以聚己内酯为疏水性嵌段的两亲性星形聚合物的合成、表征和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性星形嵌段共聚物和两亲性星形杂臂聚合物具有两亲性线形嵌段共聚物和支化聚合物的性质,在水溶液中,可以自组装成核-壳结构的胶束。与线形聚合物胶束相比,星形聚合物胶束具有高稳定性和高包载能力,在生物医用材料方面有重要的应用价值,引起了国内外学者的普遍关注。本论文合成了五个系列以聚已内酯为疏水性嵌段的两亲性星形聚合物,并表征其结构和研究其性能。具体研究结果简述如下。
     采用开环聚合(ROP)和可逆加成-断裂链转移(RAFT)聚合合成了星形聚已内酯-b-聚甲基丙烯酸-2-二甲基氨基乙酯(HPs-Star-PCL-b-PDMAEMA),用1H-NMR和GPC对其结构进行了表征。采用DLS研究了HPs-Star-PCL-b-PDMAEMA的胶束化行为,随水溶液pH值增加和温度升高,胶束的流体力学直径(Dh)减小星形聚合物对疏水性药物阿士匹林的缓释性能研究表明,随水溶液的pH值减小和温度降低,阿司匹林从星形聚合物中的释放速率增加。
     采用ROP和原子转移自由基聚合(ATRP)合成了星形聚已内酯-b-聚(异丙基丙烯酰胺-co-甲基丙烯酸-2-二甲基氨基乙酯)(HPs-Star-PCL-b-P(NIPAAm-co-DMAEMA)),用1H-NMR和GPC对其结构进行了表征。采用DSC、XRD和偏光显微镜研究了HPs-Star-PCL-b-P(NIPAAm-co-DMAEMA)的结晶性能,发现聚合物的支化结构,以及PNIPAAm链段和PDMAEMA链段的引入降低了PCL的结晶能力。DLS、荧光光谱和AFM的研究结果表明,在水溶液中,该星形聚合物形成了单分子胶束和多分子胶束。在pH=3缓冲溶液中,当NIPAAm与DMAEMA的投料摩尔比大于8/1时,随着NIPAAm与DMAEMA的投料摩尔比的减小,星形聚合物的低临界溶解温度(LCST)从34℃增加到54℃;当NIPAAm与DMAEMA的投料摩尔比小于等于8/1时,星形聚合物没有表现出LCST.在pH=9缓冲溶液中,随着NIPAAm与DMAEMA的投料摩尔比的减小,LCST由35℃逐渐增加到40℃。随水溶液的pH值增加和温度升高,吲哚美辛从星形聚合物胶束中的释放速率增加。
     聚酰胺-胺型(PAMAM)树形分子与丙烯酸-2-(α-溴异丁酰氧基)乙酯和丙烯酸羟乙酯发生Michael加成反应,制备了多功能引发剂(OH)4-PAMAM-(Br)4。采用ROP和ATRP合成两亲性星形杂臂聚合物(PCL)4-PAMAM-(PDMAEMA)4,用’H-NMR和GPC对其结构进行了表征。该聚合物在水溶液中形成了粒径分布均一的球形胶束,溶液温度升高引起胶束的Dn明显减小。以该胶束为模版,PDMAEMA为还原剂,原位制备了直径约为7nm的银纳米粒子,其表面等离子吸收具有温度依存性。提出了银纳米粒子的可能形成机理。
     采用ROP和ATRP合成了星形聚已内酯-b-聚甲基丙烯酸特丁酯(HPs-Star-PCL-b-PMBA),水解后,得到星形聚已内酯-b-聚甲基丙烯酸(HPs-Star-PCL-b-PMAA),用1H-NMR和GPC对聚合物结构进行了表征。制备了一系列星形聚已内酯-b-聚甲基丙烯酸/聚乙烯吡咯烷酮(HPs-Star-PCL-b-PMAA/PVP)复合物。当PVP与HPs-Star-PCL-b-PMAA的质量比为3比7时,混合体系为带蓝色乳光的溶液;PVP用量增加到一定值时,如PVP与HPs-Star-PCL-b-PMAA的质量比为5比5和7比3,混合体系中出现了大尺寸的聚集体,甚至沉淀。DLS的研究结果表明,复合物粒子的尺寸随PVP用量的增加而增大。FT-IR和DSC的研究结果表明,HPs-Star-PCL-b-PMAA的PMAA链段和PVP分子间存在极强的氢键相互作用。TEM的结果表明,当PVP与HPs-Star-PCL-b-PMAA的质量比较小时,如3比7,复合物可自组装成球形胶束和囊泡,当PVP与HPs-Star-PCL-b-PMAA的质量比较大时,如5比5和7比3,复合物形成巨型聚集体。提出了复合物的可能自组装机理模型。制备了一系列星形聚已内酯-b-聚甲基丙烯酸/聚丙烯胺盐酸盐(HPs-Star-PCL-b-PMAA/PAH)复合物。UV-Vis、DLS、TEM和ξ-电位的研究结果表明,当PAH与HPs-Star-PCL-b-PMAA的质量比小于等于2比8时,复合物粒子的粒径随着PAH用量增加而减小,复合物粒子具有核-壳-冠层状结构,核层为超支化聚酯和PCL,壳层为PMAA链段和PAH形成的复合物,冠层为没有复合的PMAA链段。当PAH与HPs-Star-PCL-b-PMAA的质量比为3比7时,出现了有几个复合物粒子组成的聚集体。随PAH用量进一步增加,复合物体系中出现了大量沉淀。提出了复合物的可能形成机理模型。
     采用ROP和ATRP合成了星形聚已内酯-b-聚甲基丙烯酸-2-二甲基乙基溴化铵乙酯(HPs-Star-PCL-b-QPDMAEMA),用1H-NMR和GPC表征了聚合物的结构。采用静电LbL技术,制备了HPs-Star-PCL-b-QPDMAEMA/HPs-Star-PCL-b-PMAA和HPs-Star-PCL-b-QPDMAEMA/PSS多层膜,用UV-Vis、石英晶体微天平(QCM)和AFM表征了多层膜的形成、结构和性能。改变HPs-Star-PCL-b-PMAA溶液的pH值,可以调控HPs-Star-PCL-b-QPDMAEMA/HPs-Star-PCL-b-PMAA多层膜的厚度和表面形貌,多层膜的厚度随组装层数增加呈线性增加趋势;随着HPs-Star-PCL-b-PMAA溶液的pH值的减小,多层膜的厚度和表面粗糙度增加;当HPs-Star-PCL-b-PMAA溶液pH=5时,随着组装层数的增加,多层膜的表面粗糙度和膜表面的粒子尺寸明显增加;当HPs-Star-PCL-b-PMAA溶液pH=9时,在多层膜的生长过程中,膜表面的粗糙度和颗粒尺寸大小差别不大,颗粒粒径均在50-100nm;用pH=2和pH=11水溶液处理多层膜后,膜的厚度、表面形貌和粗糙度发生了明显变化,膜的耐酸稳定性远远好于耐碱稳定性。研究了组装时间、聚电解质溶液的浓度和离子强度对HPs-Star-PCL-b-QPDMAEMA和PSS体系的层层自组装行为的影响,结果表明,多层膜的组装量和厚度随组装层数的增加逐渐增加,且基本呈线性关系;吸附沉积过程在大约15min后达到了平衡;当聚电解质浓度小于0.5mg/mL时,随聚电解质浓度增大,聚电解质的组装量增大,之后,聚电解质浓度对组装量没有明显影响;聚电解质的组装量和膜的粗糙度随氯化钠浓度的增大而增加。当聚电解质溶液的离子强度(C(NaCl)=0.5mol/L)较高时,多层膜中出现了大量的孔径为14-20nm和孔深为6-10nm的小孔。提出了多层膜在不同离子强度溶液中的形成机理模型。
Amphiphilic star block copolymers and amphiphilic star heteroarm polymers possessing the properties of both amphiphilic linear block copolymers and branched polymers are able to self-assemble into polymeric micelles in water. Compared to the conventional micelles from amphiphilic linear block copolymers, the micelles formed from amphiphilic star polymers have higher stability and higher loading capacity, which makes them very attractive in diverse fields of medicine and biology. In this thesis, we synthesized and characterized five series of amphiphilic star polymers with polycaprolactones as hydrophobic segments, and investigated their properties. The main results obtained in this thesis are as follows.
     The star-shaped poly(ε-caprolactone)-b-poly(2-(dimethylamino) ethyl methacryl-ate) (HPs-Star-PCL-b-PDMAEMA) was synthesized by ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The resultant polymer was characterized by 1H-NMR and GPC. Furthermore, the micellar properties of HPs-Star-PCL-b-PDMAEMA in water were studied at various temperatures and pH values by means of dynamic light scattering (DLS). The results indicated that the hydrodynamic diameters of micelles decreased with increasing pH and temperature of aqueous solutions. The release behaviors of model drug aspirin from the star polymer indicated that the rate of drug release increased with the decrease of pH value and temperature of aqueous solutions.
     The amphiphilic star block copolymers HPs-Star-PCL-b-P(NIPAAm-co-DMAEMA) with a hyperbranched polyester (HPs) core, a hydrophobic poly(ε-caprolactone) (PCL) inner shell and a hydrophilic copolymer of NIPAAm and DMAEMA (P(NIPAAm-co-DMAEMA)) outer shell were synthesized by ROP and atom transfer radical polymerization (ATRP). The star block copolymers were characterized using'H-NMR spectrum and GPC analysis. The crystallization behavior of star block copolymer was investigated by DSC, XRD, and polarized optical microscope (POM). The results indicated that the branched structure and the presence of PNIPAAm and PDMAEMA segments reduced the capacity of the PCL segments to crystallize. The micellar properties of the star block copolymer were studied by DLS, fluorescence spectroscopy and AFM. The results showed that unimolecular micelles and aggregated multimolecular micelles coexisted in the star block copolymer aqueous solution. The lower critical solution temperature (LCST) depended on both the NIPAAm/DMAEMA feed molar ratio and the pH value of water. In pH 3 buffer solution, when the feed molar ratio of NIPAAm to DMAEMA is more than 8/1, LCST increased from 34℃to 54℃with decreasing NIPAAm/DMAEMA feed molar ratio. However, when the feed molar ratio of NIPAAm to DMAEMA is less than or equal to 8/1, no phase transiton could be observed up to 60℃. In pH 9 buffer solution, the increase of DMAEMA content in the star copolymer led to the gradual increase of LCST from 35℃to 40℃. The release behaviors of model drug indomethacin from the star polymer micelles indicated that the rate of drug release increased with the increase of pH value and temperature.
     The heterofunctional macroinitiator (OH)4-PAMAM-(Br)4 was synthesized by sequential Michael addition reaction of acryloyloxyethyl 2-bromoisobutyrate and 2-hydroxyethyl acrylate with amine-terminated PAMAM. The heteroarm star polymer (PCL)4-PAMAM-(PDMAEMA)4 was obtained via ROP and ATRP, and was characterized using 1H-NMR and GPC. Heteroarm star polymer could self-assemble into spherical micelles in aqueous solution, which were characterized by TEM and DLS. In addition, the increase of temperature resulted in a noticeable decrease in hydrodynamic diameter. Silver nanoparticles were prepared by in situ synthetic method utilizing PDMAEMA as both reductant and stabilizer. The average size of the silver nanoparticles was about 7 nm. The hybrid micelles had an obvious surface plasmon resonance absorption band, and a red-shifting plasmon peak as environmental temperature increaseed. Finally, a model was proposed to explain the formation of silver nanoparticles.
     The star block copolymer HPs-Star-PCL-b-PtBMA with a hyperbranched polyester (HPs) core, poly (ε-caprolactone) (PCL) and poly (tert-butyl methacrylate) (PtBMA) segments was synthesized by ROP and ATRP. Subsequently, the PtiBMA segments were converted into poly (methacrylic acid) (PMAA) segments by hydrolysis with trifuoroacetic acid. The star block copolymers were characterized by 1H-NMR and GPC. Interpolymer complexes were prepared from HPs-Star-PCL-b-PMAA and poly (N-vinylpyrrolidone) (PVP) in dimethyl formamide (DMF). At 3/7 of the mass ratio of PVP to HPs-Star-PCL-b-PMAA, the blue-opalescent solution was formed. At 5/5 and 7/3 of the mass ratio of PVP to HPs-Star-PCL-b-PMAA, precipitates were formed immediately on mixing DMF solutions of HPs-Star-PCL-b-PMAA and PVP. The hydrodynamic diameters of complexes increased with increasing PVP dosage.The hydrogen bonding interactions of the complexes were investigated using FT-IR and DSC. It was revealed that there was very strong hydrogen bonding interactions between the carboxyl groups of PMAA segments of HPs-Star-PCL-b-PMAA and the carbonyl groups of PVP. The self-assembly behavior of complexes was examined by TEM and DLS. It was observed that spherical micelles and vesicles were formed at the low mass ratio of PVP to HPs-Star-PCL-b-PMAA. With increasing PVP content in the complexes, the particles of interpolymer complexes coiled up and aggregated to large dimension, even precipitated. Finally, a model was proposed to explain the aggregation process of the HPs-Star-PCL-b-PMAA/PVP complexes. The polyelectrolyte complexes were prepared from HPs-Star-PCL-b-PMAA and poly(allylamine hydrochloride) (PAH), which were characterized by UV-Vis, DLS, TEM andξ-potential. When the mass ratio of PAH to HPs-Star-PCL-b-PMAA was less than or equal to 2/8, water-soluble complexes had core-shell-corona structure, with a core formed by the hyperbranched polyester and PCL, a shell assembled from the coupled oppositely charged polyelectrolyte fragments, and a corona built up from the fragments of PMAA segments not involved in the interpolyelectrolyte. At 3/7 of the mass ratio of PAH to HPs-Star-PCL-b-PMAA, multimicellar aggregates were formed due to the bridging action of PAH among polyelectrolyte complexes particles. When the mass ratio of PAH to HPs-Star-PCL-b-PMAA was more than or equal to 4/6, the precipitate was formed as aggregated solid structure. Finally, a model was proposed to explain the formation of HPs-Star-PCL-b-PMAA/PAH complex.
     The amphiphilic star block polyelectrolyte HPs-Star-PCL-b-QPDMAEMA with a hyperbranched polyester (HPs) core, a hydrophobic PCL inner shell and a hydrophilic quaternized poly (2-(dimethylamino) ethyl methacrylate) (QPDMAEMA) outer shell was synthesized by ROP and ATRP. The star block copolymers were characterized by 1H-NMR and GPC. HPs-Star-PCL-b-PMAA was assembled alternately with HPs-Star-PCL-b-QPDMAEMA at different pH conditions to form pH-responsive multilayer films characterized using QCM and AFM. The film thickness increased linearly with increasing bilayer numbers for each pH value of the HPs-Star-PCL-b-PMAA solution. The film thickness and roughness increased with decreasing pH value of HPs-Star-PCL-b-PMAA solution. For the multilayer films buildup at the HPs-Star-PCL-b-PMAA dipping solution of pH 5, the surface roughness and grain size of the film increased distinctly as the number of deposited bilayers increased. For the film prepared from the HPs-Star-PCL-b-PMAA solution of pH 9. the diameters of the granules were approximately 50-100nm, and the surface roughness and grain size of the film showed no significant difference during assembly. The multilayer films were treated by immersion into pH 2 and pH 11 solutions after assembly. AFM measurements showed that all the multilayer films were stable in pH 2 aqueous solution. The multilayer films deposited at HPs-Star-PCL-b-PMAA solutions of pH 5 and pH 7 were unstable in pH 11 aqueous solution. The effect of dipping time, polyelectrolyte concentration and ionic strength on the formation of multilayer films by sequential adsorption of HPs-Star-PCL-b-QPDMAEMA and poly (sodium-p-styrenesulfonate) (PSS) was investigated by means of UV-Vis absorption spectroscopy, QCM and AFM. The results demonstrated that the multilayer films grew linearly with increasing layer number. The growth rate first increased as dipping time increased, then saturated beyond the dipping time of approximately 15min. The amount of polyelectrolyte deposited per bilayer rapidly increased with increasing polyelectrolyte concentration up to 0.5 mg/mL, while the solution concentration above 0.5 mg/mL had no appreciable effect on the adsorbed amount. With increasing ionic strength, the polyelectrolyte chains underwent a transition from an extended to a coiled conformation, which led to an increase in the thickness and surface roughness of multilayer film. For the film prepared from a salt concentration of 0.5 mol/L NaCl, small pores with typical diameters of 14-20 nm and apparent depths of 6-10 nm were observed. Finally, a model was proposed to explain the LbL assembly of HPs-Star-PCL-b-QPDMAEMA and PSS in aqueous solutions with various salt concentrations.
引文
[1]Bywater S. Preparation and properties of star-branched polymers. Adv Polym Sci.1979,30: 89-116.
    [2]Guo A, Liu G, Tao J. Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules.1996,29(7):2487-2493.
    [3]Lapienis G. Star-shaped polymers having PEO arms. Prog Polym Sci.2009,34(9):852-892.
    [4]Peleshanko S, Tsukruk V. The architectures and surface behavior of highly branched molecules. Prog Polym Sci.2008,33(5):523-580.
    [5]Helms B, Guillaudeu S, Xie Y, McMurdo M, Hawker C, Frechet J. One-pot reaction cascades using star polymers with core-confined catalysts. Angew Chem.2005,117(39):6542-6545.
    [6]Wang F, Bronich TK, Kabanov AV, Rauh RD, Roovers J. Synthesis and evaluation of a star amphiphilic block copolymer from poly(s-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chem.2005,16(2):397-405.
    [7]Kreutzer G, Ternat C, Nguyen T, Plummer C, Manson J, Castelletto V, Hamley I, Sun F, Sheiko S, Herrmann A. Water-soluble, unimolecular containers based on amphiphilic multiarm star block copolymers. Macromolecules.2006,39(13):4507-4516.
    [8]Fukukawa K-i, Rossin R, Hagooly A, Pressly ED, Hunt JN, Messmore BW, Wooley KL, Welch MJ, Hawker CJ. Synthesis and characterization of core-shell star copolymers for in vivo PET imaging applications. Biomacromolecules.2008,9(4):1329-1339.
    [9]Gao H, Matyjaszewski K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers:from stars to gels. Prog Polym Sci.2009, 34(4):317-350.
    [10]韩德会.非线形接枝共聚物及星形聚合物的分子设计、合成与表征.合肥:中国科技大学,2007.
    [11]郑全RAFT方法制备星形聚合物及镧系金属大分子环状配合物的合成及应用.合肥:中国科学技术大学,2005.
    [12]Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci.2006,31(12):1068-1132.
    [13]Hedrick JL, Trollsas M, Hawker CJ, Atthoff B, Claesson H, Heise A, Miller RD, Mecerreyes D, Jerome R, Dubois P. Dendrimer-like star block and amphiphilic copolymers by combination of ring opening and atom transfer radical polymerization. Macromolecules. 1998,31(25):8691-8705.
    [14]Matyjaszewski K, Miller P, Pyun J, Kickelbick G, Diamanti S. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators. Macromolecules.1999,32(20):6526-6535.
    [15]Zhao Y, Shuai X, Chen C, Xi F. Synthesis of star block copolymers from dendrimer initiators by combining ring-opening polymerization and atom transfer radical polymerization. Macromolecules.2004,37(24):8854-8862.
    [16]Zhao Y, Chen Y, Chen C, Xi F. Synthesis of well-defined star polymers and star block copolymers from dendrimer initiators by atom transfer radical polymerization. Polymer.2005, 46(15):5808-5819.
    [17]Maier S, Sunder A, Frey H, Mulhaupt R. Synthesis of poly(glycerol)-block-poly(methyl acrylate) multi-arm star polymers. Macromol Rapid Comm.2000,21(5):226-230.
    [18]Shen Z, Chen Y, Barriau E, Frey H. Multi-arm star polyglycerol-block-poly(tert-butyl acrylate) and the respective multi-arm poly(acrylic acid) stars. Macromol Chem Phys.2006, 207(1):57-64.
    [19]Hong H, Mai Y, Zhou Y, Yan D, Chen Y. Synthesis and supramolecular self-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyether core. J Polym Sci Part A:Polym Chem.2008,46(2):668-681.
    [20]Liu C, Wang G, Zhang Y, Huang J. Preparation of star polymers of hyperbranched polyglycerol core with multiarms of PS-b-PtBA and PS-b-PAA. J Appl Polym Sci.2008, 108(2):777-784.
    [21]Lambeth RH, Ramakrishnan S, Mueller R, Poziemski JP, Miguel GS, Markoski LJ, Zukoski CF, Moore JS. Synthesis and aggregation behavior of thermally responsive star polymers. Langmuir.2006,22(14):6352-6360.
    [22]Whittaker MR, Monteiro MJ. Synthesis and aggregation behavior of four-arm star amphiphilic block copolymers in water. Langmuir.2006,22(23):9746-9752.
    [23]Skey J, Willcock H, Lammens M, Du Prez F, O' Reilly RK. Synthesis and self-assembly of amphiphilic chiral poly(amino acid) star polymers. Macromolecules.2010,43(14): 5949-5955.
    [24]Mori H, Ookuma H, Endo T. Poly(N-vinylcarbazole) star polymers and amphiphilic star block copolymers by xanthate-mediated controlled radical polymerization. Macromolecules. 2008,41(19):6925-6934.
    [25]Zhang W, Zhou N, Cheng Z, Zhu J, Zhu X. Synthesis and self-assembly behaviors of three-armed amphiphilic block copolymers via RAFT polymerization. Polymer.2008,49(21): 4569-4575.
    [26]Liu J, Tao L, Xu J, Jia Z, Boyer C, Davis T. RAFT controlled synthesis of six-armed biodegradable star polymeric architectures via a "core-first" methodology. Polymer.2009, 50(19):4455-4463.
    [27]Chen W, Fan X, Huang Y, Liu Y, Sun L. Synthesis and characterization of a pentaerythritol-based amphiphilic star block copolymer and its application in controlled drug release. React and Funct Polym.2009,69(2):97-104.
    [28]Zheng Q, Pan C. Synthesis and characterization of dendrimer-star polymer using dithiobenzoate-terminated poly(propylene imine) dendrimer via reversible addition-fragmentation transfer polymerization. Macromolecules.2005,38(16):6841-6848.
    [29]Hong C, You Y, Liu J, Pan C. Dendrimer-star polymer and block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization with dendritic chain transfer agent. J Polym Sci Part A:Polym Chem.2005,43(24):6379-6393.
    [30]Xu J, Luo S, Shi W, Liu S. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir.2006,22(3):989-997.
    [31]Dai XH, Dong CM. Synthesis, self-assembly and recognition properties of biomimetic star-shaped poly(ε-caprolactone)-b-glycopolymer block copolymers. J Polym Sci Part A: Polym Chem.2008,46(3):817-829.
    [32]Schramm OG, Pavlov GM, van Erp HP, Meier MAR, Hoogenboom R, Schubert US. A versatile approach to unimolecular water-soluble carriers:ATRP of PEGMA with hydrophobic star-shaped polymeric core molecules as an alternative for PEGylation. Macromolecules.2009,42(6):1808-1816.
    [33]Li J, Ren J, Cao Y, Yuan W. Synthesis of biodegradable pentaarmed star-block copolymers via an asymmetric BIS-TRIS core by combination of ROP and RAFT:from star architectures to double responsive micelles. Polymer.2010,51(6):1301-1310.
    [34]Ternat C, Kreutzer G, Plummer CJG, Nguyen TQ, Herrmann A, Ouali L, Sommer H, Fieber W, Velazco MI, Klok HA, Manson JAE. Amphiphilic multi-arm star-block copolymers for encapsulation of fragrance molecules. Macromol Chem Phys.2007,208(2):131-145.
    [35]Ni C, Wu G, Zhu C, Yao B. The preparation and characterization of amphiphilic star block copolymer nano micelles using silsesquioxane as the core. J Phys Chem C.2010,114(32): 13471-13476.
    [36]Dai X, Zhang H, Dong C. Fabrication, biomolecular binding, in vitro drug release behavior of sugar-installed nanoparticles from star poly(ε-caprolactone)/glycopolymer biohybrid with a dendrimer core. Polymer.2009,50(19):4626-4634.
    [37]Jia Z, Zhou Y, Yan D. Amphiphilic star-block copolymers based on a hyperbranched core: synthesis and supramolecular self-assembly. J Polym Sci Part A:Polym Chem.2005,43(24): 6534-6544.
    [38]Lammens M, Fournier D, Fijten MWM, Hoogenboom R, Prez FD. Star-shaped polyacrylates: highly functionalized architectures via CuAAC click conjugation. Macromol Rapid Comm. 2009,30(23):2049-2055.
    [39]Gou PF, Zhu WP, Shen ZQ. Drug-grafted seven-arm amphiphilic star poly(ε-caprolactone-co-carbonate)-b-poly(ethylene glycol)s based on a cyclodextrin core:synthesis and self-assembly behavior in water. Polym Chem.2010,1(8):1205-1214.
    [40]Zheng G, Pan C. Preparation of star polymers based on polystyrene or poly (styrene-b-N- isopropyl acrylamide) and divinylbenzene via reversible addition-fragmentation chain transfer polymerization. Polymer.2005,46(8):2802-2810.
    [41]Ishizu K, Furukawa T, Yamada H. Silver nanoparticles dispersed within amphiphilic star-block copolymers as templates for plasmon band materials. Eur Polym J.2005,41(12): 2853-2860.
    [42]Li W, Matyjaszewski K. Star polymers via cross-linking amphiphilic macroinitiators by AGET ATRP in aqueous media. J Am Chem Soc.2009,131(30):10378-10379.
    [43]Yamauchi K, Takahashi K, Hasegawa H, latrou H, Hadjichristidis N, Kaneko T, Nishikawa Y, Jinnai H, Matsui T, Nishioka H. Microdomain morphology in an ABC 3-miktoarm star terpolymer:a study by energy-filtering TEM and 3D electron tomography. Macromolecules. 2003,36(19):6962-6966.
    [44]Mavroudis A, Avgeropoulos A, Hadjichristidis N, Thomas E, Lohse D. Synthesis and morphological behavior of model 6-miktoarm star copolymers, PS(P2MP)5, of styrene(S) and 2-Methyl-1,3-Pentadiene (P2MP). Chem Mater.2006,18(8):2164-2168.
    [45]Li Z, Hillmyer M, Lodge T. Morphologies of multicompartment micelles formed by ABC miktoarm star terpolymers. Langmuir.2006,22(22):9409-9417.
    [46]Peleshanko S, Jeong J, Gunawidjaja R, Tsukruk V. Amphiphilic heteroarm PEO-b-PS star polymers at the air-water interface:aggregation and surface morphology. Macromolecules. 2004,37(17):6511-6522.
    [47]Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science.2003,300(5619):615-618.
    [48]Li Z, Kesselman E, Talmon Y, Hillmyer M, Lodge T. Multicompartment micelles from ABC miktoarm stars in water. Science.2004,306(5693):98-101.
    [49]Lodge T, Rasdal A, Li Z, Hillmyer M. Simultaneous, segregated storage of two agents in a multicompartment micelle. J Am Chem Soc.2005,127(50):17608-17609.
    [50]钟玲.超支化多臂星型嵌段共聚物的RAFT合成及其自组装行为研究.上海:上海交通大学,2008.
    [51]Zheng Y, Zhong L, Huang W, Zhou Y, Yan D. Flocculation-resistant multimolecular micelles with thermoresponsive corona from dendritic heteroarm star copolymers. J Polym Sci Part A: Polym Chem.48(20):4428-4438.
    [52]Ranganathan K, Deng R, Kainthan RK, Wu C, Brooks DE, Kizhakkedathu JN. Synthesis of thermoresponsive mixed arm star polymers by combination of RAFT and ATRP from a multifunctional core and its self-assembly in water. Macromolecules.2008,41(12): 4226-4234.
    [53]Liu C, Zhang Y, Huang J. Well-defined star polymers with mixed-arms by sequential polymerization of atom transfer radical polymerization and reverse addition-fragmentation chain transfer on a hyperbranched polyglycerol core. Macromolecules.2008,41(2):325-331.
    [54]Heise A, Trollsas M, Magbitang T, Hedrick JL, Frank CW, Miller RD. Star polymers with alternating arms from miktofunctional μ-Initiators using consecutive atom transfer radical polymerization and ring-opening polymerization. Macromolecules.2001,34:2798-2804.
    [55]Zhang W, Zhu J, Zhang Z, Zhu X. Controlled synthesis of pH-responsive amphiphilic A2B2 miktoarm star block copolymer by combination of SET-LRP and RAFT polymerization. J Polym Sci Part A:Polym Chem.2009,47(24):6908-6918.
    [56]Gao C, Zheng X. Facile synthesis and self-assembly of multihetero-arm hyperbranched polymer brushes. Soft Matter.2009,5(23):4788-4796.
    [57]Wu Z, Liang H, Lu J. Synthesis of poly(N-isopropylacrylamide)-poly(ethylene glycol) miktoarm star copolymers via RAFT polymerization and aldehyde-aminooxy click reaction and their thermoinduced micellization. Macromolecules.2010,43(13):5699-5705.
    [58]Du J, Chen Y. Preparation of poly(ethylene oxide) star polymers and poly(ethylene oxide)-polystyrene heteroarm star polymers by atom transfer radical polymerization. J Polym Sci Part A:Polym Chem.2004,42(9):2263-2271.
    [59]Yu YY, Chien WC, Chen ST. Preparation and morphology of amphiphilic polystyrene-poly (2-vinylpyridine) heteroarm star copolymers prepared by ATRP. Polym Int.2008,57(12): 1369-1376.
    [60]Ge Z, Xu J, Wu D, Narain R, Liu S. pH-switchable complexation between double hydrophilic heteroarm star copolymers and a cationic block polyelectrolyte. Macromol Chem Phys.2008, 209(7):754-763.
    [61]Gao H, Matyjaszewski K. Arm-first method as a simple and general method for synthesis of miktoarm star copolymers. J Am Chem Soc.2007,129(38):11828-11834.
    [62]Hamley I. The physics of block copolymers. Oxford University Press Oxford,1998.
    [63]Heise A, Hedrick J, Frank C, Miller R. Starlike block copolymers with amphiphilic arms as models for unimolecular micelles. J Am Chem Soc.1999,121(37):8647-8648.
    [64]Kainthan RK, Mugabe C, Burt HM, Brooks DE. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols:ligand binding properties. Biomacromolecules.2008,9(3):886-895.
    [65]Su W, Luo XH, Wang HF, Li L, Feng J, Zhang XZ, Zhuo RX. Hyperbranched polycarbonate-based multimolecular micelle with enhanced stability and loading efficiency. Macromol Rapid Comm.2011,32(4):390-396.
    [66]You Y, Hong C, Pan C, Wang P. Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell. Adv Mater.2004,16(21):1953-1957.
    [67]Cheng H, Xie S, Zhou Y, Huang W, Yan D, Yang J, Ji B. Effect of degree of branching on the thermoresponsive phase transition behaviors of hyperbranched multiarm copolymers: comparison of systems with LCST transition based on coil-to-globule transition or hydrophilic-hydrophobic balance. J Phys Chem B.2010,114(19):6291-6299.
    [68]Wei H, Chen WQ, Chang C, Cheng C, Cheng SX, Zhang XZ, Zhuo RX. Synthesis of star block, thermosensitive poly(L-lactide)-star block-poly(N-isopropylacrylamide-co-hydroxy methylacrylamide) copolymers and their self-assembled micelles for controlled release. J Phys Chem C.2008, 112(8):2888-2894.
    [69]Aryal S, Prabaharan M, Pilla S, Gong S. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery. Int J Biol Macromol. 2009,44(4):346-352.
    [70]吕斌PU-g-PDMAEMA-Ag复合薄膜的制备及其结构与性能研究.北京:北京化工大学;2008.
    [71]Bekturov E, Bimendina L. Interpolymer complexes. Speciality Polymers.1981,41:99-147.
    [72]Kabanov V, Papisov I. Formation of complexes between complementary synthetic polymers and oligomers in dilute solution review. Polymer Science USSR.1979,21(2):261-307.
    [73]Tsuchida E, Abe K. Interactions between macromolecules in solution and intermacromolecular complexes. Adv Polym Sci.1982,45:1-119.
    [74]Ozeki T, Yuasa H, Kanaya Y. Controlled release from solid dispersion composed of poly(ethylene oxide)-carbopol interpolymer complex with various cross-linking degrees of carbopol. J Control Release.2000,63(3):287-295.
    [75]Lele B, Hoffman A. Mucoadhesive drug carriers based on complexes of poly(acrylic acid) and PEGylated drugs having hydrolysable PEG-anhydride-drug linkages. J Control Release. 2000,69(2):237-248.
    [76]Chun M, Cho C, Choi H. Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization. J Control Release.2002,81(3):327-334.
    [77]Dou H, Jiang M, Peng H, Chen D, Hong Y. pH-dependent self-assembly:micellization and micelle-hollow-sphere transition of cellulose-based copolymers. Angew Chem Int Edit.2003, 42(13):1516-1519.
    [78]Mathur A, Drescher B, Scranton A, Klier J. Polymeric emulsifiers based on reversible formation of hydrophobic units. Nature.1998,392(6674):367-370.
    [79]Ilmain F, Tanaka T, Kokufuta E. Volume transition in a gel driven by hydrogen bonding. Nature.1991,349:400-401.
    [80]Kwon I, Bae Y, Kim S. Electrically credible polymer gel for controlled release of drugs. Nature.1991,354:291-293.
    [81]Sotiropoulou M, Bokias G, Staikos G. Soluble hydrogen-bonding interpolymer complexes and pH-controlled thickening phenomena in water. Macromolecules.2003,36(4):1349-1354.
    [82]Umaa E, Ougizawa T, Inoue T. Preparation of new membranes by complex formation of itaconic acid-acrylamide copolymer with polyvinylpyrrolidone:studies on gelation mechanism by light scattering. J Membrane Sci.1999,157(1):85-96.
    [83]Bell C, Peppas N. Biomedical membranes from hydrogels and interpolymer complexes. Biopolymers Ⅱ.1995:125-175.
    [84]Pergushov D, Borisov O, Zezin A, Muller A. Interpolyelectrolyte complexes based on polyionic species of branched topology. Adv Polym Sci.2011:1-31.
    [85]Li Y, Dubin PL, Spindler R, Tomalia DA. Complex formation between poly (dimethyldiallyl ammonium chloride) and carboxylated starburst dendrimers. Macromolecules.1995,28(24): 8426-8428.
    [86]Zhang H, Dubin P, Ray J, Manning G, Moorefield C, Newkome G. Interaction of a polycation with small oppositely charged dendrimers. J Phys Chem B.1999,103(13):2347-2354.
    [87]Miura N, Dubin PL, Moorefield C, Newkome G. Complex formation by electrostatic interaction between carboxyl-terminated dendrimers and oppositely charged polyelectrolytes. Langmuir.1999,15(12):4245-4250.
    [88]Kabanov V, Zezin A, Rogacheva V, Gulyaeva ZG, Zansochova M, Joosten J, Brackman J. Interaction of astramol poly (propyleneimine) dendrimers with linear polyanions. Macromolecules.1999,32(6):1904-1909.
    [89]Kabanov V, Sergeyev V, Pyshkina O, Zinchenko A, Zezin A, Joosten J, Brackman J, Yoshikawa K. Interpolyelectrolyte complexes formed by DNA and astramol poly (propylene imine) dendrimers. Macromolecules.2000,33(26):9587-9593.
    [90]Stapert HR, Nishiyama N, Jiang DL, Aida T, Kataoka K. Polyion complex micelles encapsulating light-harvesting ionic dendrimer zinc porphyrins. Langmuir.2000,16(21): 8182-8188.
    [91]Zhang GD, Nishiyama N, Harada A, Jiang DL, Aida T, Kataoka K. pH-sensitive assembly of light-harvesting dendrimer zinc porphyrin bearing peripheral groups of primary amine with poly (ethylene glycol)-b-poly (aspartic acid) in aqueous solution. Macromolecules.2003, 36(4):1304-1309.
    [92]Zhang GD, Harada A, Nishiyama N, Jiang DL, Koyama H, Aida T, Kataoka K. Polyion complex micelles entrapping cationic dendrimer porphyrin:effective photosensitizer for photodynamic therapy of cancer. J Control Release.2003,93(2):141-150.
    [93]Leisner D, Imae T. Interpolyelectrolyte complex and coacervate formation of poly (glutamic acid) with a dendrimer studied by light scattering and SAXS. J Phys Chem B.2003,107(32): 8078-8087.
    [94]Leisner D, Imae T. Polyelectrolyte behavior of an interpolyelectrolyte complex formed in aqueous solution of a charged dendrimer and sodium poly (L-glutamate). J Phys Chem B. 2003,107(47):13158-13167.
    [95]Leisner D, Imae T. Strutural evolution of an interpolyelectrolyte complex of charged dendrimers with poly-L-glutamic acid. J Phys Chem B.2004,108:1798-1804.
    [96]Pergushov DV, Babin IA, Plamper FA, Zezin AB, Muller AHE. Water-soluble complexes of star-shaped poly(acrylic acid) with quaternized poly(4-vinylpyridine). Langmuir.2008, 24(13):6414-6419.
    [97]Schumacher M, Ruppel M, Kohlbrecher J, Burkhardt M, Plamper F, Drechsler M, Muller A. Smart organic-inorganic nanohybrid stars based on star-shaped poly(acrylic acid) and functional silsesquioxane nanoparticles. Polymer.2009,50(8):1908-1917.
    [98]Chu C, Wang Y, Yeh C, Wang L. Synthesis of conductive core-shell nanoparticles based on amphiphilic starburst poly(n-butyl acrylate)-b-poly(styrenesulfonate). Macromolecules.2008, 41(15):5632-5640.
    [99]Ding J, Wang L, Yu H, Huo J, Liu Q, Xiao A. Well-controlled formation of nanofibers and double wall vesicles through the electrostatic-assisted assembly of a couple of star polyelectrolytes-complementary. J Phys Chem C.2009,113(13):5126-5132.
    [100]Yin M, Ding K, Gropeanu RA, Shen J, Berger R, Weil T, Mullen K. Dendritic star polymers for efficient DNA binding and stimulus-dependent DNA release. Biomacromolecules.2008, 9(11):3231-3238.
    [101]Wu Y, Ni P, Zhang M, Zhu X. Fabrication of microgels via supramolecular assembly of cyclodextrin-containing star polycations and oppositely charged linear polyanions. Soft Matter.6(16):3751-3758.
    [102]Connal L, Li Q, Quinn J, Tjipto E, Caruso F, Qiao G. pH-responsive poly(acrylic acid) core cross-linked star polymers:morphology transitions in solution and multilayer thin films. Macromolecules.2008,41(7):2620-2626.
    [103]Yang S, Zhang Y, Wang L, Hong S, Xu J, Chen Y, Li C. Composite thin film by hydrogen-bonding assembly of polymer brush and poly(vinylpyrrolidone). Langmuir.2006, 22(1):338-343.
    [104]Kim BS, Gao H, Argun AA, Matyjaszewski K, Hammond PT. All-star polymer multilayers as pH-responsive nanofilms. Macromolecules.2008,42(1):368-375.
    [105]Guo Z, Chen X, Xin J, Wu D, Li J, Xu C. Effect of molecular weight and arm number on the growth and pH-dependent morphology of star poly[2-(dimethylamino)ethyl methacrylate] /poly(styrenesulfonate) bultilayer films. Macromolecules.2010,43(21):9087-9093.
    [106]Chen X, Wu W, Guo Z, Xin J, Li J. Controlled insulin release from glucose-sensitive self-assembled multilayer films based on 21-arm star polymer. Biomaterials.32(6): 1759-1766.
    [107]周峻峰.甲基丙烯酸酯系两亲共聚物的合成、表征及性能研究.杭州:浙江大学, 2007.
    [108]Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci.2007,32(8-9):962-990.
    [109]Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, Lewis AL, Battaglia G. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater.2007,19(23):4238-4243.
    [110]Savic R, Azzam T, Eisenberg A, Nedev H, Rosenberg L, Maysinger D. Block-copolymer micelles as carriers of cell signaling modulators for the inhibition of JNK in human islets of Langerhans. Biomaterials.2009,30(21):3597-3604.
    [111]Liu M, Kono K, Frechet J. Water-soluble dendritic unimolecular micelles:their potential as drug delivery agents. J Control Release.2000,65(1-2):121-131.
    [112]Liu H, Farrell S, Uhrich K. Drug release characteristics of unimolecular polymeric micelles. J Control Release.2000,68(2):167-174.
    [113]Zhou Y, Huang W, Liu J, Zhu X, Yan D. Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater.2010,22(41):4567-4590.
    [114]Zhang X, Zhang X, Wu Z, Gao X, Cheng C, Wang Z, Li C. A hydrotropic (3-cyclodextrin grafted hyperbranched polyglycerol copolymer for hydrophobic drug delivery. Acta Biomater.2011,7(2):585-592.
    [115]Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release.2006,115(1):46-56.
    [116]Takeda N, Nakamura E, Yokoyama M, Okano T. Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J Control Release.2004,95(2):343-355.
    [117]Guo B, Sun XY, Zhou YF, Yan DY. Supramolecular self-assembly and controllable drug release of thermosensitive hyperbranched multiarm copolymers. Sci China Ser B.2010. 53(3):487-494.
    [118]Du W, Xu Z, Nystrom AM, Zhang K, Leonard JR, Wooley KL.19F- and fluorescently labeled micelles as nanoscopic assemblies for chemotherapeutic delivery. Bioconjugate Chem.2008,19(12):2492-2498.
    [119]Meier M, Gohy J, Fustin C, Schubert U. Combinatorial synthesis of star-shaped block copolymers:host-guest chemistry of unimolecular reversed micelles. J Am Chem Soc.2004, 126(37):11517-11521.
    [120]Yang Z, Liu J, Huang Z, Shi W. Crystallization behavior and micelle formation of star-shaped amphiphilic block copolymer based on dendritic poly(ether-amide). Eur Polym J. 2007,43(6):2298-2307.
    [121]Wang F, Bronich TK, Kabanov AY, Rauh RD, Roovers J. Synthesis and characterization of star poly(ε-caprolactone)-b-poly(ethylene glycol) and poly(L-lactide)-b-poly(ethylene glycol) copolymers:evaluation as drug delivery carriers. Bioconjugate Chem.2008,19(7): 1423-1429.
    [122]Kim KH, Cui GH, Lim HJ, Huh J, Ahn CH, Jo WH. Synthesis and micellization of star-shaped poly(ethylene glycol)-block-poly(s-caprolactone). Macromol Chem Phys.2004, 205(12):1684-1692.
    [123]Deng M, Chen X, Piao L, Zhang X, Dai Z, Jing X. Synthesis of four-armed poly(s-caprolactone)-block-poly(ethylene oxide) by diethylzinc catalyst. J Polym Sci Part A: Polym Chem.2004,42(4):950-959.
    [124]Leiva A, Quina F, Araneda E, Gargallo L, Radi D. New three-arm amphiphilic and biodegradable block copolymers composed of poly(s-caprolactone) and poly(N-vinyl-2-pyrrolidone). Synthesis, characterization and self-assembly in aqueous solution. J Colloid Interf Sci.2007,310(1):136-143.
    [125]Liu H, Xu J, Jiang J, Yin J, Narain R, Cai Y, Liu S. Syntheses and micellar properties of well-defined amphiphilic AB2 and A2B Y-shaped miktoarm star copolymers of ε-caprolactone and 2-(dimethylamino)ethyl methacrylate. J Polym Sci Part A:Polym Chem. 2007,45(8):1446-1462.
    [126]Yuan W, Yuan J, Zheng S, Hong X. Synthesis, characterization, and controllable drug release of dendritic star-block copolymer by ring-opening polymerization and atom transfer radical polymerization. Polymer.2007,48(9):2585-2594.
    [127]Pietrasik J, Sumerlin B, Lee R, Matyjaszewski K. Solution behavior of temperature-responsive molecular brushes prepared by ATRP. Macromol Chem Phys.2007,208(1): 30-36.
    [128]Bolto B. Soluble polymers in water purification. Prog Polym Sci.1995,20(6):987-1041.
    [129]Bougard F, Jeusette M, Mespouille L, Dubois P, Lazzaroni R. Synthesis and supramolecular organization of amphiphilic diblock copolymers combining poly(N, N-dimethylamino-2-ethyl methacrylate) and poly(e-caprolactone). Langmuir.2007,23(5):2339-2345.
    [130]姚加,翟韬,童达君,李浩然.嵌段共聚物PDMAEMA-b-PCL的合成、修饰及其水溶液性质研究.化学学报.2008,66(8):853-859.
    [131]Jhurry SM-TaD. Synthesis of graft and block copolymers from 2-dimethylaminoethyl methacrylate and caprolactone. Polym Int.2007,56:1053-1062.
    [132]Motala-Timol S, Jhurry D. Synthesis of PDMAEMA-PCL-PDMAEMA triblock copolymers. Eur Polym J.2007,43(7):3042-3049.
    [133]Mespouille L, Degee P, Dubois P. Amphiphilic poly(N,N-dimethylamino-2-ethyl methacrylate)-g-poly(ε-caprolactone) graft copolymers:synthesis and characterisation. Eur Polym J.2005,41(6):1187-1195.
    [134]Nottelet B, Vert M, Coudane J. Novel amphiphilic degradable poly(e-caprolactone)-graft-poly (4-vinyl pyridine), poly(ε-caprolactone)-graft-poly (dimethylaminoethyl methacrylate) and water-soluble derivatives. Macromol Rapid Comm.2008,29(9):743-750.
    [135]Xu P, Tang H, Li S, Ren J, Van Kirk E, Murdoch W, Radosz M, Shen Y. Enhanced stability of core-surface cross-linked micelles fabricated from amphiphilic brush copolymers. Biomacromolecules.2004,5(5):1736-1744.
    [136]Malmstrom E, Johansson M, