炎症相关基因多态性与168例颅内动脉瘤易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颅内动脉瘤是由于颅内局部血管异常改变,导致颅内动脉壁产生囊性膨出,形成的脑血管瘤样突起。颅内动脉瘤80%发生于脑底动脉环前半部,是脑血管系统中具有破裂倾向的局灶性病理扩张,其破裂可致脑蛛网膜下腔出血,因而是目前最具破坏性的脑血管疾病之一。研究表明,85%的SAH是由于颅内动脉瘤破裂而引起的,动脉瘤破裂出血后24h内的病死率达到2①%,1周内的病死率达到40%,出血后1个月内的病死率高达50%,而在存活者中,1/3以上患者遗留严重的神经功能缺损。且颅内动脉瘤的发病率只为1%~8%,不及脑血栓,高血压脑出血排在颅内病变的第3位,但其高病死率、高致残率,给家庭和社会带来了沉重负担。
     颅内动脉瘤的发病是多因素引起的,目前研究认为,体力劳动、情绪波动、酒后、解便等均可引起动脉瘤突然破裂,而年龄、性别、吸烟、饮酒、高血压已被证实是颅内动脉瘤的危险因素。炎症指循环系统中的活体组织对损伤因子所发生的防御,血管反应是炎症过程的中心环节。炎性细胞介导的异常血管重塑,被认为是组成各种血管疾病的中的一个关键的病理环节。血流变化也可激活内皮细胞和炎性细胞释放炎性介质,血管壁剪应力的升高可以上调IL-1β的水平,使炎性细胞易于浸润血管壁,从而与活化的内皮细胞、平滑肌细胞等共同介导炎性反应。炎性细胞、抗体和补体等参与的炎性反应,诱导了多种蛋白酶表达是导致血管壁损伤并形成动脉瘤的原因,但颅内动脉瘤形成机制相关的具体信号通路尚不清楚。TNF-α是白细胞产生的关键免疫活性物质,在颅内动脉瘤中显著增加,强烈地活化血管内皮细胞。此外,颅内动脉瘤破裂出血后血液及脑脊液中IL-6也明显增高。
     遗传是指经过基因的传递,使后代获得类似亲代特征的过程。DNA作为遗传物质,通过转录和翻译的过程,决定了生命的基本特性,也与疾病的发生息息相关。遗传学因素在颅内动脉瘤的发病机制上具有重要意义,流行病学调查发现,部分颅内动脉瘤患者呈现家族性发病倾向,患者一级亲属发生该病的风险明显增高。芬兰东部人群家族性颅内动脉瘤患者的研究中发现,颅内动脉瘤阳性家族史患者发病风险率可增加12%。有颅内动脉瘤家族史的日本人群中发现,未破裂动脉瘤的患病率显著增高10.5%-13.5%。因此,遗传因素在颅内动脉瘤的发生中起着重要作用。
     SNP位点是指在基因组上单个核苷酸的变异形成的遗传标记,其数量很多,多态性丰富,是第三代遗传标志。人体许多表型差异、对药物或疾病的易感性等都可能与SNP有关。尽管大多数SNP位于基因组非编码元件内含子中,但它在RNA剪切过程中可能有重要作用。利用全基因组SNP扫描对不同种族的颅内动脉瘤家系进行研究,证实了多个染色体1p34.3-lp36.13、7q11、19q13.3及Xp22区段可能与动脉瘤的发生相关。此外,通过传统的候选基因研究法,通过对与颅内动脉瘤发生功能相关的基因进行测定,也发现了许多的易感基因,如内皮糖蛋白基因、基质金属蛋白酶基因、IR型胶原基因、otl-抗胰蛋白酶基因、弹力蛋白基因、血管紧张素转化酶基因、载脂蛋白基因等,其中有一些基因功能与血管壁的形成相关,因而也从分子功能上得到一系列的证据与颅内动脉瘤相关。一些研究结果也表明,某些炎症细胞因子也与颅内动脉瘤有正相关性,IL-1p, IL-6及TNF-α等与颅内动脉瘤的易感性相关联。
     尽管目前已有报道TNF-α、IL-1β及IL-6与颅内动脉瘤的易感性相关,但是它们却没有在GWAS大样本、全基因组的数据中得到验证。在意大利人群中IL-6不是颅内动脉瘤的易感基因。因此,TNF-α、IL-1β及IL-6是否是颅内动脉瘤的易感基因仍不确定,这可能是种族人群之间的遗传差异性造成的,也可能是候选基因组研究中样本数小、质控不严及统计学分析策略不严密得到的错误的相关性信息。为了进一步的证实TNF-α、IL-1β及IL-6基因多态性与中国汉族人群颅内动脉瘤的相关性,本研究通过收集168例颅内动脉瘤患者及严格匹配的184名同龄正常体检者,对TNF-α、IL-1β及IL-6基因附近的标签SNP位点进行基因分型,通过严格的质控及严谨的统计学分析,以探索TNF-α、IL-1β及IL-6基因的多态性是否与中国汉族人群颅内动脉瘤的发病相关。这一课题的实施将使得我们找到颅内动脉瘤的发病机制成为可能,为颅内动脉瘤易感基因的确定、易感人群的筛选、早期诊断和治疗提供了分子生物学基础,对不断提高疾病检出率、提高患者生存率和生存质量具有重要的意义。
     第一部分炎症相关基因多态性与168例颅内动脉瘤易感性的关联研究
     1.目的
     探讨颅内动脉瘤患者与正常对照者中炎症相关基因区域内SNPs位点的等位基因频率与基因型频率分布情况。探讨炎症相关基因多态性与颅内动脉瘤后SAH的严重程度、临床预后及颅内动脉瘤发病数量(单发性/多发性)之间的关联性。2.材料与方法
     2.1研究对象:
     研究组为2010~2012年间于南方医院神经外科病房收集168名颅内动脉瘤性SAH伴或不伴脑内血肿的患者。患者为发病时间<72小时,年龄>18岁成人患者,颅内动脉瘤均经临床症状及全脑数字减影血管成像和或CT血管成像确诊为颅内动脉瘤性。对照组为184名对照组受试者为本院体检科体检的健康汉族人群,所有受试者均无颅内动脉瘤病史。SNP位点为NCBI数据库中挑选出TNF-α、IL-1β及IL-6基因区域内3个代表性SNPs位点(rs1800795、rs1143627及rs1799964)。
     2.2研究方法:记录门诊颅内动脉瘤患者、入院治疗颅内动脉瘤患者及健康体检者一般临床资料,制表并输入数据至Excel中。用天根生化公司全血基因组DNA提取试剂盒提取外周血全基因组DNA。得到的基因组DNA片段用琼脂糖凝胶电泳鉴定是否降解,并在Nanodrop ND-2000紫外分光光度计上测量浓度。在NCBI数据库中根据SNP位点所在的位置查询相应的碱基序列设计PCR引物,并用基因组DNA扩增相应的片段。最后在生物公司中测序鉴定各个样本SNP位点的基因型。
     2.3统计学处理:使用SPSS统计软件的卡方检验程序进行等位基因频率和基因型频率统计,染色体TNF-α、IL-1β及IL-6基因区域标签SNP位点在病例组和对照组之间等位基因和基因型频率差异比较用Z检验。计量资料用(均数±标准差)表示,经方差齐性检验后(P>0.05)采用单因素方差分析对组间的均数进行比较。P<0.05认为差异有统计学意义。采用Logist回归模型中的“逐步模型”对主效SNP位点进行鉴定,并评估易感SNP位点与颅内动脉瘤相关危险因素之间是否存在累积效应。使用Haploview4.2软件进行中国及日本人群特定染色体区段SNP位点的哈-温平衡检验和连锁不平衡(Linkage disequilibrium, LD)分析,并绘制该区段的LD图。
     3.结果
     本研究组共收集168名颅内动脉瘤患者,其中男性74例(44.05%),女性94例(55.95%),平均年龄(51.67+18.71)岁,BMI为(23.21±2.16)。两组间一般情况,包括高血压史、高血脂史、糖尿病史、吸烟史及饮酒史无显著性差异(均P>0.05),因此具有可比性。颅内动脉瘤患者经治疗后转归情况用Glasgow预后评分(Glasgow Outcome Scale, GOS)进行评估,GOS4~5分为预后良好,GOS1~3分为预后不佳。其中预后良好患者122例(占72.62%)、预后不佳患者46例(占27.38%)。在UCSC基因库中寻找出待测基因TNF-α、IL-1β及IL-6所处的区域:分别在以上三个基因所在区域外的10kb范围内(上下游各5kb)寻找中国人群该区域的SNP位点,SNP位点选择的原则:豢最月、等位基因频率大于0.1(由于本研究样本较少,如果选择频率较小的SNP位点,组间SNP位点的基因型个数太少,无法进行统计)。2连锁不平衡原则:当SNP位点位于连锁度较高的区域内时,可以选择其中任意一个,其余SNP位点都可以被该位点所替代。3SNP位点所处的位置:内含子区域的SNP位点功能作用的发挥未知,尽量选择位于上游调控区的位点。最终我们选择位于TNF-α基因上游的rs1799964、位于IL-1β基因上游的rs1143627、位于IL-6基因上游的具有代表该区域的rs1800795作为我们的待检SNP位点。颅内动脉瘤及健康受试者样本全血DNA浓度在100ng-1μg之间,质量良好,琼脂糖凝胶电泳显示片段大小在15000kb以上,无拖尾现象,示DNA无降解。TNF-α、IL-1β及IL-6SNP位点rsl799964、rs1143627及rs1800795周围PCR扩增片段琼脂糖凝胶电泳所示,均为单一性条带,无非特异性产物扩增,根据PCR产物的序列,鉴定样本各个SNP位点的基因型。IL-6、IL-1β、TNF-α基因区段内SNP位点rs1799964、rs1143627及rs1800795等位基因频率在颅内动脉瘤组与正常对照组间具有显著性差异(x2=5.256, P=0.022)(x2=5.521, P=0.019)(x2=6.767, P=0.009)。SNP位点rs1143627及rs1800795等位基因频率与颅内动脉瘤后SAH的病情严重程度相关(χ2=4.257,P=0.039)(χ2=4.083,P=0.043);此外rs1143627位点还与颅内动脉瘤后SAH的临床预后相关(χ2=5.249,P=0.022)。我们计算了本研究组中TNF-α、IL-1β及IL-6基因中3个SNPs的假阳性报告率,在先验概率为0.25-0.001范围内,3个SNPs的FPRP值均<0.4,且统计检验效能均大于90%,即计算得到的FPRP值均小于预设临界值,因此认为遗传变异与疾病之间的关联是有意义的。4.结论
