功能导向纳米TiO_2及其复合体系的可控合成及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2半导体纳米功能材料由于独特的光学、电学、磁学、催化与化学特性,在光电子技术领域起着越来越重要的作用,因而被广泛应用于太阳能转换、光致发光、光催化与纳米电子学等方面。纳米TiO2的合成、表征与改性已经成为TiO2半导体功能材料光电化学与光催化的核心内容,TiO2纳米材料的功能化研究一直是其应用基础研究领域的热点。针对具有重要应用背景的TiO2纳米功能材料,进行维度、尺寸、形貌与组分的综合控制以及机理研究,通过不同的制备方法来获取各种功能导向的TiO2纳米材料具有重要意义。基于此,我们展开了TiO2纳米功能材料的研究工作,通过溶胶-凝胶法、水热法、阳极氧化法以及模板法等不同的合成手段制备了不同形貌和功能的纳米TiO2材料,研究了不同形貌TiO2纳米材料(如纳米颗粒、纳米管、纳米纤维及纳米阵列薄膜)的可控合成及功能化改性影响。对上述目标合成物通过X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和紫外-可见漫反射光谱(UV-Vis)等手段进行表征。采用自制的光催化反应系统对其光催化活性进行了评价;组装了TiO2染料敏化太阳能电池(DSSC),采用1.5AM的Newport太阳模拟光源测试其光电转换性能。有关研究工作如下:
     制备了系列掺杂的TiO2纳米颗粒、纳米纤维及纳米管,对功能掺杂TiO2纳米材料的可控制备及性能进行了深入研究。实验发现,掺杂适量稀土RE(RE为Pr,La,Gd,Ho,Nd)能够显著提高纳米TiO2的光催化活性,其催化活性与RE性质、掺杂方式及掺杂量有关,其中适量Gd掺杂样品在自然光下具有更强的催化活性;采用水热法制备了管径约为5nm,壁厚为1nm的Gd3+掺杂及B3+掺杂的TiO2纳米管,并对其微观形貌、晶型结构及光吸收性等进行表征分析,同时研究了制备工艺中的各种影响因素;以碳酸钾和二氧化钛为原料,用两步合成法,掺杂适量的Gd3+,制得掺杂的四钛酸钾纤维前驱体,在甘油溶剂中加热回流合成锐钛矿型的Gd3+掺杂TiO2纳米纤维,纤维平均长度为几十微米,直径为50nm左右,实验结果表明,Gd3+掺杂的TiO2纤维具有较高的光催化活性,自然光下对甲基橙的降解率可达70%以上;用溶胶-凝胶法制备Gd/N双元素共掺杂的纳米TiO2复合光催化材料,自然光下甲基橙为目标降解物,评价了Gd/N双元素共掺杂纳米TiO2的光催化活性,结果表明:Gd/N双元素掺杂样品为锐钛型结构,颗粒平均粒径为13nm左右,样品在可见光范围内光响应增强,Gd、N共掺杂具有协同效应,比较了几种不同的掺杂方式对Gd/N共掺杂纳米TiO2的光催化活性的影响,其中以尿素为氮掺杂源所得Gd/N共掺杂样品有较高的光催化活性,其对甲基橙的降解率达92%。
     在阳极氧化法制备TiO2纳米管阵列实验中,通过控制一定反应条件在纯钛表面获得了结构规整有序的纳米管阵列;在氧化过程中加入硝酸锌,控制反应条件,使纳米管负载一定量Zn2+,考察了氧化电压、温度、时间、pH值、电解液浓度及Zn2+负载等对纳米管的形貌和尺寸的影响。通过电化学工作站扫描纳米管生长过程中电流-时间曲线,对纳米管的生长过程进行量化监控,研究其生长机理;用XRD表征TiO2纳米管阵列的晶型;SEM表征纳米管阵列的形貌;交流阻抗(EIS)研究材料的光电性能。结果表明:在pH值为1,HF浓度为0.5wt%,电压为20V,氧化温度为20℃等条件下氧化2h,所得TiO2纳米管阵列晶型为锐钛型,管长70-100nm、管壁厚约10nm,管径分布均匀,无坍塌现象;交流阻抗(EIS)结果表明:Zn2+的载入减少了界面之间的阻抗,使得载流子的流动更加迅速,有利于提高光电性能。
     研究了PS模板法制备稀土掺杂TiO2基纳米多孔阵列薄膜。通过控制反应条件,如苯乙烯单体浓度、引发剂浓度以及表面活性剂浓度制备粒径不同、大小均一的胶体颗粒以获取具有一定孔隙结构的模板,然后采用溶胶-凝胶工艺进行组装,获得了稀土掺杂TiO2基纳米多孔阵列薄膜,并对有序多孔TiO2薄膜结构的影响因素进行了分析。结果表明,在制备过程中控制稀土掺杂浓度、占据位(晶格位、间隙位)以及TiO2前驱体的浓度可以获得高功能有序多孔TiO2薄膜。采用电化学分析测试系统对样品进行光电活性分析,分析了掺杂与TiO2多孔基质相互作用的本质因素,并用此薄膜材料组装了染料敏化太阳能电池,在模拟太阳光下进行了光电性能测试。结果表明:掺杂0.5%Gd3+的纳米TiO2在紫外及可见光区的吸收均有所增强。光电性能测试结果表明,掺杂0.5%Gd3+的有序多孔TiO2薄膜电极的短路电流为0.618mA,开路电压为0.538V,均比纯TiO2薄膜电极及有序多孔纯TiO2薄膜电极有所提高,而0.5%Gd3+、0.3%La3+共掺杂有序多孔TiO2薄膜电极由于Gd3+、La3+二者的协同作用,光电性能更优,其短路电流为0.696mA,开路电压为0.539V。
     分别用水热法和溶胶-凝胶法制备了Gd3+和Eu3+共掺杂纳米TiO2/MWCNT(multi-walled carbon nanotube)复合光催化剂,用SEM、TEM、FL(光致荧光光谱仪)对光催化剂进行表征,以甲基橙为目标降解物对催化剂进行活性评价。结果表明:水热法制得的复合光催化剂样品中,TiO2颗粒基本均匀分布在碳纳米管上,同时,其光催化活性也比溶胶-凝胶法制得的样品高;Gd3+和Eu2+共掺杂能有效提高其光催化活性,当Gd3+和Eu2+掺杂量为分别为0.1%和1.0%时,TiO2/MWCNT复合光催化剂具有较高的光催化活性。
     上述研究结果极有可能推进TiO2光电性能的提升和突破,深入研究纳米TiO2的制备工艺及其功能化改性,探讨掺杂离子与基质的作用机制,有望为探索纳米材料基质与界面中电子的传输行为、光电特性等物理性质的尺寸和维度效应等提供新的思路和理想的研究系统,同时本文的研究成果可有望为绿色能源TiO2染料敏化太阳能电池的研制以及TiO2光催化应用提供理论依据及技术支持。
Titanium dioxide (TiO2) as a well-known wide band gap semiconductor, has a lot of applications such as solar energy conversion, photoluminescence, photocatalytic and nano-electronics because of its unique optical, electrical, magnetic, catalytic and chemical properties. The synthesis, characterization and modification of nano-TiO2 has become core contents in semiconductor photoelectrochemical and photocatalytic for TiO2 material application, the functionalization of TiO2 nano-materials has alwaysly been a focus research area in basic research. Preparation mechanism investigation of nano-TiO2 materials was carried out to optimize the dimensions, size, morphology and composition of nano-TiO2 materials, which has important significance to obtain functional oriented nano-TiO2 materials. Based on that state, we prepared nano-TiO2 materials with different morphologies and functions by different methods such as sol-gel, hydrothermal, anodic oxidation and template methods. Different morphologies of nano-Ti02 materials such as nano-particle, nano-tube, nano-fiber and ordered porous film were studied for the functional modification of nano-TiO2 materials. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis spectroscopy were employed to characterize the structures and properties of nano-TiO2 materials. Photocatalytic activity of nano-TiO2 materials was evaluated using self-made photocatalysis reaction system. Optoelectronic property of nano-TiO2 materials was investigated under simulated solar illumination (Newport 1.5AM) by using TiO2 film an electrode in dye-sensitized solar cells (DSSC) with a sandwich structure.
     A series of doping TiO2 nano-particles, nano-fibers and nano-tubes were prepared with above methods. The controllability in preparation and the performance of the functional doping nano-TiO2 materials were also investigated. Experiment results showed that:(1) The RE-doped nano-TiO2 materials were prepared by sol-gel method using tetrabutyl titanate and rare-earth salts as precursors. Photocatalytic ability of nano-TiO2 materials doped with RE (Pr, La, Gd, Ho, Nd) has improved significantly. And its photocatalysis activity was closely related to different kind of RE, its adding amount and the doping approach. Among all the RE employed, Gd doped specimen compound possessed the highest photocatalysis activity. (2) The Gd3+and B3+co-doping TiO2 nanotubes prepared by hydrothermal method, where the caliber is approximately 5nm and the wall thickness is 1nm. The micro-morphology, crystalline structure and photo-absorption of the as-produced samples were also characterized. Various influence factors on preparation process were also discussed. (3) A two-step synthesis method was also used. First, Potassium tetratitanate (K2Ti4O9) nano-fibers doped with gadolinium were prepared by mixing P25 and K2CO3 with Gd(NO)3 solution through the kneading-drying-calcination method (KDC). Then, using K2Ti4O9 fibers as the precursor, the doping nano-TiO2 fiber consist of primary anatase crystallites were synthesized after dispersed in glycerine and heat treated under reflux. The average length of the formed TiO2 nano-fiber was tens of microns and the average diameter was approximately 50nm. The results showed that the TiO2 nano-fiber doped Gd3+exhibits high photocatalysis activity, the degrading rate of methyl orange could be above 70% under natural light. (4) Gd/N co-doped nano-TiO2 photocatalyst was synthesized by sol-gel method. The photocatalytic activity was evaluated by the photodegradation of methyl orange in an aqueous solution under natural light irradiation.The results indicated that Gd/N co-doped simple was anatase, had synergistic effect and increased absorption in visible range, its average particle diameter was about 13nm; Several different doping method were carried in preparation of Gd/N co-doped TiO2 samples and their photocatalytic activity was compared, the sample with urea as nitrogen source had higher photocatalytic activity than other's, the degradation rate for methyl orange was 92%.
     Ordered nano-tube arrays with regular structure were prepared by the electrochemical anode oxidation method with control of certain reaction conditions. Zn (NO3)2 was added during the oxidation process to load a certain amount of Zn in the nano-tube. The influence of the oxidation voltage, temperature, time, pH value, electrolyte concentration, and content of Zn, as well as the photoelectric effect, on the structure and morphologies of the TiO2 nanotubes were investigated as well. The current-time curves scanned by an electrochemical workstation were adopted to quantitatively monitor the growth process of TiO2 nano-tube arrays and investigate their growth mechanism. Scanning electron microscopy (SEM) and x-ray diffraction spectroscopy (XRD) were applied to characterise their morphology and crystalline structures. The photo-electrochemical properties were studied by electrochemical impedance spectrum (EIS). The optimum working conditions for TiO2 nano-tube arrays were found to be pH 1,0.5wt%HF concentration, and 20 V anodized oxidation for 2 h. The produced sample was in anatase form, with a length of around 70~100 nm, a thickness of 10 nm, uniform diameter, and structure that does not collapse at the preparation conditions. The EIS results showed that TiO2 nano-tube arrays prepared with 0.5wt%HF concentration presented low resistance and the TiO2 nano-tube arrays loaded by Zn could decrease the resistance. This decrease could likely accelerate the transfer of carriers and even increase photoelectric conversion.
     Ordered porous TiO2 film doped with Gd3+and La3+were prepared by PS template. The influence of concentration of styrene, initiator (K2S2O8), surfactant (SDBS) to the particle size PS beads and the void structure of the template was studied. Based on the template, an ordered porous TiO2 film doped with Gd3+and La3+was deposited on a conductive glass. The results shown that rare earth dopant, the lattice of PS template and the TiO2 precursor exhibit influences on the performance of ordered porous TiO2 film. The photoelectric properties of TiO2 film were characterized by electrochemical analysis system to investigate the mechanism of dopant and TiO2. The as-produced film was used as an electrode in dye-sensitized solar cells (DSSC) with a sandwich structure. Under simulated solar illumination, a short circuit current of 0.618 mA and an open circuit voltage of 0.538 V were attained by the ordered porous TiO2 electrode doped with 0.5% Gd3+, which were better than the performances of TiO2 film electrode and ordered porous TiO2 film electrode. As the synergistic effect of Gd3+and La3+, the photoelectric properties of ordered porous TiO2 electrode co-doped with 0.5%Gd3+and 0.3%La3+is the best, which attained a short circuit current of 0.696 mA and an open circuit voltage of 0.539 V.
     Gd3+/Eu3+-codoped TiO2-multi walled carbon nano-tubes (Gd3+/Eu3+-codoped MWCNTs/TiO2) multiplex photocatalysts were successfully synthesized with sol-gel method and hydrothermal method respectively. SEM, TEM and FL (photoluminescence) spectra were applied to characterise their morphology and properties. Methyl orange was employed as a modal pollutant to investigate the photocatalytic activity of the obtained photocatalysts. The experiment results shown that nano-TiO2 particles distribute evenly along MWCNT in samples prepared with the hydrothermal method. Meanwhile, their photocatalysis activity is higher than that prepared with the sol-gel method. Co-doping proper proportioning Gd3+/Eu3+can increase the photocatalysis activity of multiplex photocatalyst, and the optimal dopant contents for Gd3+, Eu3+are 0.1 wt%and 1.0wt%respectively.
     The above mentioned results were possible to promote the photoelectric properties of TiO2 nano-materials and even make breakthrough in this filed. Studies on the preparation technology and functional modification, investigate the effect mechanism between doped ions and TiO2 matrix, which were hopeful to provide new ideas and ideal research systems for the exploration of the photoelectric properties and electron transmission between nano-materials matrix and the interface. Meanwhile, the results were hopeful to provide theoretical basis and technical support for the development of TiO2 dye-sensitized solar cells (DSSC) and the application of TiO2 nano-materials in photocatalysis filed.
引文
[1]O'Regan B, Gratzel M. A low cost, high efficiency solar cell based on the sensitization of colloidal titanium dioxide. Nature,1991,353:737~740
    [2]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37~38
    [3]Ao C H, Lee S C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl. Catal. B: Environ.,2003,44:191~205
    [4]Ao C H, Lee S C. Combination effect of activated carbon with TiO2 for the photode-gradation of binary pollutants at typical indoor air level. J. Photo. Photo. A:Chem.,2004,161(2-3):131~140
    [5]Aram J, Dom-Rodrguez J M, Tello R E, et al. TiO2 activation by using activated carbon as a support part Ⅱ. photoreactivity and ftir study. Appl. Catal. B: Environ.,2003,44:153~160
    [6]Tryba B, Morawski AW, Inagaki M. Application of TiO2-mounted activated carbon to the removal of phenol fro water. Appl. Catal. B:Environ.,2003,41:427~433
    [7]Tryba B, Morawski A W, Inagaki M. A new route for preparation of TiO2-mounted activated carbon. Appl. Catal. B:Environ.,2003,46:203~208
    [8]Lee S W, Sigmund W M. Formation of anatase TiO2 nanopartcles on carbon nanotubes. Chem,2003,7:123~125
    [9]张青红,高濂.二氧化钛纳米晶的光催化活性研究.无机材料学报,2000,15(3):556~560
    [10]张青红,高濂,郭景坤.四氯化钛水解法制备纳米二氧化钛纳米晶的影响因素.无机材料学报,2000,15(6):992~997
    [11]王芹,陶杰,翁履谦,等.二氧化钛纳米管的合成机理与标准.材料开发与应用,2004,19(5):9-13
    [12]Lim S M, Luo J Z, Zhong Z Y, et al. Room temperature hydrogen uptake by TiO2 uptake. Inorg. Chem.,2005,44:4124~4126
    [13]Wang Y Q, Hu G O, Duan X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes. Chem. Phy. Lett.,2002,365:427~431
    [14]沈钟,王果庭.胶体化学与表面化学.北京:化学工业出版社,2002,243
    [15]Seo D S, Lee J K, Kim H. Synthesis of TiO2 nanocrystalline powder by aging at low temperature. J. Cryst. Growth,2001,22:298~302
    [16]张青红,高濂,郑珊,等.制备均一形貌的长二氧化钛纳米管.化学学报,2002,60(8):1439~1444
    [17]Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stochimetric TiO2 anatase surfaces. Phys. Rev. B:Condens. Matter,2001,63:155409.
