RCS鼠视网膜色素变性过程中Müller细胞活化及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视网膜退行性变疾病是严重的致盲眼病,对于这类疾病目前尚缺乏有效阻止病变进展和恢复视网膜功能的治疗方法。其中,视网膜色素变性(Retinitis pigmentosa,RP)是一组以进行性感光细胞及色素上皮功能丧失为共同表现的遗传性疾病,是遗传性视觉损害和盲目的最常见原因之一。近年来对视网膜色素变性疾病的临床及基础研究取得一定进展,但视网膜色素变性的发病机制,及在病变过程中各种视网膜神经细胞的病理改变及功能状态尚不清楚。
     Müller细胞是脊椎动物视网膜中一种主要的胶质细胞,在功能上起到联系各种视网膜神经细胞的作用,是视网膜各种细胞之间物质交换的结构基础。在正常视网膜中具有参与视网膜糖代谢、调节视网膜血流、参与神经递质循环、调节视网膜水电解质平衡、参与感光色素循环过程及控制神经元兴奋性等功能。
     在视网膜的各种病理条件下,Müller细胞会发生活化,在形态、数量及蛋白表达上均发生一系列变化。研究表明,在视网膜脱离、增殖性玻璃体视网膜病变(PVR)和增殖性糖尿病视网膜病变(PDR)中Müller细胞本身变得肥大同时也发生了增殖及纤维化。在一定条件下,成熟Müller细胞还具有分化的潜能。研究表明在急性视网膜损伤模型中,成熟Müller细胞在增殖的同时还能表达PAX6、Nestin等视网膜干细胞的标志物。体外研究也表明,在一定条件下,Müller细胞可以分化为视网膜干细胞。
     此外,Müller细胞发生活化后还有一个显著特点就是细胞电生理特性发生了变化。Müller细胞不同于其他视网膜神经细胞的特点是其细胞膜上具有大量的K+通道,这与其缓冲视网膜组织内K+及参与神经递质循环的功能有关。研究表明,在视网膜脱离及急性视网膜损伤等病理模型中,Müller细胞在活化的同时均表现出以K+电流为主的电生理特性的改变,这种离子电流的改变可以反应出Müller细胞的功能及分化状态。
     对于Müller细胞活化的机制,目前尚不清楚。细胞外信号调节激酶(extracellular signal - regulated kinase , ERK)介导的信号传递途径是调节细胞生长、发育及分裂的信号网络的核心,众多研究表明嘌呤类受体P2Y-ERK信号通路与星形胶质细胞的增殖分化密切相关,因此也可能参与调节了Müller细胞的活化过程。RP作为一种慢性病变刺激是否也会导致Müller细胞活化,目前尚未见报道。
     本实验室前期采用皇家外科学院(Royal college of surgeons,RCS)大鼠对这一问题进行了初步研究。发现,RCS鼠视网膜色素变性过程中,Müller细胞能形成所谓“胶质封闭”(glial seal),阻断了视网膜神经上皮与色素上皮之间的联系,这说明在RP中,Müller细胞有可能发生了增殖及迁移。本实验室对RCS鼠进行蛋白印迹研究还发现,RCS鼠在视网膜变性过程中,其视网膜组织中视网膜干细胞标志物CHX10的表达呈上升趋势。此外,在我们实验室前期对RCS鼠视网膜神经细胞电生理的研究中发现神经节细胞、双极细胞等都发生了离子电流的改变,那么Müller细胞作为视网膜神经细胞之间联系的桥梁,其离子电流特性也可能发生了改变。
     因此本研究提出假设,在视网膜色素变性病变发生发展过程中,视网膜色素变性作为一种慢性刺激导致了Müller细胞的活化,表现为增殖、分化及离子电流改变等一系列与活化相关的病理生理改变,而P2Y1受体-ERK信号通路可能参与了Müller细胞活化的调节过程。
     针对上述假说,本文的主要研究内容及结果如下:
     1、不同发育阶段RCS鼠视网膜Müller细胞活化状态的研究。采用冰冻切片、免疫组织化学方法特异性标记RCS鼠视网膜Müller细胞,研究在视网膜变性发展过程中,Müller细胞活化的病理改变。结果发现:1)以上结果提示,RCS鼠视网膜Müller细胞相对于对照组发育较快,而且随着病程的进展,Müller细胞逐渐变得肥大、排列开始紊乱,并在视网膜下腔局部形成纤维层。提示RCS鼠视网膜Müller细胞发生了明显的病理改变。2)对不同阶段RCS鼠视网膜Müller细胞进行计数后发现,在P30d,两组视网膜Müller细胞数量无显著性差异(P>0.05);而在P60d、90d、120d,RCS鼠视网膜Müller细胞数量均显著高于对照组(P<0.05或P<0.01),说明在RCS鼠视网膜变性的中晚期,Müller细胞数量明显高于对照组,说明Müller细胞在视网膜变性的中晚期发生了明显的增殖;3)在P30d、60d、120d时RCS鼠Müller细胞GAFP表达明显高于对照组,提示在视网膜变性开始后Müller细胞发生了活化。RCS鼠视网膜变性开始后,Müller细胞ERK蛋白表达量明显高于对照组,进一步证实Müller细胞活化过程中伴有ERK的激活。4)由此可见,RCS鼠视网膜变性过程中Müller细胞可以表达视网膜干细胞标志物CHX10,说明视网膜变性过程中成熟Müller细胞在活化的同时可以向视网膜干细胞等其他神经细胞方向分化。
     2、RCS鼠视网膜变性过程中Müller细胞活化的离子通道特性研究。采用急性分离的视网膜Müller细胞膜片钳记录的方法,对不同发育阶段的RCS鼠Müller细胞进行全细胞记录,研究Müller细胞在视网膜变性发展过程中基本膜学特性、内外向K+电流的性质及大小的变化。结果发现:1)RCS鼠视网膜变性过程中Müller细胞的静息膜电位逐渐降低,输入阻逐渐升高,并且都与对照组有显著性差异,说明RCS鼠视网膜Müller细胞膜逐渐去极化。RCS鼠视网膜变性过程中Müller细胞的膜电容逐渐增加,并且显著高于对照组,说明RCS鼠视网膜Müller细胞膜逐渐增大,2)在给予超极化和去极化脉冲时,Müller细胞主要表现出内向及外向的K+电流,能够被TEA及Ba2+阻断。说明正常Müller细胞膜上离子通道以K+通道为主,并且具有内向整流特性,这符合Müller细胞缓冲视网膜K+的功能特点。3)在视网膜变性早期,Müller细胞内向及外向K+电流均增大,加速清除视网膜组织内由于兴奋性毒性产生的K+,从而对视网膜神经细胞起到一定保护作用;而晚期,Müller细胞清除K+能力则大大降低,加重视网膜各种神经细胞的损害。4)RCS鼠P30d时K+电流密度显著高于对照组(P<0.05),P90d时K+电流密度显著低对照组(P<0.05)。提示随视网膜色素变性进展,Müller细胞膜上单位面积K+电流减少,表现出类似原始Müller细胞(或干细胞)K+电流的特征,说明其K+通道类型可能发生改变。5)RCS鼠Müller细胞K+通道I-V曲线的变化同样符合其离子电流特性,即在视网膜变性早期Müller细胞缓冲K+能力增强,因而相对于对照组,随着膜电位的去极化,细胞膜K+电流升高更加明显;而在视网膜变性的晚期,相对于对照组,RCS鼠Müller细胞随着膜电位的去极化,K+电流却发生了更显著的降低。
     3、RCS鼠变性视网膜对正常视网膜Müller细胞活化的机制研究。采用正常Müller细胞与RCS鼠视网膜混合细胞共培养的方法,检测Müller细胞的增殖分化改变。同时采用western-blot、RT-PCR等方法检测在共培养系统中, P2Y1受体-ERK信号通路的表达情况。共培养分组:1)正常Müller细胞与P30d之RCS鼠视网膜混合细胞共培养,为实验组;2)正常Müller细胞与P30d之RCS鼠视网膜混合细胞共培养,同时在培养系统中加入P2Y1-ERK通路阻断剂PD98059(20μM),为阻断组;3)正常Müller细胞与P30d之对照组大鼠视网膜混合细胞共培养,为对照组。结果发现:1)提示共培养3d、7d时Müller细胞在变性视网膜混合细胞的作用下发生增殖。在变性视网膜混合细胞作用下,正常Müller细胞的GFAP和ERK蛋白表达均高于对照组,说明变性视网膜可以使正常Müller细胞发生活化。在变性视网膜组织与正常Müller细胞共培养一定时间后,正常Müller细胞可能发生了一定程度的分化,表达视网膜干细胞标志物。2)共培养1d时,实验组与加入阻断组的Müller细胞增殖率无显著性差异(P>0.05);共培养3d、7d时实验组Müller细胞增殖率明显高于阻断剂PD98059组(P<0.05);提示变性视网膜混合细胞促进正常Müller细胞增殖的作用能够被P2Y1-ERK信号通路阻断剂PD98059阻断。3)PD98059能够阻断Müller细胞的活化并使Müller细胞表达GFAP及ERK蛋白减少。RT-PCR结果共培养3d及7d时实验组P2Y1受体mRNA表达增加,并高于阻断组。
     因此,我们得出以下结论:
     1、RCS鼠视网膜色素变性过程中Müller细胞发生了活化,表现为细胞本身的肥大、局部胶质封闭的形成及细胞发生的明显增殖,随着视网膜变性的进展,Müller细胞活化更加明显。而正常Müller细胞在RCS鼠视网膜混合细胞作用下也可以发生增殖反应。2、在体及离体实验都说明,RCS鼠视网膜素色变性可以使Müller细胞GFAP和ERK蛋白表达的增加,这从蛋白水平进一步说明Müller细胞在视网膜色素变性过程中发生了活化反应;同时,Müller细胞可以表达视网膜干细胞标志物CHX10,说明Müller细胞活化以后可能发生了向视网膜干细胞方向的分化。3、RCS鼠视网膜色素变性的中晚期,Müller细胞静息膜电位降低,膜电容、输入阻抗增大,这与Müller细胞在视网膜色素变性过程中增生、肥大的病理改变改变相一致。4、RCS鼠视网膜Müller细胞的离子通道特性主要表现为去极化时的外向K+电流和超极化时的内向整流K+电流。在视网膜变性早期,内外向电流幅值均高于对照组,而在变性晚期则显著低于对照组,这揭示了Müller细胞在视网膜变性过程中功能状态的变化,即早期缓冲K+能力增强对变性视网膜中K+造成的神经毒性起到一定修复作用,而晚期缓冲K+能力降低,造成视网膜中K+堆积,加重视网膜神经细胞损害。5、发现随视网膜色素变性进展,RCS鼠Müller细胞膜上单位面积K+电流减少,说明Müller细胞K+通道类型可能发生改变、数量可能减少,这中表现类似于原始Müller细胞(或干细胞)K+电流的特征,因此从电生理方面进一步证实Müller细胞可能发生了分化。6、Müller细胞发生活化的同时伴有ERK蛋白和P2Y1受体mRNA表达的增加,而当加入ERK信号通路阻断剂后,Müller细胞的活化反应被抑制,同时ERK蛋白表达及P2Y1受体mRNA含量明显降低。这说明,RCS鼠视网膜色素变性过程中Müller细胞的活化反应可能由P2Y1受体-ERK信号通路所介导。
Retinal degeneration (RD) is a group of severe diseases leading to blindness, which lack effective therapeutic measures. Among the RD, Retinitis pigmentosa (RP) is the most common retinal inherited disease, which featured in a progressing apoptosis of photoreceptors and disfunction of retinal pigmented epitheliums (RPE). The pathological mechanism and functional changes of neurons in the progress of RP is still unknown.