     炎症相关因子IL-6、IL-1p、TNF-α基因多态性与颅内动脉瘤易感性相关,为进一步研究IL-6、IL-1p、TNF-α在颅内动脉瘤内作用机制奠定了基础。第二部分炎症相关基因SNP位点与颅内动脉瘤易感性相关分子
     生物学机制初步研究
     1.目的
     探索炎症相关基因SNP位点与颅内动脉瘤易感性相关分子生物学机制,为预防及治疗颅内动脉瘤提供新的思路。
     2.材料和方法
     2.1研究对象
     健康体检者为2013年间于本院体检中心募集的健康体检者24名。年龄>18岁,均为汉族人群,所有受试者均无颅内动脉瘤病史、颅内动脉瘤家族史、脑血管、高血压疾病史、肿瘤史、无脑部外伤史,近期未服用抗炎药物,无心、脑、肝、肾疾病,糖尿病、甲状腺病史,近期无感染及炎症。受试者均经肘静脉取50ml全血,柠檬酸钠抗凝,用于基因表达量的分析和血清学指标的检测。SNP位点为上一章节中验证与颅内动脉瘤相关的多态性位点,即rs1799964、rsl143627及rs1800795。2.2研究方法
     健康受试者血液样本的采集和PBMCs的分离,并用Trizol提取其中的总RNA,在Nanodrop ND-2000紫外分光光度计上测定其含量和纯度以1%琼脂糖电泳鉴定RNA有无降解,应逆转录试剂盒构建cDNA文库,并用荧光定量PCR检测目的基因1mRNA的表达量。用酶联接免疫吸附技术检测血清中IL-6、IL-1β、TNF-α的含量。血清TNF-α、IL-1β及IL-6mRNA水平及蛋白水平数据的计量资料用均数±标准差表示,经方差齐性检验后(P>0.05)采用单因素方差分析分析,使用P<0.05认为差异有统计学意义。以上分析采用SPSS18.0统计软件完成。
     3.结果
     经淋巴细胞分离液分离PBMC之后,我们用Trizol提取了白细胞中的RNA,结果显示RNA质量良好,28S、18S清晰,5S条带微弱,说明总RNA无降解,保证了RNA逆转录的效率及可靠性。通过实时荧光定量PCR技术,检测了携带不同基因型的健康体检中TNF-α基因、IL-1β基因及IL-6基因的表达量。我们发现,TNF-a基因rs1799964位点、IL-1β基因rsl143627位点及IL-6基因rs1800795位点的基因型对各自基因表达量无影响。我们通过实时酶联免疫吸附法,检测了携带不同基因型的健康体检中TNF-α、IL-1β及IL-6蛋白在血清中的表达量。TNF-a基因rs1799964位点、IL-1p基因rs1143627位点及IL-6基因rs1800795位点的基因型对各炎症因子血清蛋白表达量无影响。
     4.结论
     TNF-α基因区域内的rs1799964位点与TNF-α mRNA及血清蛋白水平之间无相关性。IL-1β基因区域内的rs1143627位点与IL-1βmRNA及血清蛋白水平之间无相关性。IL-6基因区域内的rs1800795位点与IL-6mRNA及血清蛋白水平之间无相关性。这些SNP位点是通过何种作用发挥其颅内动脉瘤易感性的机制还需进一步的研究。
Intracranial aneurysm is local vascular abnormalities, leading to cystic swelling on the intracranial arterial wall, thus creating brain aneurysm formation like protrusions.80%of intracranial aneurysms occur in the first half of the cerebral arterial circle, which has a rupture tendency, once ruptured, it can cause cerebral subarachnoid hemorrhage, thus putting intracranial aneurysms one of the most devastating brain vascular disease. Research shows that85%of SAH due to intracranial aneurysm rupture The mortality rate after aneurysm rupture within24h reach20%, one-week40%, within a month mortality can be up to50%. However, among those survived, over1/3have severe neurological deficits left. Although the incidence of intracranial aneurysms is1%-8%, ranking No.3intracranial lesions, less than cerebral thrombosis, hypertension caused cerebral hemorrhage, its high mortality, high morbidity, all creating a heavy burden to family and society
     Multiple factors contributed to intracranial aneurysm, current study suggests that physical labor, mood fluctuation, drinking, etc. can cause sudden rupture of the aneurysm.up to now factors like age, gender, smoking, alcohol consumption, hypertension has been confirmed to be intracranial aneurysm risk factors. Inflammation refers to what the defense system in the living tissue take up against damage factors, vascular reaction is a central part of the inflammatory process. Inflammatory cell mediated abnormal vascular remodeling is considered to be a key aspect of the pathology in a variety of vascular diseases. Changes in blood flow can activate endothelial cells and inflammatory cells releasing inflammatory mediators, increasing vascular wall shear stress can increase the level of IL-1β, facilitating inflammatory cell infiltration into the vessel wall, thus activated endothelial cells, smooth muscle cells jointly mediated inflammatory response. Inflammatory cells, antibody and complement etc. involved in the inflammatory response inducing a variety of proteases which can damage the vessel wall thus causing aneurysm formation. However, until now the specific signaling pathways underlying intracranial aneurysm is not clear. TNF-a released by neutrophils, is a key immunoreactive substance, can strongly activated endothelial cells, it is significantly increased in intracranial aneurysms. In addition, IL-6is also significantly increased in blood and cerebrospinal fluid after the rupture of intracranial aneurysms.