    [18]邵颖,薛宽宏,陈巧玲,等.TiO2纳米管的光催化作用.应用化学,2003,20(5):433~436
    [19]高原,马永祥,力虎林,等.用模板法制备TiO2纳米线阵列膜及光催化性能的研究.高等学校化学学报,2003,(24):1089~1092
    [20]李晓红,张校刚,力虎林.Ti02纳米管的模板法制备及表征.高等学校化学学报,2001,22(1):130~132
    [21]Michailowski A. Hight regular anatase nanotube anays fabricated in porous anodic templates. Chem. Phys. Lett.,2002,349:1-5
    [22]Jong H J. Creation of novel helical ribbon and double-layered nanotube TiO2 sreuctures using an oranganogel templale. Chem. Mater.,2002,14(4):445~447
    [23]Wijnhoven J E, Bechger L, Vos W L. Fabrication and characterization of large microporous photonic crystals on titania. Chem. Mater.,2001,13:4486~4499
    [24]李胜军,林原,杨世伟,等.染料敏化太阳能电池中大孔TiO2薄膜电极的制备及应用.无机化学学报,2007,23(11):1965~1969
    [25]Girginov A A, Zahariev A S, Machkova M S. Kinetics of formation of complex anodic oxide films on aluminium. Mater. Chem. Phys.,2002,76(3):274~278
    [26]Yakovleva N M, Anicai L, Yakovlev A N, et al. Structural study of anodic films formed on aluminum innitric acid electrolyte. Thin Solid Films,2002, 416(1-2):16~23
    [27]Sui Y C, Cui B Z, Martinez L, et al. Pore structure, barrier layer topography and matrix alumina structure of porous anodic aluminafilm. Thin Solid Films, 2002,406(1-2):64~69
    [28]Mei Y F, Wu X L, Shao X F, et al. Formation mechanism of alumina nanotube array. Phys. Lett. A,2003,309(1-2):109~113
    [29]Tsuchiya H, Berger S, Macak J M, et al. A new route for the formation of self-organized anodic porous alumina in neutral electrolytes. Electrochem. Commun.,2007,9(4):545~550
    [30]Tsuchiya H, Macak J M, Taveira L, et al. Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chem. Phys. Lett.,2005, 410(4-6):188~191
    [31]Tsuchiya H, Macak J M, Ghicov A, et al. Self-organized porous TiO2 and ZrO2 produced by anodization. Corros. Sci.,2005,47(12):3324~3335
    [32]Tsuchiya H, Schmuki P. Self-organized high aspect ratio porous hafnium oxideprepared by electrochemical anodization. Electrochem. Commun.,2005, 7(1):49~52
    [33]Tsuchiya H, Macak J M, Sieber I, et al. Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun.,2005,7(3):295~298
    [34]Choi J, Lim J H, Lee J, et al. Porous niobium oxide films prepared by anodization annealing anodization. Nanotechnology,2007,18(5):055603
    [35]Sieber I, Schmuki P. Porous tantalum oxide prepared by electrochemical anodic oxidation. J. Electrochem. Soc.,2005,152(9):639~644
    [36]Wei W, Macak J M, Schmuki P. High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta. Electrochem. Commun.,2008,10(3):428~432
    [37]Prakasam H E, Varghese O K, Paulose M, et al. Synthesis and photoelectrochemical properties of nanoporous iron(III) oxide by potentiostatic anodization. Nanotechnology,2006,17(17):4285~4291
    [38]Tsuchiya H, Hueppe M, Djenizian T, et al. Morphological characterization of porous InP superlattices. Sci. Technol. Adv. Mater.,2003,5(1-2):119~123
    [39]Han W Q, Zhou G, Li J S, et al. Fabrication of Ti dioxide nanotubes by anodic oxidation. J. Inorg. Mater.,2007,22(3):395~399
    [40]Yasuda K, Schmuki P. Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Eletrochim. Acta,2007,52(12):4053~4061
    [41]Habazaki H, Oikawa Y, Fushimi K, et al. Formation of porous anodic films on Ti-Si alloys in hot phosphate-glycerolelectrolyte. Electrochim. Acta, 2007,53(4):1775~1781
    [42]Macak J M, Tsuchiya H, Taveira L, et al. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodizationin NH4F solutions. J. Biomed. Mater. Res. Part A,2005,75A(4):928~933
    [43]Luo B M, Yang H B, Liu S K, et al. Fabrication and characterization of self-organized mixed oxidenanotube arrays by electrochemical anodization of Ti-6Al-4V alloy. Mater. Lett.,2008,62(30):4512~4515
    [44]Tsuchiya H, Berger S, Macak J M, et al. Self-organized porous and tubular oxide layers on TiAl alloys. Electrochem. Commun.,2007,9(9):2397~2402
    [45]Mohapatra S K, Raja K S, Misra M, et al. Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti-8Mn alloy. Electrochim. Acta,2007,53(2):590~597
    [46]Liu S K, Fu W Y, Yang H B, et al. Synthesis and characterization of self-organized oxide nanotube arrays via a facile Electrochemical Anodization. J. Phys. Chem. C, 2008,112(50):19852~19859
    [47]Zwilling V. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal.,1999,27(7):629~637
    [48]Gong D W, Grimes C A, Varghese O K. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res.,2001,16(12):3331~3334
    [49]Macak J M, Tsuchiya H, Taveira L, et al. Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed.,2005,44(45):7463~7465
    [50]Beranek R, Hildebrand H, Schmuki P. Self-organized porous Titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett.,2003,6(3): 12~14
    [51]Ghicov A, Tsuchiya H, Macak J M, et al. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem. Commun.,2005,7(5):505~509
    [52]Cai Q Y, Paulose M, Varghese O K, et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res.,2005,20(1):230~235
    [53]Paulose M, Varghese O K, Mor G K, et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology,2006,17(2):398~402
    [54]Taveira L V, Macak J M, Tsuchiya H, et al. Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J. Electrochem. Soc.,2005,152(10):405~410
    [55]Macak J M, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta,2005,50(18):3679~3684
    [56]Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells,2006,90(14):2011~2075
    [57]Paulose M, Shankar K, Yoriya S, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in Length. J. Phys. Chem. B,2006,110(3): 16179~16184
    [58]Shankar K, Mor G K, Prakasam H E, et al. Highly-ordered TiO2 nanotube arrays up to 220μm in length:use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology,2007,18(6):065707
