低浓度OUA对大鼠心肌细胞收缩力的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心力衰竭是多数心血管病的最终归宿和主要死因。其症状复杂,预后严峻,是当今心血管疾病治疗中的一大难题,严重危害公共健康。
     强心苷(Cardiotonic steroid,Cs)是治疗心衰的传统经典药物,研究证明其治疗心衰的作用机制与钠钾泵(Na+/K+-ATPase,Na/K pump,NKA,钠泵)活性有关。钠钾泵是普遍存在于人类和动物细胞膜上的一种酶,其α亚基上存在强心苷的结合位点。目前认为强心苷治疗心衰的机制在于抑制心肌细胞膜上的钠钾泵,使细胞内Na+增加,通过Na+/Ca2+交换,引起胞浆Ca2+的升高,并促进肌浆网对钙的摄取及随后的钙释放(CICR),从而使心肌细胞的收缩力增强。
     但研究也发现,临床上强心苷有效治疗心衰的血清游离药物浓度(10-9-10-8M)比其抑制钠钾泵发挥离子转运功能的浓度要低得多,而且Gao等指出,低浓度强心苷(10-9-10-8M的双氢哇巴因)不但不抑制反而会兴奋钠钾泵。我室以往的实验也证实低浓度强心苷(10-10-10-8M的双氢哇巴因)能够产生兴奋性钠钾泵电流。这使得传统的钠钾泵抑制理论难以圆满解释治疗浓度强心苷的强心作用。因而,我们提出了低浓度强心苷可能通过直接兴奋钠钾泵而强心治疗心衰的假设,并首次在离体灌流豚鼠心脏发现nM为强心苷的治疗浓度,具有浓度依赖性持续强心作用和钠钾泵兴奋作用,且其强心作用与其兴奋钠钾泵作用呈显著正相关,首次为“强心苷兴奋钠钾泵可能为其强心机制”的假说提供了证据。但在分离的左心室内膜心肌细胞上虽也曾偶尔观察到此浓度强心苷的强心作用,却始终未得到稳定的测定结果。
     心肌细胞收缩舒张功能的测定对于心力衰竭的发生发展极其药物治疗机制的研究起着至关重要的作用。此类实验对细胞质量要求极高,不仅需要细胞能耐受持续刺激,而且要求细胞在一定时间内能维持稳定的收缩舒张功能。有文献报道,温度变化影响心肌细胞的收缩特性。本室以往实验中也发现,细胞的收缩力随着季节交替和温度变化而变化。因此,本实验拟首先以心肌细胞收缩功能为指标,通过连续升温和恒温孵育两种方法确定一个能使心肌细胞产生最大且最稳定收缩的最佳温度。并在此温度下测定低浓度(10-8M)OUA对大鼠心室肌细胞的正性肌力作用,观察钠钾泵各信号转导通路抑制剂对低浓度OUA正性肌力作用的影响。
     一、温度对大鼠心肌细胞收缩力的影响
     目的:确定一个能使心肌细胞产生最大且最稳定收缩的最佳温度。
     方法:用酶解法急性分离大鼠左室心肌细胞并覆钙,然后采用可视化单细胞动缘探测系统(Video-based motion edge-detection system)同步检测比较连续升温和固定恒温对单个大鼠心肌细胞舒张、收缩功能的影响。
     结果:
     1连续升温对心肌细胞收缩力的影响
     25℃—37℃逐步升温过程中,每个温度刺激下心肌细胞收缩力各不相同。若将25℃时(room temperature)大鼠心室肌细胞收缩幅度标准化为100%,则27℃、29℃、30℃、31℃使细胞收缩幅度分别增大至(107.694±2.042)%(p<0.01)、(127.0±6.3)%(p<0.01)、(142.5±17.0)%(p<0.05)、(139.0±17.7)%(p<0.05);33℃、35℃、37℃时心室肌细胞收缩幅度分别为(130.4±18.3)%(p>0.05)、(132.5±25.6)%(p>0.05)、(129.8±33.3)%(p>0.05),与25℃时相比没有显著性差异。而且,30℃后随着温度的继续上升,细胞会出现不规律收缩,某些细胞还会出现形态改变,甚至挛缩死亡。以上结果提示,在25℃—37℃逐步升温过程中,温度为30℃时心肌细胞可达最佳收缩。
     2固定恒温对心肌细胞收缩力的影响
     25℃、30℃、35℃孵育1h后大鼠心室肌细胞收缩幅度有差异。25℃孵育的细胞收缩幅度为4.54±0.13,30℃孵育的细胞收缩幅度为6.92±0.33,35℃孵育的细胞收缩幅度为2.58±0.22,三组数据两两比较p<0.01。该结果表明:25℃、30℃、35℃三个温度恒温孵育后的细胞收缩幅度存在显著差异,其中30℃孵育的细胞收缩幅度最大且稳定,为25℃时收缩幅度的152%,此结果与连续升温时测定的结果一致,但增加比例较连续升温至30℃时的增加比例(142%)为大。与连续升温测定结果所不同的是,35℃时细胞收缩幅度最小,仅为25℃时收缩幅度的57%。
     结论:温度变化影响大鼠心室肌细胞的收缩舒张功能,30℃时细胞收缩力强且稳定,可能与低温升高细胞内钙和提高肌丝对钙的敏感性有关。
     二、低浓度OUA对大鼠心室肌细胞收缩力的影响及机制研究
     目的:观察低浓度(10-8M)OUA是否能增加大鼠心肌细胞收缩力,并研究与治疗浓度OUA发挥的正性肌力作用相关的钠钾泵信号转导通路。
     方法:(1)检测并比较10-9-10-4M浓度OUA增强大鼠心室肌细胞收缩力的作用。(2)先分别给予PP2(1μM)、NAC(10μM、100μM)、PD98059(10μM、50μM)、U73122(1μM)或Xestospongin C(1μM)5min,分别检测5种信号转导抑制剂对大鼠心室肌细胞收缩力的影响;之后继续分别用PP2(1μM)、NAC(10μM、100μM)、PD98059(10μM、50μM)、U73122(1μM)或Xestospongin C(1μM)与10-8M OUA共灌流,记录5种信号转导抑制剂对10-8M OUA增强大鼠心室肌细胞收缩力的影响。
     结果:
     1不同浓度OUA对大鼠心室肌细胞收缩力的作用
     10-9M,10-8M,10-7M,10-6M,10-5M,10-4M的OUA使大鼠心室肌细胞收缩幅度分别增大至(111.973±3.885)%、(112.092±0.524)%、(123.045±2.199)%、(139.27±7.58)%、(179.46±36.323)%、(180.35±29.191)%,(p<0.01)。
     2信号转导抑制剂对10-8M OUA正性肌力作用的影响
     (1)1μM PP2(Src抑制剂)部分抑制10-8M OUA的正性肌力作用
     本组10-8M OUA使大鼠心室肌细胞收缩幅度增大至(114.16±1.776)%,(p<0.01);灌流1μM PP2+10-8M OUA的收缩幅度为(102.527±6.415)%,(p>0.05);而1μM PP2+10-8M OUA组与10-8M OUA组相比收缩幅度减小(p<0.05)。提示1μM PP2部分抑制了10-8M OUA的增加心肌细胞收缩力的效应。
     (2)100μM NAC(ROS抑制剂)部分抑制10-8M OUA的正性肌力作用
     本组10-8M OUA使大鼠心室肌细胞收缩幅度增大至(114.246±2.16)%,(p<0.01);灌流100μM NAC+10-8M OUA的收缩幅度变为(101.846±5.614)%,(p>0.05);而100μM NAC+10-8M OUA组与10-8M OUA组相比收缩幅度减小(p<0.05)。提示100μM NAC部分抑制了10-8M OUA的增加心肌细胞收缩力的效应。
     (3)1μM U73122(PLC抑制剂)部分抑制10-8M OUA的正性肌力作用
     本组10-8M OUA使大鼠心室肌细胞收缩幅度增大至(114.487±4.074)%,(p<0.01);灌流1μM U73122+10-8M OUA的收缩幅度为(102.337±1.938)%,(p>0.05)。1μM U73122+10-8M OUA组与10-8M OUA组相比收缩幅度减小(p<0.05)。提示1μM U73122部分抑制了10-8M OUA的增加心肌细胞收缩力的效应。
     (4)1μM Xestospongin C(IP3抑制剂)部分抑制10-8M OUA的正性肌力作用
     本组10-8M OUA使大鼠心室肌细胞收缩幅度增大至(111.516±7.201)%,(p<0.01);灌流1μM Xestospongin C+10-8M OUA的收缩幅度为(99.07±10.404)%,(p>0.05)。1μM Xestospongin C+10-8M OUA组与10-8M OUA组相比收缩幅度减小(p<0.01)。提示1μM Xestospongin C部分抑制了10-8M OUA的增加心肌细胞收缩力的效应。(5)10μM和50μM PD98059(MEK抑制剂)没有抑制10-8M OUA的正性肌力作用
     本组10-8M OUA使大鼠心室肌细胞收缩幅度增大至(113.366±2.128)%,(p<0.01);灌流10μM PD98059+10-8M OUA使收缩幅度增大至(119.186±5.134)%,(p<0.01);10μM PD98059+10-8M OUA与10-8MOUA组相比收缩幅度没有显著性差异(p>0.05)。提示10μM PD98059没有抑制10-8M OUA的增加心肌细胞收缩力的效应。
     本组10-8M OUA使大鼠心室肌细胞收缩幅度增大至(114.246±2.167)%,(p<0.01);50μM PD98059+10-8M OUA使收缩幅度增大至(121.707±5.762)%,(p<0.01);50μM PD98059+10-8M OUA与10-8MOUA组相比收缩幅度没有显著性差异(p>0.05)。提示50μM PD98059没有抑制10-8M OUA的增加心肌细胞收缩力的效应。
     结论:10-9-10-4M的OUA均能增加大鼠心室肌细胞收缩性,且具有浓度依赖性。低浓度OUA的正性肌力作用与钠钾泵的信号转导功能有关,其中Src/EGFR/Ras/ROS信号途径和Src/EGFR/PLC/PIP2/IP3信号途径参与调节了10-8M的OUA的正性肌力作用,而Ras/Raf/MEK/ERK1/2cascade通路没有参与。