     Through Gene delivery future generations obtain characteristics similar to parents. DNA as a genetic material through transcription and translation process, and determines the basic characteristics of life, is also closely related to the occurrence of the disease. Genetic factors are important in the pathogenesis of intracranial aneurysms. Epidemiological survey found that some patients with intracranial aneurysms showed onset familial tendency, the risk of the occurrence among the first-degree relatives of patients of the disease was significantly higher. Studies in patients with familial intracranial aneurysm artery among eastern Finnish population found intracranial aneurysms in patients with a positive family history increases the risk rate of12%. Among the Japanese population with family history of intracranial aneurysms, the unruptured aneurysms have a significantly higher prevalence of10.5%-13.5%. Thus, genetic factors play an important role in the occurrence of intracranial aneurysms.
     SNP refers to genetic marker loci which is a Single nucleotide mutation in the genome. Its large quantity, rich polymorphism contributes to the third generation of genetic markers. Many human phenotypic differences like susceptibility to drugs or disease may be related with the SNP. Although most SNP located in the genome intron elements, but it may play an important role in RNA splicing process. Using whole-genome SNP scans of different races of intracranial aneurysms pedigree confirms a number of chromosomal segments1p34.3-1p36.13、7q11、19ql3.3and Xp22may be associated with the occurrence of aneurysms. In addition, traditional candidate gene study, measureing functionally related genes with intracranial aneurysms, also found a lot of susceptibility genes, such as endothelial glycoprotein gene, matrix metalloproteinase genes, IR collagen gene, otl-antitrypsin gene, elastin gene, angiotensin-converting enzyme gene, apolipoprotein genes. Some of these genes are functionally associated with the formation of the vascular wall, thus creating the molecular evidence. Some studies also suggest that certain inflammatory cytokines like IL-1β, IL-6and TNF-a are positive correlated with intracranial aneurysms susceptibility.
     Although it has been reported TNF-a, IL-1β, and IL-6are associated with the susceptibility of intracranial aneurysms, they have not been verified in large GWAS samples. In the Italian population, IL-6is not a intracranial aneurysm susceptibility gene. Thus, TNF-a, IL-1β, and IL-6is a susceptibility gene intracranial aneurysms remains uncertain, it may be genetic differences between ethnic groups, or the small number of the sample genome research, lax quality control and not tight statistical analysis strategy leading to an error information. To further confirm that TNF-a, IL-1β, and IL-6gene polymorphism and intracranial aneurysms correlation in Chinese Han population, we collected200cases of intracranial aneurysm patients and200matched peers with strict normal physical examination. The tag SNP loci nearby TNF-a, IL-1(3, and IL-6gene were genotyped, and after strict quality control and rigorous statistical analysis, we try to explore the association of TNF-α, IL-1β, IL6gene polymorphisms with the onset ofntracranial aneurysms among chinese Han population. The implementation of this study will not only made finding the pathogenesis of intracranial aneurysms possible, but also provided important basic molecular biology underlying intracranial aneurysm, facilitate screening among susceptible population and early diagnosis and treatment. Above all, it is of great significance as to raising the detection rate and improving survival and quality of life of patients.
