水稻F_3群体稻米功能成分含量的遗传变异及其QTLs分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能稻米是兼有营养和调节人体生理功能、不以治疗疾病为目的适宜特定人群食用的一类稻米。与普通稻米相比不仅具有更丰富的蛋白质、必需氨基酸、矿质元素等营养成分,还含有抗性淀粉、膳食纤维、不饱和脂肪酸、总黄酮、γ-氨基丁酸(γ-aminobutyric acid, GABA)、甾醇、生物碱等特殊生理活性物质。这些生理活性物质对预防高血压、高血糖、心血管疾病和肥胖等慢性病有功效。功能稻米的开发对于通过日常饮食来预防慢性病具有重大意义,同时对解决全球亚健康问题具有较高实用价值。因此,对功能稻米中功能成分含量的遗传变异及与其相关基因的定位进行研究十分必要。
     本研究以“功米3号/滇屯502”F3群体的117个正交株系和101个反交株系为材料,检测了糙米及精米抗性淀粉、生物碱、总黄酮和GABA四种功能成分含量,探讨了这四种功能成分含量的遗传变异以及与农艺性状间的相关关系,并对抗性淀粉及其关联功能成分含量的QTL (Quantitative trait locus,数量性状位点)进行了初步定位。研究结果如下:
     1.对水稻F3群体糙米及精米中四种功能成分含量遗传变异的研究结果表明:糙米抗性淀粉含量范围为0.59%-7.82%,变异系数35.58%-55.24%,精米抗性淀粉含量范围为0.48%-6.22%,变异系数42.55%-45.16%;糙米生物碱含量范围为12.16-52.05mg/100g,变异系数21.1%-25.08%,精米生物碱含量范围为5.66-44.04mg/100g,变异系数24.15%-35.29%;糙米总黄酮含量范围为70-194.66mg/100g,变异系数13.96%-20.72%,精米总黄酮含量范围为9.24-147.23mg/100g,变异系数36.79%-47.01%;糙米GABA含量范围为2.89-18.54mg/100g,变异系数37.45%-45.18%,精米GABA含量范围为2.04-13.9mg/100g,变异系数36.27%-46.8%。四种功能成分含量在糙米及精米中均呈现广泛的遗传变异,表明它们是由多基因控制的数量性状。
     2、糙米抗性淀粉、GABA含量,精米生物碱、总黄酮及GABA含量在正、反交组合间差异显著或极显著,表明细胞质效应对水稻籽粒功能成分的积累有影响。
     3、对功能成分含量和农艺性状的相关分析表明:尽管F3群体中糙米四种功能成分含量均高于精米,但无论是正交还是反交,同一功能成分含量在糙米和精米间极显著正相关。正交糙米组合中抗性淀粉含量与总黄酮含量极显著正相关,抗性淀粉、总黄酮与GABA均呈极显著负相关;正交精米组合中生物碱与总黄酮极显著正相关,抗性淀粉与GABA呈极显著负相关;反交组合中仅精米总黄酮与精米GABA极显著正相关。
     正交组合株高与糙米总黄酮,总穗数、穗长与精米总黄酮均呈极显著相关;反交组合实粒数与糙米抗性淀粉和精米总黄酮,秕粒数、结实率与糙米GABA均呈极显著相关,表明株高、总穗数、穗长、实粒数、秕粒数和结实率可作为功能成分含量高低的农艺参考指标。
     农艺性状间株高与穗长和实粒数、穗长与实粒数、实粒数与结实率均呈极显著正相关,秕粒数与实粒数和结实率均呈极显著负相关。
     4、利用复合区间作图法定位出2个与糙米抗性淀粉、糙米生物碱、精米抗性淀粉含量相关的QTL位点,均位于7号染色体RM7110-RM3211和RM3404-RM478之间,都具有来自功米3号的加性效应,对表型的解释率介于7.6%-19.3%之间。
Functional rice is a kind of rice with nutrition and regulating human physiological function that suitable for specific population, not to treat the disease. Compared with ordinary rice, it not only is more rich in protein, essential amino acids, minerals and other nutrient components, but also contains resistant starch, dietary fiber, unsaturated fatty acids, flavonoids, y-aminobutyric acid (GABA), sterols, alkaloids and other special physiological active substances. These physiological active substances have an effect on prevention of hypertension, hyperglycemia, cardiovascular diseases, obesity and other chronic diseases. The breeding of functional rice is of great significance to prevent chronic disease through daily diet, and also has a high practical value to solve global sub-health problem. Therefore, it is necessary to study on the genetic variation and gene mapping of functional components contents in the functional rice.