    [59]Albu S P, Ghicov A, Macak J M, et al.250μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Stat. Sol,2007,1(2):65~67
    [60]Prakasam H E, Shankar K, Paulose M, et al. A new benchmark for TiO2 nanotube growth by anodization. J. Phys. Chem. C,2007,111(20):7235~7241
    [61]Paulose M, Prakasam H E, Varghese O K, et al. TiO2 nanotube arrays of 1000μm length by anodization of titanium foil:phenol red diffusion. J. Phys. Chem. C, 2007,111(41):14992~14997
    [62]Hahn R, Macak J M, Schmuki P. Rapid anodic TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem. Commu.,2007,9(5):947~952
    [63]Chen X B, Schriven M, Suena T, et al. Fabrication of 10nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Film,2007,515(24): 8511~8514
    [64]Allam N K, Shankar K, Grimes C A. Photoelectrochemicaland water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. J. Mater. Chem.,2008,18(20): 2341~2348
    [65]Onoda K, Yoshikaw S. Effect of electrolysis conditions on photocatalytic activities of the anodized TiO2 films. J. Solid State Chem.,2007,180(12):3425~3433
    [66]Capek D, Gigandet M P, Masmoudi M, et al. Long-time anodisation of titanium in sulphuric acid. Surf. Coat. Technol.,2008,202(8):1379~1384
    [67]Wang S, Wu X H, Qin W, et al. Optoelectronic properties of TiO2 films prepared by microplasma oxidation method. Mater. Lett.,2008,62(6-7):1078~1081
    [68]Brunella M F, Diamanti M V, Pedeferri M P, et al. Photocatalytic behavior of different titanium dioxide layers. Thin Solid Films,2007,515(16):6309~6313
    [69]Iwata T, Ishikawa M, Ichino R, et al. Photocatalytic reduction of Cr(VI) on TiO2 film formed by anodizing. Surf. Coat. Technol.,2003,169-170:703~706
    [70]Zorn G, Lesman A, Gotman I. Oxide formation on low modulus Ti4Nb5 alloy by anodic versus thermal oxidation. Surf. Coat. Technol.,2006,201(3-4):612~618
    [71]Onoda K, Yoshikawa S. Applications of anodized TiO2 films for environmental purifications. Appl. Catal. B:Environ.,2008,80(3-4):277~285
    [72]Mato S, Alcala G, Skeldon P, et al. Dielectric and mechanical properties of anodic films in the Ta-Ti system. Surf. Interface Anal.,2003,35(5):477~482
    [73]Onoda K, Yoshikawa S. Effect of pre-nitridation treatment on the formation of anatase TiO2 films by anodization. Ceram. Int.,2008,34(6):1453~1457
    [74]Oh H J, Lee J H, Kim Y J, et al. Surface characteristics of porous anodic TiO2 layer for biomedical applications. Mater. Chem. Phys.,2008,109(1):10~14
    [75]Wu T X, Liu G M, Zhao J C, et al. Photoassisted degradation of dye pollutants V self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B,1998,102(30): 5845~5851
    [76]Kim S S, Yum J H, Sung Y E. Improved performance of a dye-sensitized solar cell using a Ti02/ZnO/Eosin Y electrode. Sol. Energy Mater. Sol. Cells, 2003,79(4):495~505
    [77]Amao Y, Yamad Y, Aoki K. Preparation and properties of dye-sensitized solar cell using chlorophyll derivative immobilized TiO2 film electrode. J. Photoehem. Photobio. A:Chem.,2004,164(1-3):47~51
    [78]Dillert R, Cassano A E, Goslich R, et al. Large scale studies in solar catalytic wastewater treatment. Catal. Today,1999,54(2-3):267~282
    [79]Li X Z, Chen C C, Zhao J C. Mechanism of photodecomposition of H2O2 on TiO2 surface under visible light irradiation. Langmuir,2001,17(13):4118~4122
    [80]Choi W, Tennin A, Hoffmann M R. Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles. Angew. Chem. Int. Ed., 1994,33(10):1091~1092
    [81]梁春华.稀土掺杂二氧化钛的制备、表征和光催化活性研究:[博士学位论文].杨凌,西北农林科技大学,2006
    [82]李翠霞,杨志忠,王希靖.稀土掺杂纳米TiO2光催化材料的制备和性能.兰州理工大学学报,2009,35(1):21-24
    [83]蒋洪泉,王鹏,卢丹丹,等.Gd3+掺杂TiO2纳米粉体的晶粒尺寸、表面特性和光催化活性.化工学报,2006,57(9):2194~2200
    [84]Zhang Y H, Zhang H X, Xu Y X, et al. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2. J. Solid State Chem.,2004,177:3490~3498
    [85]Asahi R, Morikawa T, Ohwaki T, et al. Vsible-light Photocatalysis in nitrogen-doped titanium oxides. Science,2001,293(5528):147269~147271
    [86]Khan S U M, Al-Shahry M, InglerJr W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297(5590):2243~2245
    [87]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped photoeatalyst under visible light. Chem. Lett.,2003,32(4):364~365
    [88]Umebayashi T, Yamaki T, Tanaka S, et al. Vsible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett.,2003,32(4):330~331
    [89]Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater.,2002,14(9): 3808~3816
    [90]孙晓钢.碳纳米管应用研究进展.纳米材料与结构,2004,(1):20~25
    [91]詹雪艳,宋丹丹.碳纳米管改性的Ti02光催化性能.化学研究与应用,2003,15(4):471~474
    [92]Xie Y B. Photoelectrochemical application of nanotubular titania photoanode. Electrochem. Acta,2006,51(17):3399~3402
    [93]Quan X, Yang S G, Ruan X L, et al. Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol.,2005,39(10): 3770~3775
    [94]Zhang Z H, Yuan Y, Shi G Y, et al. Photoelectroc atalytic activity of highly ordered TiO2 nanotube arrayselectrode for azo dye degradation. Environ. Sci. Technol., 2007,41(17):6259~6263
    [95]郝彦忠,殷志刚.聚3-甲基噻吩修饰CdSe纳米棒复合膜电极光电化学性能研究.高分子材料科学与工程,2007,23(05):218~222
    [96]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A:Chem.,2004,164(1-3):3-14
    [97]Paulose M, Shankar K, Varghese O K, et al. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D:Appl. Phys.,2006,39(21):2498~2503
    [98]Macak J M, Tsuchiya H, Ghicov A, et al. Dye-sensitized anodic TiO2 nanotubes. Electrochem. Commun.,2005,7(11):1133~1137
    [99]Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells. Electrochem. Soc.,2003,150:488~493
    [100]Tributsch H. Dye sensitization solar cells:A critical assessment of the learning curve. Photobio. A.,2004,16:3-14
    [101]Choi Charles. Make methane while the sun shines. Nature,(5 February 2009), http://www.nature.com/news/2009/090205/full/news.2009,83. html.
    [102]Marketa Z, Arnost Z, Ladislav K, et al. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett, 2005,5(9):1789~1792
    [103]杨术明,李富友,黄春辉.染料敏化稀土离子修饰二氧化钛纳米晶电极的光电化学性质.中国科学(B辑),2003,33(1):59~65
    [104]Sun L, Li J, Wang C L, et al. An electrochemical strategy of doping Fe3+into TiO2 nanotube array films for enhancement in photocatalytic activity. Sol. Energy Mater. Sol. Cells,2009,93:1875~1880
    [105]Mieha T. Sealing properties in photocalysis. Catal. Today,2000,58:151~159
    [106]Hofmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev,1995,95(1):69~96
    [107]Choi W, Termin A, Hofmann M R. The role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge carried recombination dynamics. J. Phys. Chem,1994,98(5):13669.~13679
    [108]Paola A D, Garcia-Lopez E, Ileda S, et al. Photocatalytie degradation of organic compounds in aqueous systems by transition metal doped polyerystalline TiO2. Catal Today,2002,75(1-4):87~93
    [109]Wang Y, Liu W, Lu M, et al. Preparation and photocatlytie properties of Zr-doped TiO2 nanocrystals. J. Mole. Catal. A.,2004,215:137~142
    [110]Arafia J, Dofia-Rodrtguez J M, Gonztlez-Dlaz O, et al. Gas-phase ethanol photocatalytie degradation study with TiO2 doped with Fe, Pd and Cu. J. Mole. Catal. A,2004,215:153~160
    [111]Thomas I H, Dimitris I K, Xenophon E V. Catalytic reduction of NO by C3I-is over Rh/TiO2 catalysts effects of-cation doping of TiO2 on morphological characteristics and catalytic peformance. Appl. Catal. B, Environ,2003,41: 415~423
    [112]黄婉霞,孙作风,吴建春,等.纳米二氧化钛光催化作用降解甲醛的研究.稀有金属,2005,29(1):34~38
    [113]刘欣,唐振方,朱汉明.阴离子掺杂型TiO2的可见光活性研究进展.化学进展,2006,34(9):20~24
    [114]梁金生,金宗哲,王静,等.稀土/纳米TiO2的表面电子结构.中国稀土学报,2002,20(1):74~76
    [115]高远,徐安武,祝静艳.RE/Ti02用于NO2-光催化氧化的研究.催化学报,2001,22(1):53~56
    [116]岳林海,徐铸德.稀土掺杂二氧化钛的相变和光催化活性.浙江大学学报, 2000,27(1):69~74
    [117]宋旭春,岳林海,徐铸德,等.水热法合成掺杂铁离子的小管径TiO2纳米管.无机化学学报,2003,19(8):899~901
    [118]王福平,宋英,姜兆华,等.水合二氧化钛纤维的制备及其相变过程研究.材料科学与工艺,1999,7(1):64~71
    [119]Cho Y, Choi W. Visible light-induced reactions of humic acids on TiO2. Chemistry. J. Photochem. Photobiol., A,2002,148:129~135
    [120]Li X Z, Fan C M, Sun Y P. Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength. Chemosphere,2002,48: 453~460
    [121]Wiszniowski J, Robert D, Joanna S G. Photocatalytic decomposition of humic acids on TiO2 Part I:Discussion of adsorption and mechanism. J. Photochem. Photobiol., A,2002,152:267~273
    [122]Sheng G P, Zhang M L, Yu H Q. A rapid quantitative method for humic substances determination in natural waters. Analytica Chimica Acta,2007,592: 162~167
    [123]傅宏刚,于海涛,张新,等.Ca改性钛酸铅纳米晶的制备及结构研究.高等学校化学学报,1999,20(8):1271~1275
    [124]Oiang LS, Xu CQ. The structure and size-effect of calciummodified lead titanate nanocrystal. Chem. Res. Chin. Univ,1999,15 (2):158~162
    [125]黄东升,陈朝凤,李玉花,等.铁、氮共掺杂二氧化钛粉末的制备及光催化活性.无机化学学报,2007,23(5):738~742
    [126]张华星,张玉红,徐永熙,等.铽(Ⅲ)掺杂TiO2纳米材料相转移和光催化性质研究.化学学报,2003,61(11):1813~1818
    [127]陈兰兰.In-N共掺杂制备p-Zn薄膜及ZnO其它相关参数研究:[博士学位论文].杭州:浙江大学,2007
    [128]魏子栋,殷菲,谭君.TiO2光催化氧化研究进展.化学通报,2001,2:76~80
    [129]牛新书,李红花,蒋凯.金属离子掺杂纳米二氧化钛光催化研究进展.电子元件与材料,2004,23(8):56~60
    [130]Dexter D L. A theory of sensitized luminescence in solids. J. chem. phys., 1953,21(5):837~850
    [131]贾志宏,李立,叶泽人.BaLiF3:Eu,Gd中Gd3+→Eu2+的能量传递.高等学校化学学报,2002,23(3):347~352
    [132]Bohn R, Fanta G, Klassen T, et al. Mechanical behavior and advanced processing of nano and submicron-grained intermetallic compounds based on Y-TiAl Scripta Materialia. Scripta Materialia,2001,44(8-9):1479~1482
    [133]Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature. Nature, 1987,330:556~558
    [134]周艺,李志伟,徐协文.镨离子、钬离子掺杂TiO2纳米粒子的光催化性能.湖南师范大学学报,2003,26(2):70-72.
    [135]杨祝红,暴宁钟,刘畅,等.Ti02纤维的制备及其光催化活性研究,高等学校化学学报,2002,23(7):1371~1374
    [136]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56~58
    [137]阴育新.Ti02纳米管阵列的阳极氧化制备与光电催化性能:[博士学位论文].天津:天津大学,2007
    [138]李言荣,谢孟贤,恽正中,等.纳米电子材料与器件.北京:电子工业出版社,2005,89~92
    [139]Kang S H, Kim J Y, Kim Y, et al. Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells. J. Phy. Chem:C,2007,111(26): 9614~9623
    [140]Grimes C A, Varghese O K, Paulose M, et al. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett,2009,9(2): 731~737
    [141]Zhao J L, Wang X H, Chen R Z, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun.,2005,134(10):705~710
    [142]Lai Y K, Sun L, Chen C, et al. Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate. Applied Surface Sci,2005,252(4): 1101-1106
    [143]Albu S P, Ghicov A, Macak J M, et al.250μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Stat. Sol,2007,1(2):65~67
    [144]李静.TiO2纳米管阵列膜的改性、表征及其光电催化性能研究:[博士学位论文].厦门:厦门大学,2008
    [145]赖跃坤,孙岚,左鹃,等.二氧化钛纳米管阵列制备及形成机理.物理化学学报,2004,20(9):1063~1066
    [146]Ghicov A, Tsuchiya H, Hahn R, et al. TiO2 nanotubes:H+insertion and strong electrochromic effects. Electrochem. Commun,2006,8(4):528~532
    [147]Paulose M, Mor Q K, Varghese O K, et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Phtobio. A-Chem.,2006,178(1):8-15
    [148]Schmuki P, Tsuchiya H, Macak J M, et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun., 2005,7(6):576~580
    [149]Hiroaki J M, Patrik, T S. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed.,2005,44:2100~2102
    [150]Shankar K, Mor G K, Fitzgerald A. Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide water mixtures. J. Phys. Chem. C,2007,111(1):21-26
    [151]Mor G K, Varghese O K, Paulose M. Fabrication of tapered, conical-shaped titania nanotubes. Mate. Rese. Soci.,2003,18:2588~2593
    [152]周成凤.TiO2纳米管和纳米管阵列的制备、形貌及机理研究:[博士学位论文].青岛:青岛科技大学,2009
    [153]郑青,周保学,白晶,等.TiO2纳米阵列及其应用.化学进展,2007,19(1):117-122
    [154]Adachi M, Okada I. Dye-sensitized solar cells using semiconductor thin film composed of titania nanotubes. Electrochemistry,2002,70(6):419~452
    [155]Mor G K, Shankar K, Paulose M, et al. Use of highly ordered-TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett.,2006,6(2):215~218
    [156]Huang J G, Kunitake T, Onoue S Y. A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle. Chem. Conunun., 2004,8(8):1008-1009
    [157]张舒,陶杰,王玲,等.TiO2纳米管阵列生长进程及微观结构的研究.稀有金属材料与工程,2009,38:29-34
    [158]付乌有.高度有序Ti02纳米管阵列的制备及其生长机制.原子与分子物理学报,2009,26(04):633~638
    [159]陈环,王红,傅刚.Ti02纳米管阵列制备及机理研究进展.广州大学学报(自然科学版),2007,6(5):9-12
    [160]杨娟,戴俊,缪娟.TiO2纳米管阵列的制备及其应用研究进展.化工时刊,2008,22(9):56~60
    [161]Alfons V B. Materials science:opals in a new light.science,1998,282(5390): 887~888
    [162]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359: 710~712
    [163]Park C, Yoon J, Thomas E L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer,2003,44(22):6725~6760
    [164]Ulman A. Foration and Structure of Self-Assembled Monolayers, Chem. Rev, 1996,96(4):1533~1554
    [165]Feltin N, Pileni M P. New Technique for Synthesizing Iron Ferrite Magnetic Nanosized Particls. Langmuir,1997,13(15):3927~3933
    [166]Thurn-Albrecht T, Schotter J, Kastle G A, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science, 2000,290(5499):2126~2129
    [167]Subramania G, Constant K, Biswas R, et al. Optical photonic crystals synthesized from colloidal systems. Appl. Phys. Lett,1999,74:3933~3935
    [168]Trau M, Savill D A, Aksay I A. Field-induced layering of colloidal crystals. Science,1996,272(5256):706~709
    [169]Trau M, Savill D A, Aksay I A. Assembly of colloidal crystals at electrode interfaces. Langmuir,1997,13(24):6375~6381
    [170]Ohara P C, Leff D V, Heath J R, et al. Crytallization of opals from polydisperse. Phys. Rev. Lett.,1995,75:3466~3469
    [171]Dabbousi B O, Murray C B, Rubner M F, et al. Langmuir-blodgett manipulation of size-selected CdSe nanocrystallites, Chem. Mater.,1994,6:216~219
    [172]Jiang X, Herricks T, Xia Y. Monodispersed spherical colloids of titania:synthesis, characterization and crystallization. Adv. Mater.,2003,15:1205~1209
    [173]Romanov S G, Fokin A V, Tretijakov V V, et al. Sotomayor-Torres. Optical properties of ordered three-dimensional arrays of structurally confined semiconductors. Journal of Crystal Growth,1996,159(1-4),857~860
    [174]Gaponenko S V, Kapitonov A M, Bogomolov V N, et al. Electrons and photons in mesoscopic structures:quantum dots in a photonic crystal. JETP Lett., 1998,68:142~147
    [175]Stein A. Sphere templating methods for periodic porous solids. Microsporous Mesoporous Mater.,2001,44/45:227~239
    [176]Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells. Electrochem. Soc.,2003,150:488~493
    [177]Tributsch H. Dye sensitization solar cells:A critical assessment of the learning curve. Photobio. A,2004,16:3-14
    [178]Wang Z Y, Ergang N S, Al-Daous M A, et al. Synthesis and characterization of three-dimensionally ordered macroporous carbon/titania nanoparticle composites, Chem. Mater.,2005,17:6805~6813
    [179]Sadakane M, Horiuchi T, Kato N, et al. Facile preparation of three-dimensionally ordered macroporous alumina, iron oxide, chromium oxide, manganese oxide, and their mixed metal oxides with high porosity. Chem. Mater.,2007,19:5779~5785
    [180]Wijndhoven J E G J, Vos W I. Preparation of photonic crystals made of air sphere in titania. Science,1998,281(5378):802~804
    [181]Brian T H, Christophere F B, Andreas S. Synthesis of macroporous minerals with highly ordered three-dimendional arrays of spheroidal voids. Science, 1998,281(5378):538~540
    [182]Meng Q B, Fu C H, Einaga Y, et al. Assembly of highly ordered three-dimensional porous structure with nanocrystalline TiO2 semiconductors. Chem Mater,2002,14(1):83~88
    [183]Fu L J, Zhang T, Cao Q, et al. Preparation characterization of three-dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery. Electrochem. Commun.,2007,9:2140~2144
    [184]Fu L J, Yang L C, Shi Y, et al. Synthesis of carbon coated nanoporous microcomposite and its rate capability for lithium ion battery. Microporous Mesoporous Mater.,2009,117:515~518
    [185]Doong R A, Chang S M, Hung Y C, et al. Preparation of highly ordered titanium dioxide porous films:Characterization and photocatalytic activity. Sep. Purif. Technol.,2007,58:192~199
    [186]Somani P R, Dionigi C, Murgia M, et al. Solid state dye PV cells using opal inverse TiO2 films. Sol. Energy Mater. Sol. Cells,2005,87:513~519
    [187]Diguna L J, Shen Q, Kobayashi J, et al. High efficiency of CdSe quantm-dot-sensitized TiO2 Inverse opal solar cells. Appl. Phys. Lett.,2007,91: 023116
    [188]Eonid M L, Goldenberg, Wagner J, et al. Ordered arrays of large latex particles organized by vertical deposition. Langmuir,2002,18:331~323
    [189]彭洪修,朱以华,古宏晨,等.无皂乳液聚合法合成均一性聚苯乙烯微球.华东理工大学学报,2002,28:260~262
    [190]Nishimura S, Abrams N, Lewis B A, et al. Standing wave enhancement of red absorbance and photocttrrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J Am Com Soc,2003,125:6306~6310
    [191]Liu Z F, Jin Z G, Liu X X, et al. Fabrication of ordered TiO2 porous thin films by sol-dipping PS template method. J. Sol-Gel Sci. Technol.,2006,38:73~78
    [192]Sun F Q, Cai W P, Li Y, et al. Morphology-controlled growth of large-area two-dimensional ordered pore arrays. Adv. Funct. Mater.,2004,14:283~288
    [193]Hao S C, Fan L Q, Wu J H, et al. Influence of medication of counter electrode on photoelectric properties on dye-sensitized TiO2 solar cells. Chem. Res. Chinese. U, 2004,20:205~209
    [194]Lin S Y, Fleming J G, Hetherington D L, et al. A three-dimensional photonic crystal operating at infrared wavelengthe. Nature,1998,394:251~253
    [195]Yu J C, Wang X C, Fu X Z. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films, Chem. Mater.,2004,16:1523~1530
    [196]Yan H, Blanford C F, Holland B T, et al. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion, Chem. Mater.,2000,12:1134~1141
    [197]O'Regan B, Moser J, Anderson M, et al. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. Phys. Chem.,1990,94:8720~8726
    [198]Sodergren S, Hagfeldt A, Olsson J, et al. Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells, J Phys. Chem.,1994,98:5552~5556
    [199]Yang S M, Huang Y Y, Huang C H, et al. Enhanced energy conversion efficiency of the Sr2+-modified nanoporous TiO2 electrode sensitized with a ruthenium complex. Chem. Mater.,2002,14:1500~1504
    [200]Diamant Y, Chen SG, Melamed O, et al. Core-shell nanoporous electrode for dye sensitized solar cells:the effect of the Sr-TiO3 shell on the electronic properties of the TiO2 core. Phys. Chem. B,2003,107:1977~1981
    [201]Wang Z S, Yanagida M, Sayama K. et al. Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells:Improvement of Electron Lifetime and Efficiency. Chem. Mater.,2006,18:2912~2916
    [202]Yang Q J, Xu Z L, Xie C, et al. A new molecularly imprinted polymer for solid-phase extraction of cotinine from human urine. Chem. J. Chin. Univ., 2004,25:1711~1714
    [203]黄翠英,由万胜,党利琴等.钕掺杂对纳米TiO2光催化分解水制氢活性的影响,催化学报,2006,27(3):203~209
    [204]Liu J P, Sun H Q. Carbon nano-material. Beijing, Science Press,2004.10~15
    [205]Seeger T, Redlich Ph, Grobert N, et al. SiOx-coating of carbon nanotubes at room temperature. Chemical Physics Letters,2001,339(1-2):41-46
    [206]Hernadi K, Ljubbovi E, Seo J W, et al. Synthesis of MWNT-based composite materials with inorgamic coating. Acta Mater,2003,51(5):1447-1452
    [207]Jitianu A, Cacciaguerra T, Benoit R et al. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon,2004,42(5-6):1147~1151
    [208]Chiohie L, Crespi V H. Pure carbon nanoscale devices:nanotube heterojunctions. Phys. Rev. Lett,1996,76:971-974
    [209]李达钱,陈金媛.碳纳米管/Ti02电极光电催化测定耐兰方法探讨.浙江工业大学学报,2006,34(4):369~372
    [210]Yu Y, Yu J G, Kwok Y C, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A-Gen,2005,289(2): 186~196
    [211]Wang W, Serp P, Kalck P, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A-Chem,2005,235:194~199
    [212]李越湘,王添辉,彭绍琴,等.Eu3+、Si4+共掺杂TiO2光催化剂的协同效应.物理化学学报,2004,20(12):1434~1439
    [213]Zhu Z P, Huang K L, Zhou Y. Preparation and characterization of a new type of photocatalysts combined MWNTs with TiO2-derived nanotubes[C]//Boyun Huang, C T Liu. International Conference of Nonferrous materials,2007.2007:175~180
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.