     Chapter one:Association study of inflammation-related gene polymorphisms and susceptibility of intracranial aneurysms
     1. Objective
     To explore the allele frequencies and genotype frequency distributions of the SNPs in the inflammation-related genes among intracranial aneurysms patients. To investigate the relationship between the inflammation related gene polymorphisms with the severity of intracranial aneurysms after SAH, the clinical relevance of outcomes and the incidence number (solitary/multiple) of intracranial aneurysms.
     2. Materials and methods
     2.1Object of study:The168aneurysmal SAH patients with intracerebral hematoma companied or not were choosed as Study group were collected from neurosurgery ward in our NanFang hospital from2010to2012. All Patients choosed were with a onset lower than72hours and older than18years old.they were confirmed by clinical symptoms and then subject to whole brain digital subtraction angiography or CT angiography for the diagnosis of intracranial aneurysms. The control group was184healthy Han people from our hospital's medical department, all of them had no history of intracranial aneurysms. The three representative SNPs (rs1800795, rs1143627and rs1799964) of tNF-α, IL-1β, and the IL-6gene region were picked out from the NCBI database
     2.2Research Methods:The clinical data of outpatient intracranial aneurysm patients, hospitalized patients with intracranial aneurysms and healthy Volunteers were all recorded into Excel. Whole blood genomic DNA was extracted using Tigen wholly genomic DNA extraction kit. Then it was tested with agarose gel electrophoresis identified whether it was degraded and measured concentration in the Nanodrop ND-2000spectrophotometer. PCR primers of the corresponding SNP loci were designed according to the nucleotide sequences in NCBI database, then they were used to amplify the sequences which will later used for sequencing in Biotech companies.
     2.3Statistical analysis:Chi-square test of the SPSS statistical software were used to analysis the allele and genotype frequencies. The allele and genotype frequencies of the SNP loci in TNF-a, IL-1β, and IL-6gene region between cases and controls were compared with the X2test. Mean plus or deviation standard deviation were show for Measurement data, after the homogeneity of variance test (P>0.05), they were compared using ANOVA. P<0.05was considered statistically significant. The progressive model of "Logist regression model" were used to identify the SNP loci of primary effect and assess whether there is a cumulative effect between susceptibility SNP loci and risk factors for intracranial aneurysms. Haploview4.2software were Used for Kazakhstan-Weinberg equilibrium tests and linkage disequilibrium analysis on specific SNP loci segments among the Chinese and Japanese population, LD diagram of the section was drawn.
     3. Results
     Our study collects168study group intracranial aneurysm patients with male74 cases (44.05%), female94cases (55.95%), mean age (51.67±18.71) years and BMI (23.21±2.16). There were no significant difference between the two groups in general, including history of hypertension, high cholesterol, diabetes, smoking and drinking history (all P>0.05). After treatment the outcomes of the Intracranial aneurysm patients were assessed using the Glasgow Outcome Scale (Glasgow Outcome Scale, GOS), with GOS4~5into a good prognosis and GOS1~3into poor prognosis.122patients with good prognosis (representing72.62%),46patients with poor prognosis (representing27.38%) are found. We first find the the region of the tested genes TNF-a, IL-1β, and IL-6in UCSC library. Then Looking for SNP loci located within the area of10kb range (upstream and downstream5kb) of the three genes in Chinese Han population. At last, we chose rs1799964located upstream of TNF-a gene, rs1143627upstream of the IL-1βgene, rs1800795upstream of the IL-6gene with the most representatives of the region to be examined.The concentration of DNA of whole blood samples among intracranial aneurysms and healthy subjects was between100ng-1μg with good quality. Agarose gel electrophoresis show size about15000kb above with no smearing confirming no degradation. PCR amplification fragmen were shown by agarose gel electrophoresis, all are unity bands with no nonspecific amplification products. The PCR product was genotyped of the SNP loci for each sample. The allele frequency of rs1799964, rs1143627and rs1800795corresponding to IL-6, IL-1β, TNF-a show significant difference between intracranial aneurysm group and normal control group (X2=5.256, P=0.022)(X2=186, P=0.023)(X2=4.368, P=0.037). The allele frequency of rs1143627and rs1800795locus was associated with the severity of illness of intracranial aneurysms after SAH (x2=4.257, P=0.039)(X2=083, P=0.043). In addition rs1143627locus was associated with the clinical outcomes after intracranial aneurysm related SAH.
     4. Conclusion
     The polymorphism of inflammatory factor IL-6, IL-1β, TNF-a gene were associated with intracranial aneurysms susceptibility in Chinese Han population. It thus lay foundation for further study of the role IL-6, IL-1β, TNF-αin played in intracranial aneurysm.
     Chapter two:A preliminary study of the molecular mechanisms of the inflammation related SNP loci which is associated with the of intracranial aneurysms susceptibility in Han population
     1. Objective
     Explore molecular mechanisms of the inflammation related SNP loci which is associated with the of intracranial aneurysms susceptibility in Han population and for provide new ideas for the prevention and treatment of intracranial aneurysms.
     2. Materials and methods
     2.1Object of study:24healthy volunteers were collected from hospital medical center older than18years old. All are Han population with no history of intracranial aneurysm, intracranial aneurysm family hypertension, cerebrovascular disease, cancer, brain trauma. All did not take anti-inflammatory drugs recently. All with no histroy of cardiovascular, brain, liver, kidney related disease, no diabetes, thyroid disease history, no recent infection and inflammation. Participants were taken50ml whole blood through the cubital vein, sodium citrate anticoagulation, used for analysis gene expression levels and serum markers. SNP loci rs1799964/rs1143627and rs1800795are those associated with intracranial aneurysms which have been verified in the previous section
     2.2Research Methods:
     Blood samples from healthy subjects were collected and separated PBMCs, the total RNA were extracted with Trizol. Their content were Measured on a Nanodrop ND-2000spectrophotometer and purity was identified on1%agarose gel electrophoresis to confirm whether the RNA degradated. The expression amount of a reverse transcription to cDNA library was constructed by reverse transcription kit and the target gene mRNA level was mesured by fluorescent quantitative PCR.