     Müller cells are main glial cells in the mammalian retina. They connect almost all the retinal neurons by their specialized morphology, which is the foundation of normal retinal function. Müller cells are involved in many retinal physiological activities including glycometabolism, blood regulation, neurotransmitter cycling, homeostasis and control of neuronal excitability.
     Under pathological conditions, Müller cells can be activated to perform a series of changes in morphology, amount and protein expression. It was reported that Müller cells could proliferate dramatically, becoming hypertrophy and fibrosis in retina detachment, PVR and PDR. Besides, the mature Müller cells may re-enter the cell cycling, and differentiate into retinal stem cells expressing PAX6, Nestin in some acute retinal injuries.
     Meanwhile, Müller cells showed obvious changes of the electrophysiological properties when being activated. The characteristic electrophysiological properties of Müller cells distinguished to other retinal cells are large amounts of potassium channels in the membrane, which is related to Müller cells’function of buffering K+. In retinal detachment and acute retinal injuries, K+ channels currents of Müller cells decreased significantly.
     The mechanism of Müller cells activation is still not clear. Extracellular signal - regulated kinase (ERK) signal pathway is the core in regulation of cells’growth, development and mitosis. Many articles reported that purinergic receptor P2Y1-ERK signal pathway was closely related to the proliferation and differentiation of astrocytes. So the P2Y1-ERK pathway is probably involved in the activation of Müller cells . As a chronic inflammatory disease, if RP can also activate Müller cells , and how Müller cells change in RP is still unknown.
     Our previous studies showed that Müller cells glial seal formed in the subretinal space in the progress of RCS rats’retinal degenetation, which is considered to block the connection between neuroretinal epitheliums and RPE.。Quantitive test of RCS retinal proteins showed, CHX10, a marker of retinal stem cells , increased significantly during the progress of retinal degeneration. Our patch clamp recording on RCS rats retinal neurons showed that a dramatically changes of ionic currents occurred in the ganglion cells and the bipolar cells. So as a bridge among retinal neurons, Müller cells’ionic currents may also changed in progress of RCS rats retinal degeneration.
     Based on above, we hypothesis that Müller cells also can be activated in the progress of RP to proliferate and re-differentiate, and display changes of ionic currents cross the membrane. P2Y1-ERK signal pathway may mediate the activation of Müller cells .
     Our main research contents and results are showed as following:
     1、Activated state of Müller cells in RCS rats at different development stage.
     Methods:frozen section, immunohistochemistry . Results:1)Müller cells of RCS rats developed more rapidly than control, and became hypertrophy , disorder. And a local fibril layer former in the subretinal space. 2)At P60d、90d、120d,amount of Müller cells in RCS rats retina was significantly higher than control(P<0.05 or P<0.01) which implied that Müller cells of RCS rats proliferated dramatically. 3)At P30d、60d、120d, the expression of GFAP and ERK in RCS rats retina was significantly higher than control ,which implied Müller cells were activated , and ERK might be involved in it. 4)Müller cells of RCS retina could express CHX10, a maker of retinal stem cells, which proved that differentiation of Müller cells happened in the progress of retinal degeneration.
     2、Properties of K+channels currents in Müller cells from RCS retina.
     Methods: patch clamp recording of the acute isolated Müller cells. Results:1)With theprogress of RD, RMP of Müller cells from RCS rats retina depolarized dramatically, and IR, Cm increased significantly higher than control (P<0.05), implying that Müller cells became hypertrophy in responds to RD.2)inward and outward currents were recorded when giving hyper- and depolarized voltage steps, which could be blocked by Ba2+ and TEA, implying a predominant distribution of K+ channels on Müller cells . 3)at the early stage of RCS rats retinal degeneration, the inward and outward currents increased, and were significantly higher than control, which is considered to eliminate the extracelluar K+ produced in the RD, to be helpful to neuron survival. At late stage, the inward and outward currents decreased, and were significantly lower than control, which worsened the retinal impairments. 4)At P30d the K+ currents density of Müller cells in RCS rats was significantly higher (P<0.05) than control; At P90d, the K+ currents density of Müller cells in RCS rats was significantly lower (P<0.05). The decease of K+ current density implied that the number of K+ channels might deceased during retinal degeneration. 5)The I-V curves of RCS rats’Müller cells showed, at P30d, with the increase of voltage impulse, the current amplitude of RCS rats Müller cells increased more rapidly than control, and both inward and outward current amplitudes were higher. At P90d, it changed adversely.
     3、Effect of RCS rats retinal mixed cells on the normal cultured Müller cells, and P2Y1-ERK signal pathway’s involvement in it.
     Methods: cocluture of normal cultured Müller cells and RCS rats retinal mixed cells, immunohistochemistry, western-blot、RT-PCR. Results: 1)At 3d、7d after coculture, the normal Müller cells proliferated dramatically, and the expression of GFAP and ERK was significantly higher than control. Part of normal Müller cells expressed CHX10, which implying that normal Müller cells were activated by the RCS rats retinal mixed cells. 2)At 3d、7d after coculture, the proliferation rate of normal Müller cells increased dramatically(P<0.05), which could be completely blocked by PD98059, the blocker of ERK pathway. It is further proved that ERK pathway might mediate the activation o Müller cells . 3)The expression of GFAP and ERK was significantly decreased after blocking the ERK pathway by PD98059. RT-PCR results showed , at 3d、7d after coculture, the quantity of normal Müller cells’P2Y1 mRNA increased , and significantly higher than control and PD98059 group.
     Based on the results, we concluded:
     1、Müller cells could be activated during the progress of RCS rats’retinal degeneration. After being activated, Müller cells begin to proliferate, becoming hypertropy, and formed local glial seal in the subretinal space. The expression of GFAP increased with progress of retinal degeneration. 2、After being activated, Müller cells might differentiate into retinal stem cells in responds to activation by expressing CHX10. 3、At middle and late stage of retinal degeneration, RMP of RCS rats’Müller cells became more depolarized, the IR and Cm of RCS rats’Müller cells increased dramatically, which provided electrophysiological evidence to Müller cells activation. 4、At the early stage of RCS rats retinal degeneration, Müller cells enhanced their ability of buffering K+ by increasing the trans-membrane K+ currents. At late stage, trans-membrane K+ currents of RCS rats’Müller cells decreased significantly, implying a disorder of Müller cells function, which might worsen the retinal impairments. 5、Coincident with the change of K+ currents, the decease of K+ current density implied that the number of K+ channels might deceased during retinal degeneration. 6、In RCS rats, the expression of ERK in Müller cells increased with the progress of retinal degeneration, and quantity of P2Y1 mRNA increased under the stimulation of RCS rats’retinal mixed cells. So the P2Y1-ERK signal pathway might mediate the activation of Müller cells.
引文
1. Lund RD, Kwan ASL, Keegan DJ. Cell Transplantation as a Treatment for Retinal Disease. Progress in Retinal and Eye Research. 2001; 20(4): 415-449.
    2. Lund RD, Ono SJ, Keegan DJ, Lawrence JM. Retinal transplantation: progress and problems in clinical application.J Leukocyte Biology. 2003; 74:151-160.
    3. Schraermeyer U, Thumann G, Luther T, et al. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transplant. 2001; 10(8): 673-680.
    4. Reichenbach, A., Fuchs, U., Kasper, M., El-Hifnawi, E., Eckstein, A.-K., Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure. Acta Neuropathol. 1995; 90, 273–281.
    5. Reichenbach, A., Stolzenburg, J.-U., Wolburg, H., Ha¨rtig, W., E,Hifnawi, E., Martin, H.,. Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells. Glia. 1995; 13, 195–208.
    6. Newman, E.A.. Acid efflux from retinal glial cells generated by sodium bicarbonate cotransport. J. Neurosci. 1996.16, 159–168.
    7. Tsacopoulos, M., Magistretti, P.J.,. Metabolic coupling between glia and neurons. J. Neurosci. 1996 ;16, 877–885.
    8. Matsui, K., Hosoi, N., Tachibana, M.. Active role of glutamate uptake in the synaptic transmission from retinal nonspiking neurons. J. Neurosci. 1999 ; 19, 6755–6766
    9. Bringmann, A., Reichenbach, A., Wiedemann, P. Pathomechanisms of cystoid macular edema. Ophthalm. Res. 2004; 36, 241–249.
    10. Newman, E.A., Zahs, K.R.. Modulation of neuronal activity by glial cells in the retina. J. Neurosci.1998; 18, 4022–4028.
    11. Stevens, E.R., Esguerra, M., Kim, P.M., Newman, E.A., Snyder, S.H., Zahs, K.R., Miller, R.F.,. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc. Natl. Acad. Sci. USA .2003; 100, 6789–6794.
    12. Bringmann, A., Reichenbach, A. Role of Müller cells in retinal degenerations. Front Biosci. 2001; 6, E72–92.
    13. Clyde Guidry. The role of Müller cells in fibrocontractive retinal disorders. Progress in Retinal and Eye Research . 2005; 2475–86
    14. Steven K. Fisher, Geoffrey P. Lewis.Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Research . 2003; 43: 887–897
    15. Ortrud Uckermann, Susann Uhlmann, Michael Weick, Thomas Pannicke, Mike Francke. Upregulation of purinergic P2Y receptor-mediated calcium responses in glial cells during experimental detachment of the rabbit retina. Neuroscience Letters 2003 (338) 131–134
    16. Andy J. Fischer. Neural regeneration in the chick retina. Progress in Retinal and Eye Research 2005 (24) 161–182
    17. Fischer, A.J., Reh, T.A. Müller glia are a potential source of neural regeneration in the post-natal chick retina. Nat. Neurosci. 2001(4), 247–252.
    18. Fischer, A.J., McGuire, C.R., Dierks, B.D., Reh, T.A. Insulin and FGF2 activate a neurogenic program in Mqller glia. J. Neurosci. 2002(22), 9387– 9398.
    19. L. P. Xue, J. Lu, Q. Cao, S. Hu, P. Ding and E.-A. Ling. Müller glial cells express nestin coupled with gilal fibrillary acidic protein in experimentally induced glaucoma in the rat retina.. Neuroscience 2006 (139) 723–732
    20. Akira Kubota, Kohji Nishida, Kinichi Nakashima, Yasuo Tano. Conversion of mammalian Müller glial cells into a neuronal lineage by in vitro aggregate-culture. Biochemical and Biophysical Research Communications 2006 (351) 514–520
    21. J. Monnin, N. Morand-Villeneuve, G. Michel, D. Hicks, C. Versaux-Botteri, Production of neurospheres from mammalian Müller cells in culture, Neuroscience Letters (2007), doi:10.1016/j.neulet.2007.04.073
    22. Andreas Bringmann, Thomas Pannicke, Jens Grosche, Mike Francke, Peter Wiedemann. Müller cells in the healthy and diseased retina. Progress in Retinal and Eye Research. 2006, 25,397–424
    23. Mike Francke, Frank Faude, Thomas Pannicke, Ortrud Uckermann,Michael Weick.Glial cell-mediated spread of retinal degeneration during detachment: A hypothesis based upon studies in rabbits. Vision Research 2005 (45) 2256–2267
    24. Thomas Pannicke, Ortrud Uckermann, Ianors Iandiev, Peter Wiedemannc, Andreas Reichenbach, Andreas Bringmann. Ocular inflammation alters swelling and membranecharacteristics of rat Müller glial cells. Journal of Neuroimmunology 2005 (161) 145– 154
    25. Neary JT, Kang Y, Bu Y, et al. Mitogenic signaling by ATP /P2Y purinergic recep tors in astrocytes: involvement of a calcium-independent PKC /ERK pathway distinct from the P I-PLC-calcium path way. J N eurosci, 1999, 19: 421124220.