     This study was based on117lines of derect cross and101lines of back-cross from "gongmi3/Diantun502" F3population. The contents of four functional components, including resistant starch, alkaloids, flavonoids and GABA, in brown and polished rice were detected, then discussed the genetic variation of these four functional components contents and the correlation with agronomic traits, and also analyzed QTL mapping of resistant starch and other functional component which was associated with it. The results were as follows:
     1. The results from analysising genetic variation of the four functional components contents in brown and polished rice of F3population showed that:Resistant starch contents in brown rice were0.59%-7.82%, coefficient of variation were35.58%-55.24%; In polished rice, the contents were0.48%-6.22%, coefficient of variation were42.55%-45.16%. Alkaloids contents in brown rice were12.16-52.05mg/100g, coefficient of variation were21.1%-25.08%; In polished rice, the contents were5.66- 44.04mg/100g, coefficient of variation were24.15%-35.29%. Flavonoids contents in brown rice were70-194.66mg/100g, coefficient of variation were13.96%-20.72%; In polished rice, the contents were9.24-147.23mg/100g, coefficient of variation were36.79%-47.01%. GABA contents in brown rice were2.89-18.54mg/100g, coefficient of variation were37.45%-45.18%; In polished rice, the contents were2.04-13.9mg/100g, coefficient of variation were36.27%-46.8%. Four functional components in brown and polished rice showed a wide range of genetic variation, this indicated that they were quantitative traits controlled by multi-genes.
     2. Resistant starch and GABA contents in brown rice, alkaloids/flavonoids and GABA contents in polished rice were different at0.05or0.01level, indicated that cytoplasmic effects on the accumulation of functional components in rice.
     3. Functional components and agronomic traits correlation analysis showed that: For F3population, although four functional components contents in brown rice were higher than that in polished rice, no matter in derect cross or back-cross, the same functional component content showed extremely significant positive correlation between brown and polished rice. For brown rice in derect cross, resistant starch and flavonoids contents showed extremely significant positive correlation; Resistant starch/flavonoids contents and GABA contents showed extremely significant negative correlation; For polished rice in derect cross, alkaloids and flavonoids contents displayed extremely significant positive correlation, resistance starch and GABA contents showed extremely significant negative correlation; In back-cross, just flavonoids and GABA contents of polished rice displayed extremely significant positive correlation.
     In derect cross, plant height and flavonoids contents of brown rice, total panicles/panicle length and flavonoids contents of polished rice showed extremely significant correlation; In back-cross, filled grains per panicle and resistant starch contents of brown rice/flavonoids contents of polished rice, blighted grains per panicle/spikelet fertility and GABA contents of brown rice displayed extremely significant correlation. It was suggested that plant height, total panicles, panicle length, filled grains per panicle, blighted grains per panicle and spikelet fertility can be used as an agronomic indicator to identify functional component content.
     For agronomic traits, there were extremely significant positive correlation between plant height and panicle length/filled grains per panicle, between panicle length and filled grains per panicle, between filled grains per panicle and spikelet fertility; Blighted grains per panicle was extremely significant negative correlation with filled grains per panicle and spikelet fertility.
     4. Detected two QTLs by CTM(composite interval mapping) relating to resistant starch/alkaloids content of brown rice, resistant starch content of polished rice, respectively. They were located in interval RM7110-RM3211and RM3404-RM478on chromosome7. The interpretation of the phenotypic variation ranged from7.6%to19.3%, the positive alleles were all from gongmi3.
引文
[1]Englyst H, Wiggins HS, Cummings JH. Determination of the non-starch polysaccharides in Plant foods by gas-liquid chromatography of constituent sugars as alditol acetates [J]. Analyst, 1982,107:307-318.
    [2]杨月欣,王竹,洪洁,等.抗性淀粉结肠内酵解对大鼠肠道健康的影响[J].营养学报,2004,12(11):2618-2622.