Congestive heart failure (CHF) is the ultimate and main death cause ofmost cardiovascular diseases (CVD), being one of the difficult problems inCVD treatment area. It is harmful to public health severely since complexsymptom and tense prognosis.
     Cardiotonic steroid (Cs) is the traditional and classical medicine to curecongestive heart failure. The therapeutic mechanism of Cs might associatewith the activity of Na+/K+-ATPase (Na/K pump,NKA) that is widely foundin the membrane of human and animals. The Na/K pump plays an importantrole in transporting three Na+out of the cell and two K+in of cell against theirconcentration gradients by utilizing ATP.
     There is a binding site of cardiac glycosides in α subunit of Na/K pump.The traditional cardiotonic mechanism considered that:The binding of cardiacglycosides to Na/K pump located in the membrane of failed cardiocytes leadsto the intracellular Na+increase ([Na+] i), and in turn causing intracellular Ca2+increase ([Ca2+]i) by Na+/of Ca2+exchange, thus promoting the calciumuptake and subsequent release of calcium of sarcoplasmic reticulum (CICR),causing an increase in the contraction of cardiocytes finally. However, thestudy found that the serum concentration (10-9-10-8M) of Cs for effectivetreatment of heart failureis much lower than the concentration of inhibiting theNa/K pump. Further more, Gao proposed that low concentration of cardiacglycoside(10-9-10-8M dihydroouabain)had activated rather than inhibitedNa+/K+-ATPase. Our previous experiment proved that low concentration ofcardiac glycosides(10-10-10-8M dihydroouabain)had induced stimulatoryNa/K pump current. It is difficult to satisfactorily explain the cardiotoniceffects of therapeutic concentrations of cardiac glycosides with the traditionalNa/K pumpinhibitory theory. Therefore, we hypothesize that low concentration of cardiac glycoside can treat CHF by direct stimulating Na/Kpump and try to prove by experiment. The nMconcentration of cardiacglycosides is the therapeutic concentration, which was found in the isolatedheart of guinea pig in vitro for the first time, and has the effects of enhancingthe heart contraction continuously and the stimulating Na/K pump inconcentration-dependent manner, and the two effects have significantpositively correlation, which prompt that “Na/K pump stimulation” might bethe cardiotonic mechanism of low concentration OUA. Although lowconcentration of cardiac glycosides could occasionally increase the contractileforce of left ventricular endocardial cell, stable contraction induced by lowconcentration of OUA had not been observed due to the quality ofcardiomyocytes.
     The measurement of cardiocytes systolic and diastolic function plays animportant role in researching the development and treatment of CHF. Thismeasurement has much more requirement on the quality of cells, which notonly must be able to resist the repeatable stimulation, but also should possessthe stable function of the contraction and relaxation. However, some studiesreported that temperature changes affected the contraction of cardiocytes. Wealso found that the extent of contraction changed with the changes of theseasons and temperature. Thus, the purpose of the present experiment was todetermine an optimum temperature firstly, which enables the cardiocytes toproduce the largest and the most stable contraction, by observing the effects ofthe two methods on contraction, which were the continuous rising temperatureand the constant temperature incubation, and then detect the effect of lowconcentration (10-8M) OUA on the contraction of rat cardiocytes at thistemperature and explore signal transduction pathways related topositive inotropic action using different inhibitor.
     Part1Effects of temperature on contraction of rat cardiocytes
     Objective: To determine the optimum temperature that enables ratcardiocytes to produce the maximal and most stable contraction.
     Methods:Left ventricular myocytes were enzymatically isolated. Then the contraction of rat cardiocytes was measured by a video-based motionedge-detection system and the difference of the contractile amplitude wascompared under the conditions of the continuous rising temperature and theconstant temperature incubation.