    26. Maria P. Abbracchio, Stefania Ceruti. Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signalling 2006, 2: 595–604
    27. Amelia E. Atterbury-Thomas, Catherine Leon, Christian Gachet, Ian D. Forsythe, and Richard J. Evans. Contribution of P2Y1 receptors to ADP signalling in mouse spinal cord cultures. Neurosci Lett. 2008 April 25; 435(3): 190–193.
    28. Ivan Milenkovic, Michael Weick, Peter Wiedemann, Andreas Reichenbach, and Andreas Bringmann. P2Y Receptor-Mediated Stimulation of Müller Glial Cell DNA Synthesis: Dependence on EGF and PDGF Receptor Transactivation. IOVS, 2003, 44( 3) 1211-1220
    29. Julia E. Fries, Thomas H. Wheeler-Schilling, Konrad Kohler, Elke Guenther.Distribution of metabotropic P2Y receptors in the rat retina: a single-cell RT-PCR study. Molecular Brain Research 2004 (130) 1–6
    30. Steven K. Fisher, Geoffrey P. Lewis.Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Research 2003 (43) 887–897
    31. Vijay Sarthy. Focus on Molecules: Glial fibrillary acidic protein (GFAP). Experimental Eye Research 2007 (84) 381-382
    32. Masumi Takeda, Akira Takamiya, Akitoshi Yoshida, and Hiroshi Kiyama Extracellular Signal-Regulated Kinase ActivationPredominantly in Müller Cells of Retina with Endotoxin-Induced Uveitis. Invest Ophthalmol Vis Sci. 2002;43:907–911)
    33. Andy J. Fischer, Ghezal Omar, Jim Eubanks, Christopher Roger McGuire, Blair Dorian Dierks, Thomas A.Reh.Different aspects of gliosis in retinal Müller glia can be induced by
    34. Bryan W. Jones, Robert E. Marc. Retinal remodeling during retinal degeneration. Experimental Eye Research 2005 (81) 123–13
    35. Willbold, E., Berger, J., Reinicke, M., Wolburg, H.. On the role of Müller glia cells in histogenesis: only retinal spheroids, but not tectal, telencephalic and cerebellar spheroids develop histotypical patterns. J. Hirnforsch. 1997, 38, 383–396.
    36. Stier, H., Schlosshauer, B. Different cell surface areas of polarized radial glia havingopposite effects on axonal outgrowth. Eur. J. Neurosci. 1998, 10, 1000–1010.
    37. Sullivan, R., Penfold, P., Pow, D.V. Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest. Ophthalmol. Vis. Sci. 2003, 44, 856–865.
    38. Robert E. Marc, Bryan W. Jones, Carl B. Watt, Enrica Strettoi.Neural remodeling in retinal degeneration. Progress in Retinal and Eye Research ,2003,22, 607–655
    39. Malhotra S , Shnitka T, Elabrink J . Reactive as trocytes. A teview. Cytobios , 1990 ; 61 (1) : 133
    40. Francke, M., Faude, F., Pannicke, T., Bringmann, A., Eckstein, P., Reichelt, W., Wiedemann, P., Reichenbach, A. Electrophysiology of rabbit Mu¨ller (glial) cells in experimental retinal detachment and PVR. Invest. Ophthalmol. Vis. Sci. 2001, 42, 1072–1079
    41. Fletcher, E.L., Phipps, J.A., Wilkinson-Berka, J.L. Dysfunction of retinal neurons and glia during diabetes. Clin. Exp. Optom. 2005, 88, 132–145.
    42. Kwang Ro Ju, Hwa Sun Kim, Jie Hyun Kim, Na Young Lee, Chan Kee Park Retinal glial cell responses and Fas/FasL activation in rats with chronic ocular hypertension.Brain research, 2006 (1122) 209–221
    43. Yasuhara, T., Shingo, T., Date, I.,. The potential role of vascular endothelial growth factor in the central nervous system. Rev. Neurosci. 2004 15, 293–307.
    44. Wahlin, K.J., Campochiaro, P.A., Zack, D.J., Adler, R. Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. Invest. Ophthalmol. Vis. Sci. 2000, 41, 927–936.
    45. Andy J. Fischer, Mike Schmidt, Ghezal Omar, and Thomas A. Reh.BMP4 and CNTF are neuroprotective and suppress damage-induced proliferation of Müller glia in the retina .Mol. Cell. Neurosci. 2004 (27) 531– 542
    46. L. P. Xue, J. Lu, Q. Cao, C. Kaur and E.-A. Ling. Nestin expression in Müller glial cells in postnatal rat retina and its upregulation following optic nerve transaction. Neuroscience 2006 (143) 117–127
    47. J. Wan et al., Sonic hedgehog promotes stem-cell potential of Müller glia , Biochem. Biophys.Res. Commun. (2007), doi:10.1016/j.bbrc.2007.08.178
    48. ANDY J. FISCHER AND THOMAS A. REH.Potential of Müller Glia to BecomeNeurogenic Retinal Progenitor Cells. GLIA 2003, 43:70–76
    49. Jin Wan, Hua Zheng , Zu-Lin Chen, Hong-Lei Xiao,Zhen-Jue Shen, Guo-Min Zhou, Preferential regeneration of photoreceptor from Müller glia after retinal degeneration in adult rat .Vision Research 2008 (48) 223–234
    50. Patrick Yurco, David A.Cameron.Responses of Müller glia to retinal injury in adult zebrafish.Vision Research 2005 (45) 991–1002
    51. Pannicke, T., Bringmann, A., Reichenbach, A. Electrophysiological characterization of retinal Müller glial cells from mouse during postnatal development: comparison with rabbit cells. Glia 2002, 38, 268–272.
    52. Felmy, F., Pannicke, T., Richt, J.A., Reichenbach, A., Guenther, E. Electrophysiological properties of rat retinal Müller (glial) cells in postnatally developing and in pathologically altered retinae. Glia 2001, 34, 190–199.
    53. Kofuji, P., Biedermann, B., Siddharthan, V., Raap, M., Iandiev, I., Milenkovic, I., Thomzig, A., Veh, R.W., Bringmann, A., Reichenbach, A. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia 2002 , 39, 292–303.
    54. Elke Ulbricht, Thomas Pannicke, Margrit Hollborn, Maik Raap, Iwona Goczalik. Proliferative gliosis causes mislocation and inactivation of inwardly rectifying Kt (Kir) channels in rabbit retinal glial cells. Experimental Eye Research 2008 (86) 305-313
    55. Andreas Bringmann, Mike Francke,Thomas Pannicke, Bernd Biedermann, Frank Faude. Human Müller Glial Cells: Altered Potassium Channel Activity in Proliferative Vitreoretinopathy. IOVS, December 1999, 40(13): 3316-3323
    56. Thomas Pannicke, Ortrud Uckermann, Ianors Iandiev, Peter Wiedemannc, Andreas Reichenbach, Andreas Bringmann. Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. Journal of Neuroimmunology 2005 (161) 145– 154
    57. Reichenbach A,Faude F,Ennnann V,et a1.The Müller(glial) cell in normal and diseased retina:a case for single—cell electrophysiology.Ophthalmic Res,1997,29:326—340.
    58. Newman EA,Frambach DA,Odette LL.Control of extracelar potassium levels by retinal glial cell K siphoning.Science,1984,225:1174—1175.
    59. Thomas Pannicke, Bernd Biedermann, Ortrud Uckermann, Michael Weick ,AndreasBringmann.Physiological properties of retinal Müller glial cells fromthe cynomolgus monkey, Macaca fascicularis—a comparison to human Müller cells. Vision Research 2005 (45) 1781–1791
    60. Bernd Biedermann , Sebastian Wolf , Leon Kohen, Peter Wiedemann, Eberhard Buse. Patch-clamp recording of Müller glial cells after cryopreservation. Journal of Neuroscience Methods 2002 (120) 173_/178
    61. Andreas Bringmann, Mike Francke,Thomas Pannicke, Bernd Biedermann, Frank Faude. Human Müller Glial Cells: Altered Potassium Channel Activity in Proliferative Vitreoretinopathy. IOVS, December 1999, 40(13): 3316-3323
    62. Grosche J , Hartig W, Reichenbach A. Expression of glial fibrillary acidic protein ( GFAP) , glutamine synt hetase ( GS) , and Bcl22 protooncogene protein by Müller cell in retinal light damage of rat s. Neurosci Lett , 1995 ,185 (2) :1192122.