     3. Results
     After lymphocyte separation medium by PBMC, we extracted the white blood cells RNA using Trizol, there are28S,18S clear,5S faint bands, indicating no degradation of total RNA, thus ensuring the efficient and reliable reverse transcription. By real-time PCR technology we detect the expression lever of TNF-a, IL-1β, and IL-6gene of the healthy control with different genotypes. We found that the TNF-a gene rs1799964genotype sites, IL-1β gene rs1143627locus rs1800795, and IL-6gene loci have no effect on the expression of each gene. Using real-time enzyme-linked immunosorbent assay we detect the serum protein level of TNF-a, IL-1β and IL-6of the healthy volunteers with different genotypes. TNF-a gene locus rsl799964, IL-1β gene locus rs1143627and IL-6gene locus rs1800795had no effect on the expression of inflammatory cytokines.
     4. Conclusion
     No correlation between the rs1799964locus and TNF-a mRNA and serum TNF-a protein levels. No correlation between the rs1143627locus and IL-1β mRNA and serum IL-1βprotein levels. No correlation between the rs1800795locus and IL-6mRNA and serum IL-6protein levels. What role of these SNP loci to play through in intracranial aneurysms needs further study to confirm it.
引文
[1]van Gijn J, Rinkel GJ. Subarachnoid haemorrhage:diagnosis, causes and management [J]. Brain,2001,124(Pt 2):249-278.
    [2]Pera J, Korostynski M, Krzyszkowski T, et al. Gene expression profiles in human ruptured and unruptured intracranial aneurysms:what is the role of inflammation [J]? Stroke,2010,41(2):224-231.
    [3]Connors JJ, Wojak JC. Interventional neuroradiology:strate-gies and practical techniques [M]. Beijing:science Press,2001,276-294.
    [4]Staalse JM, Bergstrom A, Edsen T, et al. Low plasma arginine:asymmetric dimethyl arginine ratios predict mortality after intracranial aneurysm rupture. Stroke, 2013,44(5):1273-1281.
    [5]Inagawa T. Trends in surgical and management outcomes in patients with aneurysmal subarachnoid hemorrhage in Izumo city, Japan, between 1980-1989 and 1990-1998 [J]. Cerebrovasc Dis,2005,19(1):39-48.
    [6]Vega C, Kwoon JV, Lavine SD. Intracranial aneurysms:current evidence and clinical practice [J]. Am Fam Physician,2002,66(4):601-608.
    [7]Khan UA, Thapar A, Shalhoub J, et al. Risk of intracerebral aneurysm rupture during carotid revascularization [J]. J Vasc Surg,2012,56(6):1739-1747.
    [8]Vlak MH, Algra A, Brandenburg R, et al. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period:a systematic review and meta-analysis [J]. Lancet Neurol,2011,10(7):626-636.
    [9]Fujimoto K.'Medial defects' in the prenatal human cerebral arteries:an electron microscopic study [J]. Stroke,1996,27(4):706-708.
    [10]Finlay HM, Whittaker P, Canham PB. Collagen organization in the branching region of human brain arteries [J]. Stroke,1998,29(8):1595-1601.
    [11]Morimoto M, Miyamoto S, Mizoguchi A, et al. Mouse model of cerebral aneurysm:experimental induction by renal hypertension and local hemodynamic changes [J]. Stroke.2002 Jul;33(7):1911-5.
    [12]Meng H, Wang Z, Hoi Y, Gao L, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation [J]. Stroke,2007,38(6):1924-1931.
    [13]Chatziprodromou I, Tricoli A, Poulikakos D, et al. Haemodynamics and wall remodelling of a growing cerebral aneurysm:a computational model [J]. J Biomech, 2007,40(2):412-426.
    [14]Ingebrigtsen T, Morgan MK, Faulder K, et al. Bifurcation geometry and the presence of cerebral artery aneurysms [J]. J Neurosurg,2004,101(1):108-113.
    [15]Tulamo R, Frosen J, Junnikkala S, et al. Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture [J]. Neurosurgery, 2006,59(5):1069-1076.
    [16]O'Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo starvationv [J]. Nature.2013,493(7432):346-355.
    [17]Jamous MA, Nagahiro S, Kitazato KT, et al. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation:experimental study in rats [J]. J Neurosurg,2007, 107(2):405-411.
    [18]Tung WS, Lee JK, Thompson RW. Simultaneous analysis of 1176 gene products in normal human aorta and abdominal aortic aneurysms using a membrane-based complementary DNA expression array [J]. J Vase Surg,2001, 34(1):143-150.
    [19]Zhao L, Moos MP, Grabner R, et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm [J]. Nat Med,2004, 10(9):966-973.
    [20]Krings T, Piske RL, Lasjaunias PL. Intracranial arterial aneurysm vasculopathies:targeting the outer vessel wall [J]. Neuroradiology,2005, 47(12):931-937.
    [21]Pera J, Korostynski M, Krzyszkowski T, et al. Gene expression profiles in human ruptured and unruptured intracranial aneurysms:what is the role of inflammation? Stroke,2010,41(2):224-231.
    [22]Witkowska AM, Borawska MH, Socha K, et al. TNF-alpha and sICAM-1 in intracranial aneurismal rupture. Arch Immunol Ther Exp (Warsz),2009, 57(2):137-140.
    [23]Jayaraman T, Paget A, Shin YS, Li X, et al. TNF-alpha-mediated inflammation in cerebral aneurysms:a potential link to growth and rupture. Vase Health Risk Manag,2008,4(4):805-817.
    [24]Metaxa E, Meng H, Kaluvala SR, et al. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am J Physiol Heart Circ Physiol,2008,295(2):H736-742.
    [25]Osuka K, Suzuki Y, Tanazawa T, et al. Interleukin-6 and development of vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wien),1998, 140(9):943-951.
    [26]Shi C, Awad IA, Jafari N, et al. Genomics of human intracranial aneurysm wall [J]. Stroke,2009,40(4):1252-1261.