    [3]Tovar J, Bjorck I, Asp NG. Starch content and alpha-amylolysis rate in precooked legume flours [J]. Journal of Agricultural and Food Chemistry,1990,38:1818-1823.
    [4]Kishida T, Nogami H, Himeno S, et al. Heat moisture treatment of high amylose cornstarch increases its resistant starch content but not its physiologic effects in rats [J]. Journal of Nutrition,2001,131:2716-2721.
    [5]Patricia M, Ros in, Franco M, et al. Measurement and characterization of dietary starches [J]. Journa of Food Composition and Analysis,2002,15:367-377.
    [6]蹇华丽,高群玉,梁世中.链淀粉含量对抗性淀粉形成影响的研究[J].粮食与油脂,2002,(10):5-7.
    [7]Chandrashekar A, Kirleis AW. Influence of protein on starch gelatinization in sorghum [J]. Cereal chemistry,1988,65(6):457-462.
    [8]杨光.抗性淀粉的理化性质、制备和应用研究[D].无锡:江南大学,2000.
    [9]罗志刚,高群玉.脂对颗粒态抗性淀粉形成的影响[J].食品工业科技,2005,26(12):91-93.
    [10]Muir JG, Brikett A, Brown L, et al. Digestion of the polysaccharides of some cereal foods in the human small intestine [J]. American Journal of Clinical Nutrition,2000,15(6):89-95.
    [11]王竹,杨月欣,周瑞华,等.抗性淀粉的代谢及对血.糖的调节作用[J].营养学报,2003,25(2):190-195.
    [12]张文青.抗性淀粉对糖尿病胰岛素抵抗的干预作用及相关机制研究[D].新疆:新疆医科大学,2006.
    [13]Kim WK, Chung MK, Kang NE, et al. Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats [J]. Nutrition Biochemistry,2003,14 (3):166-172.
    [14]Behall KM, Scholfield DJ, Yuhaniak I, et al. Diets containing high amylose vs amylopect in starch: effects on metabolic variables in human subjects [J]. American Journal of Clinical Nutrition,1989,49 (2):337-344.
    [15]Cheng HH, Lai MH. Fermentation of resistant rice starch produces propionate reducing serum and hepatic cholesterol in rats [J]. Journal of Nutrition,2000,130:1991-1995.
    [16]Schultz AGM, Van Amelsvoort JM, Beynen AC. Dietary native resistant starch but not retrograded resistantstarch raises magnesium and calcium absorption in rats [J]. Journal of Nutrition,1993,123:1724-1731.
    [17]Phillips J, Muir JG, Birkett A, et al. Effect of resistant starch on fecal bulk and fermentation- dependent events in humans [J]. American Journal of Clinical Nutrition,1995,62(1):121-130.
    [18]Johnson IT, Gee JM. Resistant starch [J]. Nutrition & Food Science,1996,96(1):20-23.
    [19]Hu PS, Zhao HJ, Duan ZY, et al. Starch digestibility and the estimated glycemic score of different types of rice differing amylose contents [J]. Journal of Cereal Science,2004,40: 231-237.
    [20]杨朝柱,李春寿,张磊,等.富含抗性淀粉水稻突变体的淀粉特性研究[J].中国水稻科学,2005,19(6):516-520.
    [21]朱辉明,白建江,王慧,等.高抗性淀粉粳稻新品系稻米淀粉特性[J].中国农学通报,2010,26(14):108-112.
    [22]李敏,朴建华,杨晓光.抗性淀粉转基因大米和亲本大米营养成分的比较研究[J].科学技术与工程,2009,9(7):1847-1849.
    [23]牟方贵,闫宗武,冉瑞林,等.水稻抗性淀粉相关SSR标记的初步研究[J].分子植物育种,2008,13(3):27-33.
    [24]黄祖六,谭学林,Tragoonrung S,等.稻米直链淀粉含量基因座位的标记定位[J].作物学报,2000,26(6):777-782.
    [25]Tan YF, Li JX, Yu SB, et al. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63 [J]. Theoretical and Applied Genetics,1999,99:642-648.
    [26]He P, Li SG, Qian Q, et al. Genetic analysis of rice grain quality [J]. Theoretical and Applied Genetics,1999,98:502-508.
    [27]Sano Y. Differential regulation of waxy gene expression in rice endosperm [J]. Theoretical and Applied Genetics,1984,68:467-473.
    [28]Hirano HY, Eiguchi M, Sano Y. A single base change altered the regulation of the waxy gene at post-transcriptional level during the domestication of rice [J]. Molecular Biology and Evolution, 1998,15(8):978-987.
    [29]程世军,葛鸿飞,王宗阳,等.在转基因水稻植株中蜡质基因第1内含子对基因表达影响的分析[J].植物生理学报,2001,27(5):381-386.
    [30]Wanchana S, Toojinda T, Tragoonrung S, et al. Duplicated coding sequence in the waxy allele of tropical glutinous rice(Oryza sativa L.) [J]. Plant Science,2003,165:1193-1199.
    [31]吴洪恺,梁国华,严长杰,等.水稻不同生态型品种间直链淀粉含量的变异及其遗传分析[J].作物学报,2006,32(9):1301-1305.
    [32]吴长明,孙传青,陈亮,等.水稻直链淀粉含量与粙粳分化度的QTL及其相互关系研究[J].中国农业大学学报,2000,5(5):6-11.
    [33]Chung HS, Shin JC. Characterization of antioxidant alkaloids and phenolic acids from anthocyanin-pigmented rice(Oryza sativa cv. Heugjinjubyeo) [J]. Food Chemistry,2007, 104(4):1670-1677.
    [34]Kang KA, Lee JH, Zhang R, et al. Oryzadine, a new alkaloid of Oryza sativa cv. Heugjinjubyeo, attenuates oxidative stress-induced cell damage via a radical scavenging effect [J]. Food Chemistry,2010,119(3):1135-1142.
    [35]林洪生,李树奇.三参冲剂对肺癌转移中内皮细胞及粘附因子的影响[J].中国肿瘤,1999, 8(12):574-576.
    [36]Escuin D, Kline ER, Ciannakakou P. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1 alpha accumulation and activity by disrupting microtubule function [J]. Cancer Research,2005,65(19):9021-9028.
    [37]王敬俭,李静,联美玉,等.靶向缺氧诱导因子-1的抗肿瘤药物研究进展[J].药物学报,2008,43(6):565-569.
    [38]Ryu MJ, Chung HS. Isolation of Alkaloids with Immune Stimulating Activity from Oryza sativa cv. Heugnambyeo [J]. Journal of the Korean Chemical Society,2010,54(1):65-70.
    [39]赵文婉,张珍田,周淑姿.浅谈植物类化学物质对抗自由基之机制[J].食品工业(台湾)2002,34(2):49-59.
    [40]延玺,刘会青,邹永青.黄酮类化合物生理活性及合成研究进展[J].有机化学,2008,28(9):1534-1544.
    [41]Tang LJ, Zhang SF, Gao WT, et al. Syntheses of novel flavones containing Schiff base moiety [J]. Chemical Research in Chinese Universities,2004,20(5):668-670.
    [42]Hu C, Zawistiwski J, Ling WH, et al. Black rice(Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems [J]. Journal of Agricultural and Food Chemistry,2003,51(18):5271-5277.
    [43]Koide T, Kamei H, Hashimoto Y, et al. Antitumor effect of hydrolyzed anthocyanin from grape rinds and red rice [J]. Cancer Biotherapy and Radiopharmaceuticals,2009,11(4):273-277.
    [44]何容飞,梅雪婷,许东晖,等.水稻总黄酮对小鼠学习记忆的促进作用[J].中药材,2002,25(2):108-111.
    [45]Toyokuni S, Itani T, Morimitsu Y. et at. Protective effect of colored rice over white rice on Fenton reaction-based renal lipid peroxidation in rats [J]. Free Radical Research,2002,36(5): 583-592.
    [46]孙玲,陈俊秋,张名位,等.稻米种皮颜色与其抗氧化性的关系[J].中国粮油学报,2002,17(4):25-27.
    [47]孙玲,张名位,池建伟,等.黑米的抗氧化性及其与黄酮和种皮色素的关系[J].营养学报,2000,22(3):246-249.
    [48]李清华,江川,林玲娜,等.不同色稻精米与米糠中黄酮含量的差异分析[J].福建农业学报,2005,20(1):49-52.
    [49]李清华,林玲娜,段斌莉,等.不同类型水稻米糠中黄酮含量的研究[J].江西农业大学学报,2006,28(3):327-331.
    [50]靳祥,曾亚文,杨树明,等.云南稻核心种质回交后代糙米总黄酮含量分析[J].云南大学学报(自然科学版),2010,32(4):483-487.
    [51]庄杰云,钱惠荣.应用RFLP标记研究亚洲栽培稻的起源与分化[J].中国水稻科学,1995,9(3):135-140.
    [52]Furukawa T, Maekawa M, Oki T, et al. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp [J]. The Plant Journal,2007,49(1):91-102.
    [53]韩济生.神经科学原理[M].北京:北京医科大学出版社,1999:550.
    [54]Okada T, Sugishita T, Murakami T, et al. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression,autonomic disorder by oral administration [J]. Nippon Shokuhin Kagaku Kaishi,2000,47(8):596-603.
    [55]McCann SM, vijayan E, Negro-Vilar A, et al.Gamma aminobutyric acid (GABA), a modulator pituitary horm one secretion by hypothalamic and pituitary action [J]. Psychoneuroendocrin-ology,1984,9(2):97-106.
    [56]Saikusa T. Accumulation of Gamma aminobutyric acid (GABA) in the rice germ during water soaking [J]. Bioscience Biotechnology and Biochemistry,1994,58(12):2291-2292.
    [57]曾原.富含γ-氨基丁酸米胚芽的开发利用[J].杭州食品科技,1997(3):22-26.
    [58]房克敏,李再贵,袁汉成,等HPLC法测定发芽糙米中γ-氨基丁酸含量[J].食品科学,2006,27(4):208-211.
    [59]郑向华,陈荣,叶宁,等.温度和时间对发芽糙米中γ-氨基丁酸含量的影响[J].中国粮油学报,2009,24(9):1-4.
    [60]舒小丽,张琳琳,舒庆尧,等.富含γ-氨基酸水稻研究进展[J].科技创新导报,2010,(35):13.
    [61]张祥喜,袁林峰,刘凯,等.富含γ-氨基丁酸(GABA)的巨胚功能稻研究进展[J].江西农业学报,2007,19(1):36-39.
    [62]Mccouch SR, Chen X, Panaud O, et al. DNA sequence abundence and allele variation [J]. Genome,1997,39:866-873.
    [63]程保山,杨加银,徐卫军.SSR标记在水稻遗传育种中的应用[J].安徽农业科学,2009,37(29):14038-14040.
    [64]霍雨艳,田志宏.SSR标记在水稻研究中的应用概况[J].安徽农学通报,2010,1(23):39-42.
    [65]Ni JJ, Colowit PM, Mackill DJ. Evaluation of genetic diversity in rice subspecies using microsatellite markers [J]. Crop Science,2002,42:601-607.
    [66]江云珠,汤圣祥,余汉勇,等.利用SSR标记对中国水稻品种进行遗传多样性评价和品种分类的研究[J].中国稻米,16(4):19-24.
    [67]刘传光,张桂权.用SSR标记分析1949-2005年华南地区常规籼稻主栽品种遗传多样性及变化趋势[J].作物学报,2010,36(11):1843-1852.
    [68]Jiang GH, He YQ, Xu CG, et al. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross [J]. Theoretical and Applied Genetics,2004,108:688-698.
    [69]Andaya VC, Mackill DJ. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross [J]. Theoretical and Applied Genetics, 2003,106(6):1084-1090.
    [70]Kearsey MJ. The principles of QTL analysis (a minimal mathematics approach) [J]. Journal of Experimental Botany Advance,1998,49(327):1619-1623.
    [71]吴为人,李维明.基于性状—标记同归的QTL区间测验方法[J].遗传,2001,23(2):143-146.
    [72]Lander ES. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populatlons [J]. Genomics,1987,1:174-181.
    [73]Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigarions of Quantitative trait loci in maize, genomic distribution, and types of gene action [J]. Genet,1987, 116:113-125.