    63. Hjeimeland IM , Harvey A K, Nphman TC. Primary culture and chemolactic response of human retinal glia. Invest Opht halmol Vis Sci , 1986 ,27 (Suppl) :3822340.
    64. Akira Kubota, Kohji Nishida, Kinichi Nakashima, Yasuo Tano. Conversion of mammalian Müller glial cells into a neuronal lineage by in vitro aggregate-culture. Biochemical and Biophysical Research Communications 2006 (351) 514–520
    65. Ani V. Das et al., Neural stem cell properties of Müller glia in the mammalian retina: Regulation by Notch and Wnt signaling, Developmental Biology (2006), doi:10.1016/j.ydbio.2006.07.029.
    66. Y.-W. Peng, T. Senda, Y. Hao, K. Matsuno and F. Wong. Ectopic Synaptogenesis during retinal degeneration in the royal college of surgeons rat. Neuroscience 2003 (119) 813–820
    67. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol. 2008 Feb;10(2):138-48.
    68. Walter Kolch. Meaningful relationships : the regulation of the Ras/ Raf/ MEK/ ERK pathway by protein interactions. J . Biochem. , 2000 ;351 :289~305.
    69. Sun H. , King A. J . , Diaz ,H. B. , et al. Regulation of the protein kinase raf21 by oncogenic ras through phosphatidylinositol 3 - kinase , Cdc42/ Rac and Pak. Curr. Bid. ,2000 ;10 :281~284.
    70. Gulgun Tezel, Balwantray C. Chauhan, Raymond P. LeBlanc, and Martin B. Wax Immunohistochemical Assessment of the Glial Mitogen-Activated Protein Kinase Activation in Glaucoma. Invest Ophthalmol Vis Sci. 2003;44:3025–3033
    71. Kase S, Yoshida K, Harada T, Harada C, Namekata K. Phosphorylation of extracellular signal-regulated kinase and p27(KIP1) after retinal detachment. Graefes Arch Clin Exp Ophthalmol. 2006 Mar;244(3):352-8
    72. FGFR1, Signaling, and AP-1 Expression after Retinal Detachment: Reactive Müller and RPE Cells Scott F. Geller,1,2 Geoffrey P. Lewis,2 and Steven K. Fisher1,2 Invest Ophthalmol Vis Sci. 2001;42: 1363–1369
    73. Akiyama H, Nakazawa T, Shimura M, Tomita H, Tamai M.Presence of mitogen-activated protein kinase in retinal Müller cells and its neuroprotective effect ischemia-reperfusion injury. Neuroreport. 2002 Nov 15;13(16):2103-7.
    74. Zhou RH, Yan H, Wang BR, Kuang F, Duan XL, Xu Z. Role of extracellular signal-regulated kinase in glutamate-stimulated apoptosis of rat retinal ganglion cells. Curr Eye Res. 2007 Mar;32(3):233-9
    75. Steven Roth, Afzhal R. Shaikh, Meghann M. Hennelly, Qing Li, Vytas Bindokas, and Christine E. Graham. Mitogen-Activated Protein Kinases and Retinal Ischemia. IOVS, December 2003, 44(12):5383-5395
    76. Goureau O, Rhee KD, Yang XJ. Ciliary neurotrophic factor promotes Müller glia differentiation from the postnatal retinal progenitor pool. Ischemia. Invest Ophthalmol Vis Sci. 2003;44:5383–5395
    77. Harada T, Harada C, Nakayama N, et al. Modification of glialneuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron. 2000;26:533–541.
    78. Planck SR, Huang XN, Robertson JE, et al. Cytokine mRNA levels in rat ocular tissues after systemic endotoxin treatment. Invest Ophthalmol Vis Sci. 1994;35:924–930.
    79. Moore DJ, Chambers JK, Wahlin JP, et al. Exp ression pattern of human P2Y recep tor subtypes: a quantitative reverse transcription-polymerase chain reaction study. B iochim Biophys Acta, 2001, 1521 (123) : 1072119.
    80. AbbracchioMP,Boeynaems JM,Barnard EA, et al. Characterization of the UDP-glucose recep tor ( renamed here the P2Y14 recep tor) adds diversity to the P2Y recep tor family.Trends Pharm acol Sci. 2003, 24 (2) : 52255.
    81. Julia E. Fries, Iwona M. Goczalik, Thomas H. Wheeler-Schilling, Konrad Kohler,Elke Guenther. Identification of P2Y Receptor Subtypes in Human Müller Glial Cells by Physiology, Single Cell RT-PCR, and Immunohistochemistry. Invest Ophthalmol Vis Sci.2005;46:3000–3007
    82. Ianors Iandiev, Ortrud Uckermann, Thomas Pannicke, Antje Wurm, Solveig Tenckhoff, Uta-Carolin Pietsch .Glial Cell Reactivity in a Porcine Model of Retinal Detachment. Invest Ophthalmol Vis Sci. 2006;47: 2161–2171
    83. Ortrud Uckermann, Susann Uhlmann, Michael Weick, Thomas Pannicke, Mike Francke. Upregulation of purinergic P2Y receptor-mediated calcium responses in glial cells during experimental detachment of the rabbit retina. Neuroscience Letters 2003 (338) 131–134
    84. Michael Weick, Peter Wiedemann, Andreas Reichenbach, and Andreas Bringmann. Resensitization of P2Y Receptors by Growth Factor–Mediated Activation of the Phosphatidylinositol-3 Kinase in Retinal Glial Cells. Invest Ophthalmol Vis Sci. 2005;46:1525–1532
    85. Moll V, Weick M, Milenkovic I, Kodal H, Reichenbach A, Bringmann A. P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci. 2002;43:766–773.
    86. Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A. P2Y receptor-mediated stimulation of Mu¨ller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci. 2003;44:1211–1220.
    87. Joseph T. Neary, Yuan Kang & You-Fang Shi. Cell cycle regulation of astrocytes by extracellular nucleotides and fibroblast growth factor-2. Purinergic Signalling 2005 (1): 329–336
    88. JUNG SUN HEO, HO JAE HAN. ATP Stimulates Mouse Embryonic Stem Cell Proliferation via Protein Kinase C, Phosphatidylinositol 3-Kinase/Akt, and Mitogen-Activated Protein Kinase Signaling Pathways. Stem cells 2006;24:2637–2648
    89. Jung Sun Heo, Yun Jung Lee and Ho Jae Han. EGF stimulates proliferation of mouse embryonic stem cells: involvement of Ca2+ influx and p44/42 MAPKs . Am J Physiol Cell Physiol 2006,290:123-133.
    1. Reichenbach, A., Fuchs, U., Kasper, M., El-Hifnawi, E., Eckstein, A.-K. Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure. Acta Neuropathol. 1995,90, 273–281.
    2. Reichenbach, A., Stolzenburg, J.-U., Wolburg, H., Hartig, W., E,Hifnawi, E., Martin, H. Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells. Glia 1995,13, 195–208.
    3. Newman, E.A. Acid efflux from retinal glial cells generated by sodium bicarbonate cotransport. J. Neurosci. 1996,16, 159–168.
    4. Kofuji, P., Biedermann, B., Siddharthan, V., Raap, M., Iandiev, I., Milenkovic, I., Thomzig, A., Veh, R.W., Bringmann, A., Reichenbach, A.,. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia 2002,39, 292–303.