     Results:
     1Effects of continuous rising temperature on contraction in rat cardiocytes
     When temperature raising from25℃to37℃step by step, thecontractility of rat cardiocytes was different at each temperature. Theamplitude of contraction was normalized using the contractile value at25℃as100%. The amplitude of the contraction at27℃,29℃,30℃, and31℃increased to (107.694±2.042)%(p<0.01),(127.0±6.3)%(p<0.01),(142.5±17.0)%(p<0.05), and(139.0±17.7)%(p<0.05), respectively.Those at33℃,35℃, and37℃were(130.4±18.3)%(p>0.05)(,132.5±25.6)%(p>0.05), and (129.8±33.3)%(p>0.05),respectively, which were similarto that at25℃. Moreover, with increasing temperature to above30℃, cellcrispation and morphological changes occured, and even cell death. Theseresults suggested that30℃wasthe optimum temperature, at which thecardiocytes could produce the largest and the most stable contraction.
     2Effects of constant temperature incubation on contraction in rat cardiocytes
     When the cardiocytes were pre-incubated at25℃,30℃, or35℃for1hrespectively, there were significant differences (p<0.01) in contractionamplitude of rat cardiocytes. The contraction amplitude of cardiocytes at25℃,30℃, and35℃were4.54±0.13,6.92±0.33, and2.58±0.22, respectively. Theresults showed that after the incubation at30℃, the cardiocytes could producethe largest and the most stable contraction. This result was consistent with theresult from continuous rising temperature above.
     Conclusion:Temperature can affect on systolic and diastolic function ofrat cardiocytes. The cardiocytes reveal the strongest and most stablecontraction at30℃, this may be related to hypothermia increased intracullularcalcium and myfilament calcium sensitivity.
     Part2Effect and mechanism of low concentration OUA on contraction inrat cardiocytes
     Objective: To observe wether low concentration (10-8M) of OUA canincrease the contractility of rat cardiocytes and investigate the Na/K pumpsignal transduction pathways related to positive inotropic action following thetherapeutic concentration of OUA.
     Methods:(1) Detected and compared the potentiations of10-9-10-8MOUA on the contractility of rat cardiocytes.(2) The cardiocytes werepre-treated with PP2(1μM), NAC(10μM,100μM), PD98059(10μM,50μM),U73122(1μM)or xestospongin C(1μM)for5min, and then detected theeffects of the five signal transduction inhibitors on the contractility ofcardiocytes, eventually, the cells were perfused with PP2(1μM), NAC(10μM,100μM), PD98059(10μM,50μM), U73122(1μM), or xestospongin C(1μM), and10-8M OUA, and recorded the effects of the5kinds of signalstransduction inhibitors on the positive inotropic effect of10-8M OUA.
     Results:
     1Effects of10-9-10-8M OUA on the contractility of cardiocytes in ratsOUA10-9M,10-8M,10-7M,10-6M,10-5M,and10-4M increased thecontractility of rat cardiocytes to(110.0±3.9)%,(112.0±0.5)%,(123.0±2.2)%,(139.3±7.6)%,(179.5±36.3)%, and (180.4±29.2)%(p<0.01).
     2Effects of signal transduction inhibitors on the positive inotropic effect of10-8M OUA
     (1)1μM PP2(Src inhibitor)partially inhibited the positive inotropic effect of10-8M OUAThe contraction amplitude of rat cardiocytes increased to(114.2±1.8)%(p<0.01)with10-8M OUA and became(102.5±6.4)%(p>0.05)with1μMPP2+10-8M OUA. Compared1μM PP2+10-8M OUA group with10-8M OUAgroup, the contraction amplitude decreased, which indicated1μM PP2partially inhibited the contraction effect of cardiocytes enhanced by10-8MOUA.
     (2)100μM NAC(ROS inhibitor)partially inhibited the positive inotropiceffect of10-8M OUA
     The contraction amplitude of rat cardiocytes increased to(114.2±2.2)%(p<0.01)with10-8M OUA and became(101.8±5.6)%(p>0.05)with100μMNAC+10-8M OUA. Compared100μM NAC+10-8M OUA group with10-8MOUA group, the contraction amplitude decreased, which indicated100μMNAC partially inhibited the contraction effect of cardiocytes enhanced by10-8M OUA.
     (3)1μM U73122(PLC inhibitor)partially inhibited the positive inotropiceffect of10-8M OUA
     The contraction amplitude of rat cardiocytes increased to (114.5±4.1)%(p<0.01)with10-8M OUA and became(102.3±1.9)%(p>0.05)with1μM U73122+10-8M OUA. Compared1μM U73122+10-8M OUA group with10-8M OUA group, the contraction amplitude decreased, which indicated1μMU73122partially inhibited the contraction effect of cardiocytes enhanced by10-8M OUA.
     (4)1μM xestospongin C(IP3inhibitor)partially inhibited the positiveinotropic effect of10-8M OUA
     The contraction amplitude of rats' cardiocytes increased to (111.5±7.2)%(p<0.01)with10-8M OUA and became(99.1±10.4)%(p>0.05)with1μMxestospongin C+10-8M OUA. Compared1μM xestospongin C+10-8M OUAgroup with10-8M OUA group, the contraction amplitude decreased, whichindicated1μM xestospongin C partially inhibited the contraction effect ofcardiocytes enhanced by10-8M OUA.
     (5)10μM and50μM PD98059(MEK inhibitor)didn't inhibit the positiveinotropic effect of10-8M OUA
     The contraction amplitude of rats' cardiocytes increased to (113.4±2.1)%(p<0.01)with10-8M OUA and grew to (119.2±5.1)%(p<0.01)with10μM PD98059+10-8M OUA. There was no significant difference incontraxtile amplitudes between10μM PD98059+10-8M OUA group and10-8M OUA group, which indicated10μM PD98059didn't inhibit the contractioneffect of cardiocytes enhanced by10-8M OUA.
     The contraction amplitude of rat cardiocytes increased to (114.2±2.2) %(p<0.01)with10-8M OUA and grew to (121.7±5.7)%(p<0.01)with50μM PD98059+10-8M OUA. There was no significant difference incontraxtile amplitudes between50μM PD98059+10-8M OUA group and10-8M OUA group, which indicated50μM PD98059didn't inhibit the contractioneffect of cardiocytes enhanced by10-8M OUA.
     Conclusion:10-9-10-4M OUA could increase the contraction amplitudeof cardiocytes in rats in concentration-dependent manner. Positive inotropiceffect of therapeutic concentrations of OUA is related to Na/K pump signaltransduction. Multiple signal pathways regulate the positive inotropic effect of10-8M of OUA, including the Src/EGFR/the Ras/ROS signal pathway andSrc/EGFR/PLC/PIP2/IP3signal pathway, while Ras/Raf/MEK/ERK1/2cascade pathway do not participate.
引文
1李超彦.成年SD大鼠心肌细胞分离及其胞内钙离子动态变化测定.汕头大学医学院学报,2007,22(3):2-6
    2齐亚娟,郭芳,李吉和,等.可视化动缘探测系统同步检测慢性心衰对豚鼠心肌细胞舒、缩功能和钙瞬变的影响.中国药理学通报,2006,22(3):333-337
    3Brandt PW,Hibberd MG. Proceedings: effect of temperature on thepCa-tension relation of skinned ventricular muscle of the cat. J Physiol,1976,258(2):76-77
    4Stephenson DG,Williams DA. Temperature-dependent calcium sensitivitychanges in skinned muscle fibres of the rat and toad. J Physiol,1985,360(1):1-12
    5姚素梅王强.温度对培养心肌细胞力学特性的影响.环境与职业医学,2007,250(1):85-86
    6马爱群.心力衰竭.北京:人民卫生出版社,2004,15(1):59-60
    7Bers DM. Cardiac excitation-contraction coupling. Nature,2002,415(1):198-205
    8Shutt RH, Howlett SE. Hypothermia increases the gain ofexcitation-contraction coupling in guinea pig ventricular myocytes. Am JPhysiol Cell Physiol,2008,295(7):692-700
    9Bouchard RA, Clark RB, Giles WR. Effects of action potential duration onexcitation-contraction coupling in rat ventricular myocytes. Actionpotential voltage-clamp measurements. Circ Res,1995,76:790-801
    10Puglisi JL, Yuan W, Bassani JW, et al. Ca2+influx through Ca2+channelsin rabbit ventricular myocytes during action potential clamp: influence oftemperature. Circ Res,1999,85(6):7-16
    11Sah R, Ramirez RJ, Oudit GY, et al. Regulation of cardiacexcitation-contraction coupling by action potential repolarization: role ofthe transient outward potassium current (I(to)). J Physiol,2003,546(1):5-18
    12Mackiewicz U, Lewartowski B. Temperature dependent contribution ofCa2+transporters to relaxation in cardiac myocytes: important role ofsarcolemmal Ca2+-ATPase. J Physiol Pharmacol,2006,57(1):3-15
    13Puglisi JL, Bassani RA, Bassani JW, et al. Temperature and relativecontributions of Ca2+transport systems in cardiac myocyte relaxation. AmJ Physiol,1996,270(5):1772-1778
    14Vornanen M, Shepherd N, Isenberg G. Tension-voltage relations of singlemyocytes reflect Ca release triggered by Na+/Ca2+exchange at35degreesC but not23degrees C. Am J Physiol,1994,267(2):623-632
    15周红义,韩重阳,王晓良.温度和胞内钠、ATP及酸碱度对心室肌细胞钠钙交换电流的调节.生理学报,2006,58(2):136-140
    16Jacobshagen C, Pelster T, Pax A, et al. Effects of mild hypothermia onhemodynamics in cardiac arrest survivors and isolated failing humanmyocardium. Clin Res Cardiol,2010,99(5):267-276
    17Kusuoka H, Ikoma Y, Futaki S, et al. Positive inotropism in hypothermiapartially depends on an increase in maximal Ca2+-activated force. Am JPhysiol,1991,261(4):1005-1010
    1Noble D. Mechanism of action of therapeutic levels of cardiac glycosides.Cardiovasc Res,1980,14:495-514
    2Gao J, Wymore RS, Wang Y, et al. Isoform-specific stimulation of cardiacNa/K pumps by nanomolar concentrations of glycosides. J Gen Physiol,2002,119(4):297-312
    3Yin JX, Wang YL, Li Q, et al. Effects of low concentration ofdihydroouabain on intracellular calcium in guinea pig ventricularmyocytes. Sheng Li Xue Bao,2002,54(5):385-389
    4Su SW, Wang YL, Li JX, et al. Relationship between cardiotonic effectsand inhibition on cardiac sarcolemmal Na/K-ATPase of strophanthidin atlow concentration. Acta Pharmacol Sin,2003,24(11):1103-1107
    5苏素文,王永利,张永健.低浓度毒毛旋花子苷原对离体豚鼠衰竭心脏的影响.中国药理学通报,2003,19(2):167-171
    6Haas M, Askari A, Xie Z. Involvement of Src and epidermal growth factorreceptor in the signal-transducing function of Na+/K+-ATPase. J BiolChem,2000,275:27832-27837
    7Haas M, Wang H, Tian J, et al. Src-mediated inter-receptor cross-talkbetween the Na+/K+-ATPase and the epidermal growth factor receptorrelays the signal from ouabain to mitogen-activated protein kinases. J BiolChem,2002,277:18694-18702
    8Yuan Z, Cai T, Tian J, et al. Na+/K+-ATPase tethers phospholipase C andIP3receptor into a calcium-regulatory complex. Mol Biol Cell,2005,16:4034-4045
    9Liu L, Mohammadi K, Aynafshar B, et al. Role of caveolae insignal-transducing function of cardiac Na+/K+-ATPase. Am J Physiol CellPhysiol,2003,284:C1550-1560
    10Liu J, Tian J, Haas M, et al. Ouabain interaction with cardiacNa+/K+-ATPase initiates signal cascades independent of changes inintracellular Na+and Ca2+concentrations. J Biol Chem,2000,275:27838-27844
    11Xie Z, Kometiani P, Liu J, et al. Intracellular reactive oxygen speciesmediate the linkage of Na+/K+-ATPase to hypertrophy and its markergenes in cardiac myocytes. J Biol Chem,1999,274:19323-19328
    12Aydemir-Koksoy A, Abramowitz J, Allen JC. Ouabain-induced signalingand vascular smooth muscle cell proliferation. J Biol Chem,2001,276:46605-46611
    13Mohammadi K, Kometiani P, Xie Z, et al. Role of protein kinase C in thesignal pathways that link Na+/K+-ATPase to ERK1/2. J Biol Chem.2001,276:42050-42056
    14Hensley CB, Azuma KK, Tang MJ, et al. Thyroid hormone induction ofrat myocardial Na(+)-K(+)-ATPase: alpha1-, alpha2-, and beta1-mRNAand-protein levels at steady state. Am J Physiol,1992,262:C484-492
    15Blaustein MP, Juhaszova M, Golovina VA. The cellular mechanism ofaction of cardiotonic steroids: a new hypothesis. Clin Exp Hypertens,1998,20:691-703
    16Wang Y, Wymore R, Gao J et al. α and β adrenergic are coupled todifferent Na+/K+pump isoforms in guinea pig ventricular myocytes.Biophys. J.1998,74:161
    17Yin JX, Wang YL. Stimulative effect of low concentration dihydroouabainon Na+/K+pump current in guinea pig ventricular myocytes. Chin. Heart J.2003,15:300-302
    18Fitzgerald EM. Regulation of voltage-dependent calcium channels in ratsensory neurones involves a Ras-mitogen-activated protein kinase pathway.J Physiol,2000,527(3):433-444
    19Murata M, Fukuda K, Ishida H, et al. Leukemia inhibitory factor, a potentcardiac hypertrophic cytokine, enhances L-type Ca2+current and [Ca2+]itransient in cardiomyocytes. J Mol Cell Cardiol,1999,31:237-245