    [27]Juvela S. Natural history of unruptured intracranial aneurysms:risks for aneurysm formation, growth, and rupture[J]. Acta Neurochir Suppl,2002,82:27-30.
    [28]Wiebers DO, Whisnant JP, Huston J 3rd, et al. Unruptured intracranial aneurysms:natural history, clinical outcome, and risks of surgical and endovascular treatment[J]. Lancet,2003,362(9378):103-110.
    [29]Schievink WI, Schaid DJ, Michels VV, et al. Familial aneurysmal subarachnoid hemorrhage:a community-based study [J]. J Neurosurg,1995,83(3):426-429.
    [30]Teunissen LL, Rinkel GJ, Algra A, et al. Risk factors for subarachnoid hemorrhage:a systematic review. Stroke [J].1996,27(3):544-549.
    [31]Connolly ES Jr, Choudhri TF, Mack WJ, et al. Influence of smoking, hypertension, and sex on the phenotypic expression of familial intracranial aneurysms in siblings [J]. Neurosurgery,2001,48(1):64-69.
    [32]Ronkainen A, Miettinen H, Karkola K, et al. Risk of harboring an unruptured intracranial aneurysm [J]. Stroke,1998,29(2):359-362.
    [33]Inagawa T. Risk factors for the formation and rupture of intracranial saccular aneurysms in Shimane, Japan [J]. World Neurosurg,2010,73(3):155-164.
    [34]Ronkainen A, Hernesniemi J, Ryynanen M. Familial subarachnoid hemorrhage in east Finland,1977-1990. Neurosurgery.1993 Nov;33(5):787-96; discussion 796-97. Review.
    [35]Wang PS, Longstreth WT Jr, Koepsell TD. Subarachnoid hemorrhage and family history. A population-based case-control study. Arch Neurol.1995 Feb;52(2):202-4.
    [36]Nakagawa T, Hashi K. The incidence and treatment of asymptomatic, unruptured cerebral aneurysms. J Neurosurg.1994 Feb;80(2):217-23.
    [37]Kojima M, Nagasawa S, Lee YE, et al. Asymptomatic familial cerebral aneurysms. Neurosurgery,1998,43(4):776-781.
    [38]Ruigrok YM, Rinkel GJ, Algra A, et al. Characteristics of intracranial aneurysms in patients with familial subarachnoid hemorrhage. Neurology,2004, 62(6):891-894.
    [39]Rinkel GJ. Natural history, epidemiology and screening of unruptured intracranial aneurysms. J Neuroradiol,2008,35(2):99-103.
    [40]Broderick JP, Brott T, Tomsick T, et al. The risk of subarachnoid and intracerebral hemorrhages in blacks as compared with whites. N Engl J Med,1992, 326(11):733-736.
    [41]Chapman AB, Rubinstein D, et al. Intracranial aneurysms in autosomal dominant polycystic kidney disease.N Engl J Med,1992,327(13):916-920.
    [42]Schievink WI. Genetics of intracranial aneurysms. Neurosurgery,1997, 40(4):651-663.
    [43]Foroud T, Sauerbeck L, Brown R, et al. Genome screen to detect linkage to intracranial aneurysm susceptibility genes:the Familial Intracranial Aneurysm (FIA) study. Stroke,2008,39(5):1434-1440.
    [44]Mackey J, Brown RD Jr, Moomaw CJ, et al. Familial intracranial aneurysms:is anatomic vulnerability heritable? Stroke,2013,44(1):38-42.
    [45]Lander ES, Schork NJ. Genetic dissection of complex traits. Science,1994, 265(5181):2037-2048.
    [46]Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet, 2001,17(9):502-510.
    [47]Rogozin IB, Carmel L, Csuros M, et al. Origin and evolution of spliceosomal introns. Biol Direct,2012,7(3):11.
    [48]Kruglyak L. Power tools for human genetics. Nat Genet,2005,37:1299-1300.
    [49]Wang WY, galraft BJ, Clayton DG, et al. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet,2005,6(2):109-118.
    [50]Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet,2005,6(2):95-108.
    [51]Ruigrok YM, Rinkel GJ. Genetics of intracranial aneurysms. Stroke.2008, 39(3):1049-1055.
    [52]Bilguvar K, Yasuno K, Niemela M, et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet,2008, 40(12):1472-1477.
    [53]Yasuno K, Bilguvar K, Bijlenga P, et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet,2010,42(5):420-425.
    [54]Foroud T, Koller DL, Lai D, et al. Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX 17 in disease risk. Stroke, 2012,43(11):2846-2852.
    [55]Low SK, Takahashi A, Cha PC, et al. Genome-wide association study for intracranial aneurysm in the Japanese population identifies three candidate susceptible loci and a functional genetic variant at EDNRA. Hum Mol Genet,2012, 21(9):2102-2110.
    [56]Yasuno K, Bakircioglu M, Low SK, et al. Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci,2011,108(49):19707-19712.
    [57]Nakaoka H, Takahashi T, Akiyama K, et al. Differential effects of chromosome 9p21 variation on subphenotypes of intracranial aneurysm:site distribution. Stroke, 2010,41(8):1593-1598.
    [58]Hashikata H, Liu W, Inoue K, et al.Confirmation of an association of single-nucleotide polymorphism rs1333040 on 9p21 with familial and sporadic intracranial aneurysms in Japanese patients. Stroke,2010,41(6):1138-1144.
    [59]Takenaka K, Sakai H, Yamakawa H, et al. Polymorphism of the endoglin gene in patients with intracranial saccular aneurysms. J Neurosurg,1999,90(5):935-938.
    [60]Kim SC, Singh M, Huang J, et al. Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery,1997,41(3):642-666.
    [61]Yamada S, Utsunomiya M, Inoue K, et al. Absence of linkage of familial intracranial aneurysms to 7g11 in highly aggregated Japanese families. Stroke,2003, 34(4):892-900.
    [62]Roks AJ, Henning RH. Angiotensin peptides ready to redefine the angiotensin system. J Hypertens,2003,21(7):1269-1271.
    [63]Onda H, Kasuya H, Yoneyama T, et al. Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7g11. Am J Hum Genet,2001,69(4):804-819.