    [74]Yu SB, Li JX, Xu CG, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid [J]. Proceeding of the National Academy of Sciences of the United States of America,1997,94:9226-9231.
    [75]Paterson AH. Comparative mapping of plant phenotypes [J]. Plant Breeding Reviews,1997,14: 13-37.
    [76]谢勇武,杨树明,曾亚文,等.粳稻02428x02428c重组自交系孕穗期耐冷性QTL分析[J].中国水稻科学,2011,25(6):681-684.
    [77]周亦华,陈延华.分子标记在植物学中的应用及前景[J].武汉植物学研究,1999,17(1):75-86.
    [78]Aluko G, Martinez C, Tohme J, et al. QTL mapping of grain quality traits from the interspecific cross Oryza sativa×O.glaberrima [J]. Theoretical and Applied Genetics,2004,109:630-639.
    [79]姜华,赵江红,郭龙彪,等.水稻高节位分蘖的QTI定位和互作分析[J].中国水稻科学,2011,25(2):157-162.
    [80]杨永霞.水稻苗期与耐冷性有关的儿个性状的动态基因定位[D].浙江:浙江大学,2004.
    [81]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    [82]Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics,1994,136(4):1457-1468.
    [83]朱军.复杂数量性状基因定位的混合线性模型方法.见:王连铮,戴景瑞.全国作物育种学术讨论会文集[C].北京:中国农业科技出版社,1998.
    [84]Goni I, Garcia-Diz L, Manas E, et al. Analysis of resistant starch: a method for foods and food products [J]. Food Chemistry,1996,56:445-449.
    [85]李建伟.酸性染料比色法测定苦参药材中总生物碱的含量[J].长治医学院学报,2007(5):331-335.
    [86]庄向平,虞杏英.银杏叶中黄酮含量的测定和提取方法[J].中草药,1992,23(3):122-144.
    [87]Inatomi K, Slaughter JC. The role of glutamate decarbozylase and y-aminobutyric acid in germinating barly [J]. Journal of Experimental Botany,1971,22:561-571.
    [88]McCouch SR, Chen X, Panaud O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding [J]. Plant Molecular Biology,1997,35:89-99.
    [89]王雨辰,杜娟,曾亚文,等.云南稻籼粳亚种间功能性成分含量差异[J].植物遗传资源学报,2010,11(2):175-178.
    [90]中建斌,蒋昌顺.作物QTL定位的应用及限制性因素[J].热带农业科学,2006,26(4):59-63.
    [91]曾亚文,杜娟,普晓英,等.分光光度法检测云南稻核心种质栽培型间糙米功能成分差异[J].光谱学与光谱分析,2010,(12):3388-3394.
    [92]谢勇武,杨树明,曾亚文,等.粳稻02428突变体重组自交系糙米功能成分含量及其与农艺性状的相关分析[J].西南农业学报,2011,24(5):1620-1624.
    [93]张名位,郭宝江,池建伟,等.不同品种黑米的抗氧化作用及其与总黄酮和花色苷含量的关系[J].中国农业科学,2005,38(7):1324-1331.
    [94]Dong Y, Tsuzuki E, Terao H. Genetic analysis of aroma in three rice cultivars (Oryza sativa L.) [J]. Journal of Genetics & Breeding,2001,55(1):39-43.
    [95]孙向东.发芽糙米研究最新进展[J].中国稻米,2005,(3):5-7.
    [96]吴琴燕,杨敬辉,朱桂梅,等.糙米原料中γ-氨基丁酸含量与谷氨酸脱羧酶活性分析[J].江西农业学报,2009,21(6):8-10.
    [97]杨树明,罗曦,曾亚文,等.不同水稻品种产量及其γ-氨基丁酸和抗性淀粉含量差异与相关性[J].西南农业学报,2009,22(2):236-240.
    [98]Zhuang JY, Lin HX, Lu J, et al. Analysis of QTLXenvironment interaction for yield components and plant height in rice [J]. Theoretical and Applied Genetics,1997(95):799-808.
    [99]Lanceras JC, Huang ZL, Naivikul O, et al. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105) [J]. Oxford Journals,2000,7(2):93-101.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.