构表面改性多壁碳纳米管研究,南开大学学报(自然科学版), 2007, 40(2), 15-19.
    390.李文文,孔浩,高超,颜德岳,pH响应性聚合物功能化的多壁碳纳米管,科学通报,2005, 50(17), 1834-1838.
    391. Campidelli, S.; Klumpp, C.; Bianco, A.; Guldi, D. M.; Prato, M. Functionalization of CNT: Synthesis and Applications in Photovoltaics and Biology. J. Phys. Org. Chem. 2006, 19, 531-539.
    392. Polizu, S.; Yahia, L. Applications of Carbon Nanotubes-Based Biomaterials in Biomedical Nanotechnology. J. Nanosci. Nanotech. 2006, 6, 1883-1904.
    393. Lay, C. L.; Liu, H. Q.; Tan, H. R.; Liu, Y. Delivery of Paclitaxel by Physically Loading onto Poly(ethylene glycol) (PEG)-Graft Carbon Nanotubes for Potent Cancer Therapeutics. Nanotechnology 2010, 21, 065101.
    394. Pan, B. F.; Cui, D. X.; Xu, P.; Ozkan, C.; Feng, G.; Ozkan, M.; Huang, T.; Chu, B. F.; Li, Q.; He, R.; Hu, G. Synthesis and Characterization of Polyamidoamine Dendrimer-Coated Multi-walled Carbon Nanotubes and Their Application in Gene Delivery Systems. Nanotechnology 2009, 20, 125101.
    395. Riggio, C.; Ciofani, G.; Raffa, V.; Cuschieri, A.; Micera, S. Combination of Polymer Technology and Carbon Nanotube Array for the Development of an Effective Drug Delivery System at Cellular Level. Nanoscale Research Lett. 2009, 4, 668-673.
    396. Ashok Kumar, N.; Ganapathy, H. S.; Kim, J. S.; Jeong, Y. S.; Jeong, Y. T. Preparation of Poly 2-Hydroxyethyl Methacrylate Functionalized Carbon Nanotubes as Novel Biomaterial Nanocomposites. Eur. Polym. J. 2008, 44, 579-586.
    397. Beamson, G.; Briggs, D. High-Resolution XPS of Organic Polymers: the Scienta ESCA300 Database; John Wiley: Chichester, U.K., 1992.
    398. Chen, C. L.; Liang, B.; Ogino, A.; Wang, X. K.; Nagatsu, M. Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave Plasma Treatment. J. Phys. Chem. C 2009, 113, 7659-7665.
    399. Briggs, D. Surface Analysis of Polymers by XPS and Static SIMS; Cambridge University Press: New York, 1998; p39.
    400. Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman Study of Aligned Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 1820-1823.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.