    20Tian J, Liu J, Garlid KD, et al. Involvement of mitogen-activated proteinkinases and reactive oxygen species in the inotropic action of ouabain oncardiac myocytes. A potential role for mitochondrial K(ATP) channels.Mol Cell Biochem,2003,242:181-187
    21Ekinci FJ, Malik KU, Shea TB. Activation of the L voltage-sensitivecalcium channel by mitogen-activated protein (MAP) kinase followingexposure of neuronal cells to beta-amyloid. MAP kinase mediatesbeta-amyloid-induced neurodegeneration. J Biol Chem,1999,274:30322-30327
    22Xie Z, Kometiani P, Liu J, et al. Intracellular reactive oxygen speciesmediate the linkage of Na+/K+-ATPase to hypertrophy and its markergenes in cardiac myocytes. J Biol Chem,1999,274:19323-19328
    23Puceat M, Vassort G. Signalling by protein kinase C isoforms in the heart.Mol Cell Biochem,1996,157:65-72
    24Ward CA, Moffat MP. Positive and negative isotropic effects of phorbol12-myristate13-acetate: relationship to PKC-dependence and [Ca2+]i. J.Mol. Cell. Cardiol,1992,24:937-948
    25Nicolas JM, Renard-Rooney DC, Thomas AP. Tonic regulation ofexcitation-contraction coupling by basal protein kinase C activity inisolated cardiac myocytes. J Mol Cell Cardiol,1998,30:2591-2604
    26Neer EJ. Heterotrimeric G proteins: organizers of transmembrane signals.Cell,1995,80:249-257
    27Xie Z. Molecular mechanisms of Na/K-ATPase-mediated signaltransduction. Ann N Y Acad Sci,2003,986:497-503
    28Scheiner-Bobis G, Schoner W. A fresh facet for ouabain action. Nat Med,2001,7:1288-1289
    29Lopina OD. Interaction of Na,K-ATPase catalytic subunit with cellularproteins and other endogenous regulators. Biochemistry (Mosc),2001,66:1122-1131
    30Liu J. Na+/K+-ATPase as a signal transducer. Comparison of the effects oflow extracellular K+and ouabain on the regulation of grouth-related genesin neonatal cardiac myocytes. Biophy D,2000,78:79
    1Sweadner KJ. Isozymes of the Na+/K+-ATPase. Biochem. Biophys. Acta.1989,988:185-220
    2Lingrel JB, Kuntzweiler T. Na+,K+-ATPase. J. Biol. Chem.1994,269(31):19659-19662
    3Kaplan JH. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem.2002,71:511-535
    4Malik N, Canfield VA, Beckers MC, et al. Identification of themammalian Na,KATPase β-subunit. J. Biol. Chem.1996,271(37):22754-22758
    5Feschenko MS, Donnet C, Wetzel RK, et al. Phospholemman, asingle-span membrane protein, is an accessory protein of Na,K-ATPase incerebellum and choroids plexus. J. Neurosci.2003,23(6):2161-2169
    6Sweadner KJ, Arystarkhova E, Donnet C, et al. FXYD proteins asregulators of the Na,KATPase in the kidney. Ann. NY Acad. Sci.2003,986:382-387
    7Sweadner KJ. Phospholemman: a new force in cardiac contractility. Circ.Res.2005,97:510-511
    8Beguin P, Wang X, Firsov D, et al. The γ subunit is a specific componentof the Na,K-ATPase and modulates its transport function. EMBO J.1997,16(14):4250-4260
    9Therien AG, Karlish SJ, Blostein R. Expression and functional role of theγ subunit of the Na,KATPase in mammalian cells. J. Biol. Chem.1999,274(18):12252-12256
    10Therien AG, Goldshleger R, Karlish SJD, et al. Tissue-specific distributionand modulatory role of the γ subunit of the Na,K-ATPase. J. Biol. Chem.1997,272(51):32628-32634
    11Zouzoulas A, Dunham PB, Blostein R. The effect of the gamma modulatoron Na/K pump activity of intact mammalian cells. J. Membr. Biol.2005,204(1):49-56
    12Wetzel RK, Pascoa JL, Arystarkhova E. Stress-induced expression of thegamma subunit (FXYD2) modulates Na,K-ATPase activity and cellgrowth. J. Biol. Chem.2004,279:41750-41757
    13Arystarkhova E, Sweadner KJ. Splice variants of the gamma subunity(FXYD2) and their significance in regulation of the Na,K-ATPase inkidney. J. Bioenerg. Biomem.2005,37(6):381-386
    14Beguin P, Crambert G, Guennoun S, et al. Chif, a member of the FXYDprotein family, is a regulator of Na,K-ATPase distinct from thegamma-subunit. EMBO J.J.2001,20(15):3993-4002
    15Zouzoulaas A, Therien AG, Scanzano R, et al. Modulation ofNa,K-ATPase by the gamma subunit. J. Biol. Chem.2003,278:40437-40441
    16Bibert S, Roy S, Schaer D, et al. Phosphorylation of phospholemman(FXYD1) by protein kinases A and C modulates distinct Na,K-ATPaseisozymes. J. Biol. Chem.2008,283(1):476-486
    17Bibert S, Roy S, Schaer D, et al. Structural and functional properties oftwo human FXYD3(Mat-8) isoforms. J. Biol. Chem.2006,281(51):39142-39151
    18Li C, Crambert G, Thuillard D, et al. Role of the transmembrane domainof FXYD7in structural and functional interactions with Na,K-ATPase. J.Biol. Chem.2005,280(52):42738-42743
    19Delprat B, Schaer D, Roy S, et al. FXYD6is a novel regulator ofNa,K-ATPase expressed in the inner ear. J. Biol. Chem.2007,282(10):7450-7456
    20Crambert G, Li C, Claeys D, et al. FXYD3(Mat-8), a new regulator ofNa,K-ATPase. Mol.Biol. Cell.2005,16(5):2363-2371
    21Geering K. FXYD proteins: new regulators of Na,K-ATPase. Am. J.Physiol. Ren. Physiol.2006,290(2):241-250
    22McDonough AA, Geering K, Farley RA. The sodium pump needs its βsubunit. FASEB J.1990,4(6):1598-1605
    23Geering K. The functional role of the β-subunit in the maturation andintracellular transport of Na,K-ATPase. FEBS Lett.1991,285(2):189-193
    24Beguin P, Hasler U, Beggah A, et al. Membrane integration ofNa,KATPase α-subunits and β-subunit assembly. J. Biol. Chem.1998,273(38):24921-24931
    25Hasler U, Wang X, Crambert G, et al. Role of β-subunit domains in theassembly, stable expression, intracellular routing, and functional propertiesof Na,K-ATPase. J.Biol. Chem.1998,273(46):30826-30835
    26Lutsenko S, Kaplan JH. An essential role for the extracellular domain ofthe Na,K-ATPase β-subunit in cation occlusion. Biochemistry.1993,32:6737-6743
    27Orlowski J, Lingrel JB. Tissue-specific and developmental regulation ofrat Na,K-ATPase catalytic α isoform and β subunit mRNAs. J. Biol. Chem.1988,263:10436-10442
    28McDonough AA, Velotta JB, Schwinger RH, et al. The cardiac sodiumpump:structure and function. Basic Res. Cardiol.2002,97(7):119-124
    29Shamraj OI, Grupp IL, Grupp G, et al. Characterisation ofNa/K-ATPase,its isoforms, and the inotropic response to ouabain inisolated failing human hearts. Cardiovasc.Res.1993,27(12):2229-2237
    30Hoffman JF, Wickrema A, Potapova O, et al. NA pump isoforms in humanerythroid progenitor cells and mature erythrocytes. Proc. Natl. Acad. Sci.USA.2002,99(22):14572-14577
    31Shamraj OI, Lingrel JB. A putative fourth Na,K-ATPase α-subunit gene isexpressed in testis. Proc. Natl. Acad. Sci. USA.1994,91:12952-12956
    32Woo AL, James PF, Lingrel JB. Characterization of the fourth α isoformof the Na,K-ATPase. J.Membr. Biol.1999,169(1):39-44
    33Woo AL, James PF, Lingrel JB. Sperm motility is dependent on a uniqueisoform of the Na,KATPase. J. Biol. Chem.2000,275(27):20693-20699
    34Sanchez G, Nguyen A-NT, Timmerberg B, et al. The Na,K-ATPase alpha4isoform from humans has distinct enzymatic properties and is importantfor sperm motility. Mol. Hum.Reprod.2006,12(9):565-576
    35Pierre SV, Zijian Xie. The Na,K-ATPase receptor complex. Cell Biochem.Biophys.2006,46:303-315
    36Peng M, Huang L, Xie Z, et al. Partial inhibition of Na+/K+-ATPase byouabain induces the Ca2+-dependent expressions of early-response genes incardiac myocytes. J. Biol.Chem.1996,271:10372-10378
    37Huang L, Li H, Xie Z. Ouabain-induced hypertrophy in cultured cardiacmyocytes is accompanied by changes in expression of several lateresponse genes. J. Mol. Cell Cardiol.1997,29:429-437
    38Gao J, Wymore RS, Wang Y, et al. Isoform-specific stimulation of cardiacNa/K pumps by nanomolar concentrations of glycosides. J. Gen. Physiol.2002,119(4):297-312
    39Dong XH, Komiyama Y, Nishimura N, et al. Nanomolar level of ouabainincreases intracellular calcium to produce nitric oxide in rat aorticendothelial cells. Clin. Exp. Pharmacol. Physiol.2004,31:276-283
    40Saunders R, Scheiner-Bobis G. Ouabain stimulates endothelin release andexpression in human endothelial cells without inhibiting the sodium pump.J. Eur. Biochem.2004,271:1054-1062
    41Dmitrieva RI, Doris PA. Ouabain is a potent promoter of growth andactivator of ERK1/2in ouabain-resistant rat renal epithelial cells. J. Biol.Chem.2003,278(30):28160-28166
    42Abramowitz J, Dai C, Hirschi KK, et al. Ouabain-andmarionbufagininduced proliferation of human umbilical vein smoothmuscle cells and a rat vascular smooth muscle cell line, A7r5. Circulation.2003,108:3048-3053
    43Contreras RG, Flores-Maldonado C, Lazaro A, et al. Ouabain binding toNa+,K+-ATPase relaxes cell attachment and sends a specific signal(NACos) to the nucleus. J. Membr. Biol.2004,198(3):147-158
    44Aizman O, Uhlen P, Lal M, et al. Ouabain, a steroid hormone that signalswith slow calcium oscillations. Proc. Natl. Acad. Sci. USA.2001,98(23):13420-13424
    45Lebovitz RM, Takeyasu K, Fambrough DM. Molecular characterizationand expression of the (Na++K+)-ATPase alpha-subunit in Drosophilamelanogaster. EMBO J.1989,8(1):193-202
    46Morris JF, Ismail-Beigi F, Butler VP Jr, et al. Ouabain—sensitiveNa+,K+-ATPase activity in toad brain. Comp. Biochem. Physiol.1997,118(3):599-606
    47Liu AY-C, Bentley PJ. A comparison of the toxicity of ouabain in vivoand in vitro in the frog, Rana pipiens, and the toad, Bufo marinus. Comp.Gen. Pharmacol.1971,2(8):476-478
    48Schwartz A, Lindenmayer GE, Allen JC. The sodium-potassium adenosinetriphosphatase: pharmacological, physiological and biochemical aspects.Pharmacol. Rev.1976,27(1):3-134
    49Abeywardena MY, McMurchie EJ, Russell GR, et al. Species variation inthe ouabain sensitivity of cardiac Na+/K+-ATPase. Apossible role formembrane lipids. Biochem.Pharmacol.1984,33(22):3649-3654
    50O’Brien WJ, Lingrel JB, Wallick ET. Ouabain binding kinetics of the ratalpha two and alpha three isoforms of the sodium-potassium adenosinetriphosphate. Arch. Biochem. Biophy.1994,310(1):32-39
    51Akera T, Larsen FS, Brody TM. The effect of ouabain on sodium-andpotassium-activated adenosine triphosphatase from the hearts of severalmammalian species. J. Pharmacol. Exp. Ther.1969,170(1):17-26
    52Wang J, Velotta JB, McDonough AA, et al. All human Na+K+-ATPaseα-subunit isoforms have a similar affinity for cardiac glycosides. Am. J.Physiol. Cell Physiol.2001,281(1):1336-1343
    53Crambert G, Hasler U, Beggah AT, et al. Transport and pharmacologicalproperties of nine different human Na,K-ATPase isozymes. J. Biol. Chem.2000,275(3):1976-1986
    54Holzinger F, Frick C, Wink M. Molecular basis for the insensitivity of themonarch (Danaus plexippus) to cardiac glycosides. FEBS Lett.1992,314(3):477-480
    55Labeyrie E, Dobler S. Molecular adaptation of Chrysochus leaf beetles totoxic compounds in their food plants. Mol. Biol. Evol.2004,2(21):218-221
    56Price EM, Lingrel JB. Structure-function relationships in theNa,K-ATPase alpha subunit: sitedirected mutagenesis of glutamine-111toarginine and asparagine-122to aspartic acid generates a ouabain resistantenzyme. Biochemistry.1988,27(22):8400-8408
    57De Wardener HE. Sodium transport inhibitors and hypertension. J.Hypertens.1996,14:9-18
    58Buckalew VM. Endogenous digitalis-like factors, an historical overview.Front. Biosci.2005,10:2325-2423
    59Haupert GT. Physiological inhibitors of Na,K-ATPase: concept and status.Prog. Clin. Biol. Res.1988,268B:297-320
    60Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiacglycosides and their mechanisms of action. Am. J. Cardiovasc. Drugs.2007,7(3):173-189