    5. Skatchkov, S.N., Eaton, M.J., Shuba, Y.M., Kucheryavykh, Y.V., Derst, C., Veh, R.W., Wurm, A., Iandiev, I., Pannicke, T., Bringmann, A., Reichenbach, A. Tandem-pore domain potassium channels are functionally expressed in retinal (Müller) glial cells. Glia 2006,53, 266–276.
    6. Dubois-Dauphin, M., Poitry-Yamate, C., de Bilbao, F., Julliard, A.K., Jourdan, F., Donati, G. Early postnatal Müller cell death leads to retinal but not optic nerve degeneration in NSE-Hu-Bcl-2 transgenic mice. Neuroscience 2000,95, 9–21.
    7. Poitry-Yamate, C.L., Poitry, S., Tsacopoulos, M. Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 1995,15, 5179–5191.
    8. Tsacopoulos, M., Magistretti, P.J. Metabolic coupling between glia and neurons. J. Neurosci. 1996 ,16, 877–885.
    9. Matsui, K., Hosoi, N., Tachibana, M. Active role of glutamate uptake in the synaptic transmission from retinal nonspiking neurons. J. Neurosci. 1999,19, 6755–6766
    10. Bringmann, A., Reichenbach, A., Wiedemann, P. Pathomechanisms of cystoid macular edema. Ophthalm. Res. 2004, 36, 241–249.
    11. Newman, E.A., Zahs, K.R. Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 1998, 18, 4022–4028.
    12. Stevens, E.R., Esguerra, M., Kim, P.M., Newman, E.A., Snyder, S.H., Zahs, K.R., Miller, R.F. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc. Natl. Acad. Sci. USA. 2003, 100, 6789–6794.
    13. Das, S.R., Bhardwaj, N., Kjedbye, H., Gouras, P. Müller cells of chicken retina synthesize 11-cis-retinol. Biochem. J. 1992, 285, 907–913.
    14. Silver, I.A., Deas, J., Erecinska, M. Ion homeostasis in brain cells: Differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 1997, 78, 589–601.
    15. Stone, J., Maslim, J., Valter-Kocsi, K., Mervin, K., Bowers, F., Chu, Y., Barnett, N., Provis, J., Lewis, G., Fisher, S.K., Bisti, S., Gargini, C., Cervetto, L., Merin, S., Peer, J. Mechanisms of photoreceptor death and survival in mammalian retina. Prog. Retin. Eye Res. 1999,18, 689–735.
    16. Drescher, K.M., Whittum-Hudson, J.A. Herpes simplex virus type1 alters transcript levels of tumor necrosis factor-alpha and interleukin-6 in retinal glial cells. Invest. Ophthalmol. Vis. Sci. 1996, 37, 2302–2312.
    17. Francke, M., Makarov, F., Kacza, J., Wendt, S., Gartner, U., Faude, F., Wiedemann, P., Reichenbach, A. Retinal pigment epithelium melanin granules are phagocytozed by Müller glial cells in experimental retinal detachment. J. Neurocytol. 2001, 30, 131–136.
    18. Bringmann, A., & Reichenbach, A. Role of Müller cells in retinal degenerations. Frontiers in Bioscience. 2001, 6, E77–E92.
    19. Steven K. Fisher, Geoffrey P. Lewis.Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Research 2003 (43) 887–897
    20. Geller, S.F., Lewis, G.P., Fisher, S.K. FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Müller and RPE cells. Invest. Ophthalmol. Vis. Sci. 2001, 42, 1363–1369.
    21. Akiyama, H., Nakazawa, T., Shimura, M., Tomita, H., Tamai, M. Presence of mitogen-activated protein kinase in retinal Müller cells and its neuroprotective effect ischemia-reperfusion injury. Neuroreport. 2002, 13, 2103–2107.
    22. Takeda, M., Takamiya, A., Yoshida, A., Kiyama, H. Extracellular signal-regulated kinaseactivation predominantly in Müller cells of retina with endotoxin-induced uveitis. Invest. Ophthalmol. Vis. Sci. 2002, 43, 907–911.
    23. Tezel, G., Chauhan, B.C., LeBlanc, R.P., Wax, M.B. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest. Ophthalmol. Vis. Sci. 2003, 44, 3025–3033.
    24. Grosche, J., Hartig, W., Reichenbach, A. Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neurosci. Lett. 1995, 185, 119–122.
    25. Chen, H., Weber, A.J. Expression of glial fibrillary acidic protein and glutamine synthetase by Müller cells after optic nerve damage and intravitreal application of brain-derived neurotrophic factor. Glia 2002, 38,115–125.
    26. Ianors Iandiev, Bernd Biedermann, Andreas Bringmann, Martin B. Reichel,Andreas Reichenbach. Atypical gliosis in Müller cells of the slowly degenerating rds mutant mouse retina. Experimental Eye Research 2006, 82 ,449–457
    27. Mike Francke, Frank Faude, Thomas Pannicke, Ortrud Uckermann,Michael Weick.Glial cell-mediated spread of retinal degeneration during detachment: A hypothesis based upon studies in rabbits. Vision Research 2005 (45) 2256–2267
    28. Elke Ulbricht, Thomas Pannicke, Margrit Hollborn, Maik Raap, Iwona Goczalik. Proliferative gliosis causes mislocation and inactivation of inwardly rectifying Kt (Kir) channels in rabbit retinal glial cells. Experimental Eye Research 2008 (86) 305-313
    29. Akira Kubota, Kohji Nishida, Kinichi Nakashima, Yasuo Tano. Conversion of mammalian Mu¨ller glial cells into a neuronal lineage by in vitro aggregate-culture. Biochemical and Biophysical Research Communications 2006 (351) 514–520
    30. J. Monnin, N. Morand-Villeneuve, G. Michel, D. Hicks, C. Versaux-Botteri, Production of neurospheres from mammalian Müller cells in culture, Neuroscience Letters (2007), doi:10.1016/j.neulet.2007.04.073
    31. Andy J. Fischer and Thomas A. Reh. Potential of Müller Glia to Become Neurogenic Retinal Progenitor Cells. GLIA 2003, 43:70–76
    32. Andy J. Fischer. Neural regeneration in the chick retina. Progress in Retinal and Eye Research 2005 (24) 161–182
    33. L. P. Xue, J. Lu, Q. Cao, C. Kaur and E.-A. Ling. Nestin expression in Müller glial cellsin postnatal rat retina and its upregulation following optic nerve transaction. Neuroscience 2006 (143) 117–127
    34. L. P. Xue, J. Lu, Q. Cao, S. Hu, P. Ding and E.-A. Ling. Müller glial cells express nestin coupled with gilal fibrillary acidic protein in experimentally induced glaucoma in the rat retina.. Neuroscience 2006 (139) 723–732
    35. J. Wan et al., Sonic hedgehog promotes stem-cell potential of Mu¨ller glia ..., Biochem. Biophys. Res. Commun. (2007), doi:10.1016/j.bbrc.2007.08.178
    36. Oku, H., Ikeda, T., Honma, Y., Sotozono, C., Nishida, K., Nakamura, Y., Kida, T., Kinoshita, S. Gene expression of neurotrophins and their high-affinity Trk receptors in cultured human Müller cells. Ophthalmic Res 2002, 34, 38–42.
    37. Yasuhara, T., Shingo, T., Date, I. The potential role of vascular endothelial growth factor in the central nervous system. Rev. Neurosci. 2004, 15, 293–307.
    38. Sullivan, R., Penfold, P., Pow, D.V. Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest. Ophthalmol. Vis. Sci. 2003, 44, 856–865.
    39. Fischer, A.J., Reh, T.A. Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci. 2001, 4, 247–252.
    40. Pannicke, T., Bringmann, A., Reichenbach, A. Electrophysiological characterization of retinal Müller glial cells from mouse during postnatal development: comparison with rabbit cells. Glia 2002, 38, 268–272.
    41. Felmy, F., Pannicke, T., Richt, J.A., Reichenbach, A., Guenther, E. Electrophysiological properties of rat retinal Müller (glial) cells in postnatally developing and in pathologically altered retinae. Glia 2001, 34, 190–199.
    42. Winkler, B.S., Arnold, M.J., Brassell, M.A., Puro, D.G.. Energy metabolism in human retinal Müller cells. Invest. Ophthalmol. Vis. Sci. 2000 , 41, 3183–3190
    43. Pfeiffer-Guglielmi, B., Francke, M., Reichenbach, A., Fleckenstein, B., Jung, G., Hamprecht, B. Glycogen phosphorylase isozyme pattern in mammalian retinal Müller (glial) cells and in astrocytes of retina and optic nerve. Glia 2005, 49, 84–95.
    44. Deitmer, J.W. A role for CO2 and bicarbonate transporters in metabolic exchanges in the brain. J. Neurochem. 2002, 80, 721–726.
    45. Sarthy, V.P., Pignataro, L., Pannicke, T., Weick, M., Reichenbach, A., Harada, T., Tanaka,K., Marc, R. Glutamate transport by retinal Mu¨ller cells in glutamate/aspartate transporter-knockout mice. Glia 2005, 49, 184–196.
    46. Gadea, A., Lopez, E., Hernandez-Cruz, A., Lopez-Colome, A.M. Role of Ca2+ and calmodulin-dependent enzymes in the regulation of glycine transport in Müller glia. J. Neurochem. 2002, 80, 634–645.
    47. Pannicke, T., Fischer, W., Biedermann, B., Scha¨dlich, H., Grosche, J., Faude, F., Wiedemann, P., Allgaier, C., Illes, P., Burnstock, G., Reichenbach, A. P2X7 receptors in Müller glial cells from the human retina. J. Neurosci. 2000, 20, 5965–5972.
    48. Biedermann, B., Bringmann, A., Reichenbach, A. High-affinity GABA uptake in retinal glial (Mu¨ller) cells of the guinea pig: electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia 2002, 39, 217–228.
    49. Raap, M., Biedermann, B., Braun, P., Milenkovic, I., Skatchkov, S.N., Bringmann, A., Reichenbach, A. Diversity of Kir channel subunit mRNA expressed by retinal glial cells of the guinea-pig. Neuroreport 2002, 13, 1037–1040.
    50. Kofuji, P., Ceelen, P., Zahs, K.R., Surbeck, L.W., Lester, H.A., Newman, E.A. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J. Neurosci. 2000, 20, 5733–5740.
    51. Coblentz, F.E., Radeke, M.J., Lewis, G.P., Fisher, S.K. Evidence that ganglion cells react to retinal detachment. Exp. Eye Res. 2003, 76, 333–342.
    52. Jackson, T.L., Hillenkamp, J., Williamson, T.H., Clarke, K.W., Almubarak, A.I., Marshall, J. An experimental model of rhegmatogenous retinal detachment: surgical results and glial cell response. Invest. Ophthalmol. Vis. Sci. 2003, 44, 4026–4034.
    53. Uhlmann, S., Bringmann, A., Uckermann, O., Pannicke, T., Weick, M., Ulbricht, E., Goczalik, I., Reichenbach, A., Wiedemann, P., Francke, M. Early glial cell reactivity in experimental retinal detachment: effect of suramin. Invest. Ophthalmol. Vis. Sci. 2003, 44, 4114–4122.
    54. Sherry, D.M., Townes-Anderson, E. Rapid glutamatergic alterations in the neural retina induced by retinal detachment. Invest. Ophthalmol. Vis. Sci. 2000, 41, 2779–2790.
    55. Linsenmeier, R.A., Padnick-Silver, L. Metabolic dependence of photoreceptors on the choroid in the normal and detached retina.Invest. Ophthalmol. Vis. Sci. 2000, 41, 3117–3123.
    56. Ortrud Uckermann, Susann Uhlmann, Michael Weick, Thomas Pannicke, Mike Francke. Upregulation of purinergic P2Y receptor-mediated calcium responses in glial cells during experimental detachment of the rabbit retina. Neuroscience Letters 2003 (338) 131–134
    57. Mike Francke, Frank Faude, Thomas Pannicke, Ortrud Uckermann,Michael Weick.Glial cell-mediated spread of retinal degeneration during detachment: A hypothesis based upon studies in rabbits. Vision Research 2005 (45) 2256–2267
    58. Scott F. Geller, Geoffrey P. Lewis, and Steven K. Fisher. FGFR1, Signaling, and AP-1 Expression after Retinal Detachment: Reactive Mu¨ller and RPE Cells. Invest Ophthalmol Vis Sci. 2001;42: 1363–1369
    59. Kase S, Yoshida K, Harada T, Harada C, Namekata K, Suzuki Y, Ohgami K, Shiratori K, Nakayama KI, Ohno S. Phosphorylation of extracellular signal-regulated kinase and p27(KIP1) after retinal detachment. Graefes Arch Clin Exp Ophthalmol. 2006 244(3):352-8.
    60. Rattner, A., Nathans, J. The genomic response to retinal diseases and injury: evidence for endothelin signaling from photoreceptors to glia. J. Neurosci. 2005, 25, 4540–4549.
    61. Bringmann, A., Pannicke, T., Moll, V., Milenkovic, I., Faude, F., Enzmann, V., Wolf, S., Reichenbach, A. Up-regulation of P2X7 receptor currents in Mu¨ller glial cells during proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 2001, 42, 860–867.
    62. Bringmann, A., Francke, M., Pannicke, T., Biedermann, B., Kodal, H., Faude, F., Reichelt, W., Reichenbach, A. Role of glial K+ channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 2000, 29, 35–44.
    63. Moll, V., Weick, M., Milenkovic, I., Kodal, H., Reichenbach, A., Bringmann, A. P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest. Ophthalmol. Vis. Sci. 2002, 43, 766–773.
    64. Milenkovic, I., Weick, M., Wiedemann, P., Reichenbach, A., Bringmann, A. P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest. Ophthalmol. Vis. Sci. 2003, 44, 1211–1220.
    65. Francke, M., Faude, F., Pannicke, T., Uckermann, O., Weick, M., Wolburg, H., Wiedemann, P., Reichenbach, A., Uhlmann, S., Bringmann, A. Glial cell-mediated spread of retinal degeneration during detachment: a hypothesis based upon studies in rabbits. Vision Res. 2005, 45, 2256–2267.
    66. Sethi, C.S., Lewis, G.P., Fisher, S.K., Leitner, W.P., Mann, D.L., Luthert, P.J., Charteris, D.G.. Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 2005, 46, 329–342.
    67. Fletcher, E.L., Phipps, J.A., Wilkinson-Berka, J.L. Dysfunction of retinal neurons and glia during diabetes. Clin. Exp. Optom. 2005, 88, 132–145.
    68. Barber, A.J., Antonetti, D.A., Gardner, T.W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest. Ophthalmol. Vis. Sci. 2000, 41, 3561–3568.
    69. Gerhardinger, C., Costa, M.B., Coulombe, M.C., Toth, I., Hoehn, T., Grosu, P. Expression of acute-phase response proteins in retinal Müller cells in diabetes. Invest. Ophthalmol. Vis. Sci. 2005, 46, 349–357.
    70. Asnaghi, V., Gerhardinger, C., Hoehn, T., Adeboje, A., Lorenzi, M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 2003, 52, 506–511.
    71. Baydas, G., Tuzcu, M., Yasar, A., Baydas, B. Early changes in glial reactivity and lipid peroxidation in diabetic rat retina: effects of melatonin. Acta Diabetol. 2004,41, 123–128.
    72. Xi, X., Gao, L., Hatala, D.A., Smith, D.G., Codispoti, M.C., Gong, B., Kern, T.S., Zhang, J.Z. Chronically elevated glucose-induced apoptosis is mediated by inactivation of Akt in cultured Müller cells. Biochem. Biophys. Res. Commun. 2005, 326, 548–553.