    [64]Khurana VG, Meissner I, Sohni YR, et al. The presence of tandem endothelial nitric oxide synthase gene polymorphisms identifying brain aneurysms more prone to rupture. J Neurosurg,2005,102(3)526-523.
    [65]Phillips J, Roberts G, Bolger C, et al. Lipoproteina a potential biologica; marker for unruptured intracranial aneurysms. Neurosurgery,1997,40(5):1112-1115.
    [66]Slowik A, Borratynska A, Turaj W, et al. Interleukin lbeta-511 C/T polymorphism and risk of aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry,2006,77(2):279-280.
    [67]张国忠,冯文峰,黄理金,等.白细胞介素-1β基因多态性与颅内动脉瘤的关系.广东医学,2008,29(12):2016-2018.
    [68]Zhang G, Tu Y, Feng W, et al. Association of interleukin-6-572G/C gene polymorphisms in the Cantonese population with intracranial aneurysms. J Neurol Sci,2011,306(1-2):94-97.
    [69]McColgan P, Thant KZ, Sharma P. The genetics of sporadic ruptured and unruptured intracranial aneurysms:a genetic meta-analysis of 8 genes and 13 polymorphisms in approximately 20,000 individuals. J Neurosurg,2010, 112(4):714-721.
    [70]Liu Y, Sun J, Wu C, Cao X, et al. The interleukin-6-572G/C gene polymorphism and the risk of intracranial aneurysms in a Chinese population. Genet Test Mol Biomarkers,2012,16(7):822-826.
    [71]张国忠,冯文峰,黄理金,等.汉族人白细胞介素-6-174G/C基因多态性与颅内动脉瘤的关联性研究.中国神经疾病杂志,2009,35(9):254-256.
    [72]Low SK, Zembutsu H, Takahashi A, et al. Impact of LIMK1, MMP2 and TNF-a variations for intracranial aneurysm in Japanese population. J Hum Genet, 2011,56(3):211-216.
    [73]Young AM, Karri SK, You W, et al. Specific TNF-alpha inhibition in cerebral aneurysm formation and subarachnoid hemorrhage. Curr Drug Saf,2012, 7(3):190-196.
    [74]Low SK, Zembutsu H, Takahashi A, et al. Impact of LIMK1, MMP2 and TNF-a variations for intracranial aneurysm in Japanese population. J Hum Genet, 2011,56(3):211-216.
    [75]Jayaraman T, Paget A, Shin YS, et al. TNF-alpha-mediated inflammation in cerebral aneurysms:a potential link to growth and rupture. Vase Health Risk Manag, 2008,4(4):805-817.
    [76]Jayaraman T, Berenstein V, Li X, et al. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery,2005, 57(3):558-564.
    [77]Rothwell NJ, Luheshi GN. Interleukin 1 in the brain:biology, pathology and therapeutic target. Trends Neurosci,2000,23(3):618-625.
    [78]Basu A, Krady JK, Levison SW. Interleukin-1:a master regulator of neuroinflammation. J Neurosci Res,2004,78(7):151-156.
    [79]Rajalingham S, Das S. Antagonizing IL-6 in ankylosing spondylitis:a short review. Inflamm Allergy Drug Targets,2012,11(4):262-265.
    [80]Mircic M, Kavanaugh A. Inhibition of IL6 in rheumatoid arthritis and juvenile idiopathic arthritis. Exp Cell Res,2011,317(9):1286-1292.
    [81]Schuett H, Luchtefeld M, Grothusen C, et al. How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb Haemost,2009, 102(2):215-222.
    [82]Fontanella M, Rainero I, Gallone S, et al. Interleukin 6 gene polymorphisms are not associated with aneurysmal subarachnoid haemorrhage in an Italian population. J Neurol Neurosurg Psychiatry,2008,79(4):471-473.
    [83]Connolly ES Jr, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage:a guideline for healthcare professionals from the American Heart Association/american Stroke Association[J]. Stroke,2012,43(6):1711-1137.
    [84]Juvela S. Risk factors for multiple intracranial aneurysms. Stroke,2000, 31(2):392-397.
    [85]Nahed BV, Bydon M, Ozturk AK, et al. Genetics of intracranial aneurysms. Neurosurgery,2007,60(2):213-226.
    [86]Onda H, Kasuya H, Yoneyama T, et al. Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet,2001,69(4):804-819.
    [87]Ruigrok YM, Rinkel GJ, Algra A, et al. Characteristics of intracranial aneurysms in patients with familial subarachnoid hemorrhage. Neurology,2004, 62(6):891-894.
    [88]Krex D, Konig IR, Ziegler A, et al. Extended single nucleotide polymorphism and haplotype analysis of the elastin gene in Caucasians with intracranial aneurysms provides evidence for racially/ethnically based differences. Cerebrovasc Dis,2004, 18(2):104-110.
    [89]Krex D, Ziegler A, Schackert HK, et al. Lack of association between endoglin intron 7 insertion polymorphism and intracranial aneurysms in a white population: evidence of racial/ethnic differences. Stroke,2001,32(11):2689-2694.
    [90]Yoneyama T, Kasuya H, Akagawa H, et al. Absence of alpha-1 antitrypsin deficiency alleles (S and Z) in Japanese and Korean patients with aneurysmal subarachnoid hemorrhage. Stroke,2004,35(12):e376-378.
    [91]Yoneyama T, Kasuya H, Onda H, et al. Collagen type I alpha2 (COL1A2) is the susceptible gene for intracranial aneurysms. Stroke,2004,35(2):443-448.
    [92]Gaetani P, Tartara F, Grazioli V, et al. Collagen cross-linkage, elastolytic and collagenolytic activities in cerebral aneurysms:a preliminary investigation. Life Sci, 1998,63:285-292.
    [93]Gaetani P, Tartara F, Tancioni F, et al. Deficiency of total collagen content and of deoxypyridinoline in intracranial aneurysm walls. FEBS Lett,1997,404:303-306.
    [94]van den Berg JS, Pals G, Arwert F, et al. Type III collagen deficiency in saccular intracranial aneurysms. Defect in gene regulation? Stroke,1999, 30(8):1628-1631.
    [95]Kuivaniemi H, Prockop DJ, Wu Y, et al. Exclusion of mutations in the gene for type III collagen (COL3A1) as a common cause of intracranial aneurysms or cervical artery dissections:results from sequence analysis of the coding sequences of type III collagen from 55 unrelated patients. Neurology,1993,43(12):2652-2658.
    [96]Akagawa H, Kasuya H, Onda H, et al. Influence of endothelial nitric oxide synthase T-786C single nucleotide polymorphism on aneurysm size. J Neurosurg, 2005,102:68-71.
    [97]Khurana VG, Meissner I, Sohni YR, et al.The presence of tandem endothelial nitric oxide synthase gene polymorphisms identifying brain aneurysms more prone to rupture. J Neurosurg 102:526-531,2005.
    [98]Takenaka K, Sakai H, Yamakawa H, et al. Polymorphism of the endoglin gene in patients with intracranial saccular aneurysms. J Neurosurg,1999,90(5):935-938.
    [99]Peters DG, Kassam AB, Chang YF. A DNA sequence polymorphism in the endoglin gene is not associated with intracranial aneurysm or aneurysmal subarachnoid hemorrhage. Cerebrovasc Dis,2005,20(2):96-100.
    [100]Roks AJ, Henning RH. Angiotensin peptides:ready to re(de)fine the angiotensin system? J Hypertens.2003 Jul;21(7):1269-71.
    [101]Hamano K, Ohishi M, Ueda M, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is not a risk factor predisposing to abdominal aortic aneurysm. Eur J Vase Endovasc Surg.1999,18(2):158-161.
    [102]Kim SC, Singh M, Huang J, et al. Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery,1997,41(3):642-667.
    [103]Peters DG, Kassam A, St Jean PL, et al. Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke,1999,30(12):2612-2616.
    [104]Slowik A, Borratynska A, Turaj W, et al. Interleukin lbeta-511 C/T polymorphism and risk of aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry.2006 Feb;77(2):279-80.
    [105]Morgan L, Cooper J, Montgomery H, et al. The interleukin-6 gene-174G>C and -572G>C promoter polymorphisms are related to cerebral aneurysms. J Neurol Neurosurg Psychiatry,2006,77(8):915-917.
    [106]Fontanella M, Rainero I, Gallone S, et al. Tumor necrosis factor-alpha gene and cerebral aneurysms. Neurosurgery,2007,60(4):668-673.
    [107]Guo D, Hasham S, Kuang SQ, et al. Familial thoracic aortic aneurysms and dissections:genetic heterogeneity with a major locus mapping to 5q13-14. Circulation,2001,103:2461-2468.
    [108]Loeys BL, Chen J, Neptune ER, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet,2005,37:275-281.
    [109]Concannon P, Erlich HA, Julier C, et al. Type 1 Diabetes Genetics Consortium: Type 1 diabetes:evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families. Diabetes,2005,54:2995-3001.
    [110]Liu YJ, Xiao P, Xiong DH, et al. Searching for obesity genes:Progress and prospects. Drugs Today (Bare),2005,41:345-362.
    [111]Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science,2001,293:1107-1112.
    [112]Olson JM, Vongpunsawad S, Kuivaniemi H, et al. Search for intracranial aneurysm susceptibility gene(s) using Finnish families. BMC Med Genet,2002,3:7.
    [113]Onda H, Kasuya H, Yoneyama T, et al.Genomewide-Iinkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet,2001,69:804-819.
    [114]Ozturk AK, Nahed BV, Bydon M, et al. Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke,2006,37:1021-1027.
    [115]陈锐聪,李明昌,等.肿瘤坏死因子-a-308基因多态性与广东汉族人颅内动脉瘤的相关性研究.中国神经精神疾病杂志,2008,34(10):613-615.
    [116]潘英,孙卫文,李明昌,等.广东汉族人颅内动脉瘤与肿瘤坏死因子TNFa-1031基因多态性的相关性研究,解剖学研究,2011,33(4):278-289.
    [117]Sun H, Zhang D, Zhao J. The interleukin-6 gene -572G>C promoter polymorphism is related to intracranial aneurysms in Chinese Han nationality. Neurosci Lett,2008,440(1):1-3.
    [1]Chowdhury T, Cappellani RB, Sandu N,et al.Perioperative variables contributing to the rupture of intracranial aneurysm:an update. Scientific World Journal,2013, 396-404.
    [2]Greving JP, Wermer MJ, Brown RD Jr,et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms:a pooled analysis of six prospective cohort studies. Lancet Neurol,2014,13(1):59-66.
    [3]Southerland AM, Meschia JF, Worrall BB. Shared associations of nonatherosclerotic, large-vessel, cerebrovascular arteriopathies:considering intracranial aneurysms, cervical artery dissection, moyamoya disease and fibromuscular dysplasia. Curr Opin Neurol,2013,26(1):13-28.
    [4]Onda H, Yoneyama T, Akagawa H, et al. Genetic dissection of intracranial aneurysm. Brain Nerve,2008,60(11):1245-60.
    [5]刘颖,朱方何,洪彦彬,等.单核苷酸多态性的研究进展与应用.广东农业科学,2011,50-53.
    [6]Parkes M, Cortes A, van Heel DA, et al. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet,2013, 14(9):661-673.
    [7]Wang D,Fan J,Siao C, et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science,1998.280: 1077-1082.
    [8]Chen Z, Pereira MA, Seielstad M, et al. Joint effects of known type 2 diabetes susceptibility Loci in genome-wide association study of singapore chinese:the singapore chinese health study. PLoS One,2014,10;9(2):e87762.
    [9]Wellcome Trust Case Control Consortium, Maller JB, McVean G, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet, 2012,44(12):1294-1301.
    [10]Erie L. Application of SNP technologies in medicine:lessons learned and future challenges. Genome Res,2001,11:927-929.
    [11]崔宏伟,宋宏春,苏秀兰.药物基因组学在药学中的应用研究概况.中国医药生物技术,2011,6(4):283-287.
    [12]Destenaves B,Thomas F. New advances in pharmaeogenomics. Curr Opin Chem Bio,2000,4(4):440.
    [13]Cooper D N, Smitll B A, Cooke H J,et al. An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet,1985,69:201-205.
    [14]Tenaillon M I,Sawkins M C, LDng A D, et al. Pattern of DNA sequence polymorphism along chromosome 1 of maize(Zea mays ssp. mays L.). Proc Nail Acad Sci USA,2001,98:9161-9166.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.