    61Graves SW, Williams GH. Endogenous digitalis-like natriuretic factors.Annu. Rev. Med.1987,38:433-444
    62Blaustein MP, Zhang J, Chen L, et al. The pump, the exchanger, andendogenous ouabain signaling mechanisms that link salt retention tohypertension. Hypertension.2009,53(2):291-298
    63de Wardener HE, Mills IH, Clapham WF, et al. Studies on the efferentmechanism of the sodium diuresis which follows the administration ofintravenous saline in the dog. Clin. Sci.1961,21:249-258
    64Cort, JH., Lichardus, B. The nature of the renal response to thecarotid-sinus pressor reflex. In:Williams, PC., editor. Hormones and theKidney. New York: Academic,1963:25-39
    65Cort, JH. Electrolytes, Fluid Dynamics and the Nervous System. NewYork: Academic,1965
    66Cort JH, Dousa T, Pliska V, et al. Saluretic activity of blood during carotidocclusion in the cat. Am. J. Physiol.1968,215(4):921-927
    67Krück F. Influence of humoral factors on renal tubular sodium handling.Nephron.1969,6(3):205-216
    68Sealy JE, Kirschmann JD, Laragh JH. Natriuretic activity in plasma andurine of salt loaded man or sheep. J. Clin. Investig.1969,48(12):2210-2224
    69Viskoper JR, Czaczes JW, Schwartz N, et al. Natriuretic activity of asubstance isolated from human urine during the excretion of salt load.Nephron.1971,8(6):540-548
    70Brown PR, Koutsaimanis KG, deWardener HE. Effect of urinary extractsfrom salt-loaded man on urinary sodium excretion by the rat. Kidney Int.1972,2:1-5
    71Pearce JW, Veress AT. Concentration and bioassay of natriuretic activityin the blood of volume expanded rats. Can. J. Physiol. Pharmacol.1975,53(5):742-747
    72Buckalew VM, Martinez FJ, Green WE. The effect of dialysates andultrafiltrates of plasma of saline-loaded dogs on toad bladder sodiumtransport. J. Clin. Investig.1970,49(5):926-935
    73Kramer HJ, Gonick HC, Krück F. Natriuretic hormone. Klin. Wochenschr.1972,50:893-897
    74Gonick HC, Kramer HJ, Paul W, et al. Circulating inhibitor ofsodium-potassium activated adenosine triphosphatase after expansion ofextracellular fluid volume in rats. Clin. Sci. Mol. Med.1977,53(4):329-334
    75Haddy FJ. Local control of vascular resistance as related to hypertension.Arch. Intern. Med.1974,133(6):916-931
    76Haddy FJ. Potassium and blood vessels. Life Sci.1975,16:1489-1497
    77Haddy FJ, Overbeck HW. The role of humoral agents in volume-expandedhypertension. Life Sci.1976,19:935-947
    78Blaustein MP. Sodium ions, calcium ions, blood pressure regulation andhypertension: a reassessment and a hypothesis. Am. J. Physiol.1977,232(5):165-173
    79Gruber KA, Whitaker JM, Buckalew VM. Endogenous digitalis-likesubstance in plasma of volume-expanded dogs. Nature.1980,287:743-745
    80Huang BS, Amin MS, Leenen FH. The central role of the brain insalt-sensitive hypertension. Curr.Opin. Cardiol.2006,21(4):295-304
    81Huang BS, Van Vliet BN, Leenen FHH. Increases in CSF (Na+) precedethe increases in blood pressure in Dahl S rats and SHR on high salt diet.Am. J. Physiol. Heart. Circ. Physiol.2004,281:1881-1889
    82Leenen FHH, Harmsen E, Yu H. Dietary sodium and central vs peripheralouabain-like activity in Dahl salt-sensitive vs salt-resistant rats. Am. J.Physiol.1994,267(3):1916-1920
    83Huang BS, Wang H, Leenen FHH. Enhanced sympathoexcitatory andpressor responses to central Na+in Dahl salt-sensitive vs-resistant rats.Am. J. Physiol. Heart Circ. Physiol.2001,281:1881-1889
    84Huang BS, Harmsen E, Yu H, et al. Brain ouabain-like activity and thesympathoexcitatory and pressor effects of central sodium in rats. Circ. Res.1992,71:1059-1066
    85Takahashi H, Matsuzawa M, Okabayashi H, et al. Evidence fordigitalis-like substance in the hypothalamopituitary axis in rats:implications in the central cardiovascular regulation associated with excessintake of sodium. Jpn. Circ. J.1987,51(10):1199-1207
    86Hou X, Theriault SF, Dostanic-Larson I, et al. Enhanced pressor responseto increased CSF sodium concentration and to central angiotensin I inheterozygous α2Na,K-ATPase knockout mice. Am. J. Phys. Regul. Integr.Comp. Physiol.2009,296(5):1427-1438
    87Hamlyn JM, Blaustein MP, Bova S, et al. Identification andcharacterization of a ouabain-like compound from human plasma. Proc.Natl. Acad. Sci. USA.1991,88(14):6259-6263
    88Hong BC, Kim S, Kim TS, et al. Synthesis and properties of severalisomers of the cardioactive steroid ouabain. Tetrahedron. Lett.2006,47(16):2711-2115
    89Hamlyn JM, Lu Z, Manunta P, et al. Observations on the nature,biosynthesis, secretion and significance of endogenous ouabain. Clin. Exp.Hypertens.2000,(5-6):523-533
    90Qazzaz HM, El-Masri MA, Valdes RJ. Secretion of alactone-hydrogenated ouabain-like effector of sodium,potassium-adenosine triphosphatase activity by adrenal cells.Endocrinology.2000,141(9):3200-3209
    91Perrin A, Brasmes B, Chambaz EM, et al. Bovine adrenocortical cells inculture synthesize an ouabain-like compound. Mol. Cell Endocrinol.1997,126(1):7-15
    92Doris PA, Hayward-Lester A, Bourne D, et al. Ouabain production bycultured adrenal cells. Endocrinology.1996,137(2):533-539
    93Laredo J, Hamilton BP, Hamlyn JM. Ouabain is secreted by bovineadrenocortical cells. Endocrinology.1994,135(2):794-797
    94Hamlyn JM, Lu Z, Manunta P, et al. Observations on the nature,biosynthesis, secretion and significance of endogenous ouabain. Clin. Exp.Hypertens.1998,20(5-6):523-533
    95Lichstein D, Steinitz M, Gati I, et al. Biosynthesis of digitalis compound inrat adrenal cells: hydroxyl cholesterol as a precursor. Life Sci.1998,62(23):2109-2126
    96Malawista I, Davidson AE. Isolation and identification of rhomnose fromrabbit skin. Nature.1961,192(4805):871-872