    73. Tretiach, M., Madigan, M.C., Wen, L., Gillies, M.C. Effect of Müller cell co-culture on in vitro permeability of bovine retinal vascular endothelium in normoxic and hypoxic conditions. Neurosci. Lett. 2005, 378, 160–165.
    74. Ogata, N., Wada, M., Otsuji, T., Jo, N., Tombran-Tink, J., Matsumura, M. Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 2002, 43, 1168–1175.
    75. Eichler, W., Yafai, Y., Keller, T., Wiedemann, P., Reichenbach, A. PEDF derived from glial Müller cells: a possible regulator of retinal angiogenesis. Exp. Cell Res. 2004, 299, 68–78.
    76. Giebel, S.J., Menicucci, G., McGuire, P.G., Das, A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood–retinal barrier. Lab. Invest. 2005, 85, 597–607.
    77. Maw, M.A., Kennedy, B., Knight, A., Bridges, R., Roth, K.E., Mani, E.J., Mukkadan, J.K., Nancarrow, D., Crabb, J.W., Denton, M.J. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat. Genet. 1997, 17,198–200.
    78. Harada, T., Harada, C., Kohsaka, S., Wada, E., Yoshida, K., Ohno, S., Mamada, H., Tanaka, K., Parada, L.F., Wada, K. Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J. Neurosci. 2002, 22, 9228–9236.
    79. Taylor, S., Srinivasan, B., Wordinger, R.J., Roque, R.S. Glutamatestimulates neurotrophin expression in cultured Müller cells. Mol. BrainRes. 2003, 111, 189–197.
    80. van Adel, B.A., Arnold, J.M., Phipps, J., Doering, L.C., Ball, A.K. Ciliary neurotrophic factor protects retinal ganglion cells from axotomy-induced apoptosis via modulation of retinal glia in vivo. J. Neurobiol. 2005, 63, 215–234.
    81. Limb, G.A., Lawrence, J.M., Keegan, D.J., Reh, T.A., Coffey, P.J., Luthert, P.J., Khaw, P.T. Müller glial cells from adult human retina exhibit neural stem cell characteristics and prevent loss of visual function and retinal degeneration in the RCS rat. Ann. ARVO Meet. Abstr. 2004, 5387.
    82. Limb, G.A., Lawrence, J.M., Reh, T.A., Khaw, P.T. Localization of Müller glia with neural stem cell characteristics in the adult human retina. Ann. ARVO Meet. Abstr. 2005, 3231.
    83. Ooto, S., Akagi, T., Kageyama, R., Akita, J., Mandai, M., Honda, Y., Takahashi, M. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc. Natl. Acad. Sci. USA . 2004, 101, 13654–13659.
    1. Andreas Bringmann, Thomas Pannicke, Andreas Reichenbach, Serguei N. Skatchkov. Ca21 channel-mediated currents in retinal glial (Müller) cells of the toad (Bufo marinus). Neuroscience Letters. 2000 (281) 155-158
    2. Newman, E.A., Reichenbach, A., 1996. The Müller cell: a functional element of the retina. Trends Neurosci 19, 307-317.
    3. Andreas Bringmann, Thomas Pannicke, Jens Grosche, Mike Francke, Peter Wiedemann. Müller cells in the healthy and diseased retina. Progress in Retinal and Eye Research. 2006, 25,397–424
    4. Elke Ulbricht, Thomas Pannicke, Margrit Hollborn, Maik Raap, Iwona Goczalik. Proliferative gliosis causes mislocation and inactivation of inwardly rectifying Kt (Kir) channels in rabbit retinal glial cells. Experimental Eye Research 2008 (86) 305-313
    5. Bringmann, A., & Reichenbach, A. Role of Müller cells in retinal degenerations. Frontiers in Bioscience, 2001, 6, E77–E92.
    6. Bringmann, A., Pannicke, T., Moll, V., Milenkovic, I., Faude, F., Enzmann, V., et al. Upregulation of P2X7 receptor currents in Müller glial cells during proliferative vitreoretinopathy. Investigative Ophthalmology and Visual Science, 2001, 42, 860–867.
    7. Francke, M., Pannicke, T., Biedermann, B., Faude, F., Wiedemann, P., Reichenbach, A., et al. Loss of inwardly rectifying potassium currents by human retinal glial cells in diseasesof the eye. Glia, 1997, 20, 210–218.
    8. Thomas Pannicke, Bernd Biedermann, Ortrud Uckermann, Michael Weick ,Andreas Bringmann.Physiological properties of retinal Müller glial cells fromthe cynomolgus monkey, Macaca fascicularis—a comparison to human Müller cells. Vision Research 2005 (45) 1781–179
    9. Francke, M., Weick, M., Pannicke, T., Uckermann, O., Grosche, J., Goczalik, I., et al. Upregulation of extracellular ATPinduced Müller cell responses in a dispase model of proliferative vitreoretinopathy. Investigative Ophthalmology and Visual Science, 2002, 43, 870–881.
    10. Robert E. Marc, Bryan W. Jones, Carl B. Watt, Enrica Strettoi.Neural remodeling in retinal degeneration. Progress in Retinal and Eye Research ,2003,22, 607–655
    11. Bryan W. Jones, Robert E. Marc. Retinal remodeling during retinal degeneration. Experimental Eye Research 2005 (81) 123–137
    12. D’Cruz, P.M., Yasumura, D., et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 2000, 9s, 645–651.
    13. Bringmann, A., Francke, M., Pannicke, T., Biedermann, B., Kodal, H., Faude, F., Reichelt, W., Reichenbach, A. Role of glial K+ channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 2000, 29, 35–44.
    14. Felmy, F., Pannicke, T., Richt, J.A., Reichenbach, A., Guenther, E. Electrophysiological properties of rat retinal Müller (glial) cells in postnatally developing and in pathologically altered retinae. Glia 2001, 34, 190–199.
    15. Pannicke, T., Bringmann, A., Reichenbach, A. Electrophysiological characterization of retinal Müller glial cells from mouse during postnatal development: comparison with rabbit cells. Glia 2002, 38, 268–272.
    16. Bringmann, A., Biedermann, B., Reichenbach, A. Expression of potassium channels during postnatal differentiation of rabbit Müller glial cells. Eur. J. Neurosci. 1999, 11, 2883–2896.
    17. Kofuji, P., Biedermann, B., Siddharthan, V., Raap, M., Iandiev, I., Milenkovic, I., Thomzig, A., Veh, R.W., Bringmann, A., Reichenbach, A. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia 2002, 39, 292–303.
    18. Andreas Bringmann, Mike Francke,Thomas Pannicke, Bernd Biedermann, Frank Faude. Human Müller Glial Cells: Altered Potassium Channel Activity in Proliferative Vitreoretinopathy. IOVS, December 1999, 40(13), 3316-3323
    19. Fischer, A.J., Reh, T.A. Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci. 2001, 4, 247–252.
    20. Thomas Pannicke, Ortrud Uckermann, Ianors Iandiev, Peter Wiedemannc, Andreas Reichenbach, Andreas Bringmann. Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. Journal of Neuroimmunology 2005 (161) 145– 154
    21. Reichenbach A,Faude F,Ennnann V,et a1.The Müller(glial) cell in normal and diseased retina:a case for single-cell electrophysiology.Ophthalmic Res,1997,29:326—340.
    22. Skatchkov, S.N., Eaton, M.J., Shuba, Y.M., Kucheryavykh, Y.V., Derst, C., Veh, R.W., Wurm, A., Iandiev, I., Pannicke, T., Bringmann, A., Reichenbach, A. Tandem-pore domain potassium channels arefunctionally expressed in retinal (Müller) glial cells. Glia 2006, 53, 266–276.
    23. Newman EA,Frambach DA,Odette LL.Control of extracelar potassium levels by retinal glial cell K siphoning.Science,1984,225:1174-1175.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.