    97Lichstein D, Gati J, Babila T, et al. Effect of salt acclimation ondigitalis-like compounds in the toad. Biochim. Biophys. Acta.1991,1073(1):65-68
    98Fedorova OV, Talan MI, Agalakova NI, et al. Endogenous ligand of alpha
    1sodium pump, marinobufagenin, is a novel mediator of sodiumchloride-dependent hypertension. Circulation.2002,105:1122-1127
    99Bagrov AY, Fedorova OV, Dmitrieva RI, et al. Plasmamarinobufageninlike and ouabain-like immunoreactivity during salinevolume expansion in anesthetized dogs. Cardiovasc. Res.1996,31(2):296-305
    100Fedorova OV, Doris PA, Bagrov AY. Endogenousmarionbufagenin-like factor in acute plasma volume expansion. Clin. Exp.Hypertens.1998,20:581-593
    101Komiyama Y, Nichimura N, Dong XH, et al. Liquid chromatographymass spectrometric analysis of ouabain-like factor in biological fluid.Hypertens. Res.2000,23:21-27
    102Komiyama Y, Dong XH, Nishimura N, et al. A novel endogenousdigitalis, telocinobufagin, exhibits elevated plasma levels in patients withterminal renal failure. Clin. Biochem.2005,38(1):36-45
    103Krep H, Price DA, Soszynski P, et al. Volume sensitive hypertensionand the digoxin-like factor: reversal by a Fab directed against digoxin inDOCA-salt hypertensive rats. Am. J. Hypertens.1995,8(9):921-927
    104Li M, Wen C, Whitworth JA. Hemodynamic effects of the Fabfragment of digoxin antibody (Digibind) in corticotrophin(ACTH)-induced hypertension. Am. J. Hypertens.1997,10:332-336
    105Kaide JI, Ura N, Torii T, et al. Effects of digoxin-specific antibody fabfragment (Digibind) on blood pressure and renal water-sodium metabolismin5/6reduced renal mass hypertensive rats. Am. J. Hypertens.1999,12:611-619
    106Huang BS, Leenen FH. Brain ‘ouabain’ mediates thesympathoexcitatory and hypertensive effects of high sodium intake in Dahlsalt-sensitive rats. Circ. Res.1994,74(4):586-595
    107Huang BS, Leenen FH. Brain ‘ouabain,’ sodium, and arterialbaroreflex in spontaneously hypertensive rats. Hypertension.1995,25(4):814-817
    108Gomez-Sanchez EP, Gomez-Sanchez CE, Fort C. Immunization ofDahl SS/jr rats with an ouabain conjugate mitigates hypertension. Am. J.Hypertens.1994,7(1):591-596
    109Xie Z, Askari A. Na+/K+-ATPase as a signal transducer. Eur. J.Biochem.2002,269:2434-2439
    110Xie Z. Ouabain interaction with cardiac Na,K-ATPase reveals that theenzyme can act as a pump and as a signal transducer. Cell Mol. Biol.2001,47(2):383-390
    111Tian J, Cai T, Yuan Z, et al. Binding of Src to Na+/K+-ATPase forms afunctional signaling complex. Mol. Biol. Cell.2006,17(1):317-326
    112Wang H, Haas M, Liang M, et al. Ouabain assembles signalingcascades through the caveolar Na+/K+-ATPase. J. Biol. Chem.2004,279(17):17250-17259
    113Liu J, Liang M, Liu L, et al. Ouabain-induced endocytosis of theplasmalemmal Na/K-ATPase in LLC-PK1cells requires caveolin-1.Kidney Int.2005,67:1844-1854
    114Haas M, Askari A, Xie Z. Involvement of Src and epidermal growthfactor receptor in the signaltransducing function of Na+/K+-ATPase. J. Biol.Chem.2000,275(36):27832-27837
    115Haas M, Wang H, Tian J, et al. Src-mediated inter-receptor cross-talkbetween the Na+/K+-ATPase and the epidermal growth factor receptorrelays the signal from ouabain to mitogenactivated protein kinases. J. Biol.Chem.2002,277(21):18694-18702
    116Liu J, Kesiry R, Periyasami SM, et al. Ouabain induces endocytosis ofplasmalemmal Na/K-ATPase in LLC-PK1cells by a clathrin-dependentmechanism. Kidney Int.2004,66:227-241
    117Liang M, Tian J, Liu L, et al. Identification of a pool of non-pumpingNa,K-ATPase. J. Biol. Chem.2007,282(14):10585-10593
    118Zhang L, Zhang Z, Guo H, et al. Na+/K+-ATPase mediated signaltransduction and Na+/K+-ATPase regulation. Fundam Clin Pharmacol,2008,22(6):615-621
    119Price EM, Rice DA, Lingrel JB. Structure-function studies ofNa,K-ATPase: site directed mutagenesis of the border residues from theH1-H2extracellular domain of the α subunit. J. Biol. Chem.1990,265:6638-6641
    120Dostanic I, Lorenz JN, Schultz JEJ, et al. The α2isoform ofNa,KATPase mediates ouabain-induced cardiac inotropy in mice. J. Biol.Chem.2003,278:53026-53034
    121Dostanic I, Schultz JEJ, Lorenz JN, et al. The α1isoform ofNaK-ATPase regulates cardiac contractility and functionally interacts andco-localizes with the Na/Ca exchanger in heart. J.Biol. Chem.2004,279:54053-54061
    122Dostanic-Larson I, Van Huysse JW, Lorenz JN, et al. The highlyconserved cardiac glycoside binding site of Na,K-ATPase plays a role inblood pressure regulation. Proc. Natl.Acad. Sci. USA.2005,102(44):15845-15850
    123Dostanic-Larson I, Lorenz JN, Van Huysse JW, et al. Physiologicalrole of the α1-and α2-isoforms of the Na+K+-ATPase and biologicalsignificance of their cardiac glycoside binding site. Am. J. Physiol. Regul.Integr. Comp. Physiol.2006,290(3):524-528
    124Wen C, Fraser T, Li M, et al. Haemodynamic mechanisms ofcorticotrophin (ACTH)-induced hypertension in the rat. J. Hypertens.1999,17(12):1715-1723
    125Whitworth JA, Zhang Y, Mangos G, et al. Species variability incardiovascular research: the example of adrenocorticotrophin-inducedhypertension. Clin. Exp. Pharmacol. Physiol.2006,33(9):887-891
    126Lingrel JB. The physiological significance of the cardiotonicsteroid/ouabain-binding site of the Na,K-ATPase. Annu Rev Physiol,2010,72:395-412
    127Radzyukevich TL, Lingrel JB, Heiny JA. The cardiac glycosidebinding site on the Na,K-ATPase α2isoform plays a role in the dynamicregulation of active transport in skeletal muscle. Proc.Natl. Acad. Sci.USA.2008,106(8):2565-2570
    128Loreaux EL, Kaul B, Lorenz JN, et al. Ouabain sensitive α1Na,K-ATPase enhances natriuretic response to saline load. J. Am. Soc.Nephrol.2008,19:1947-1954
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.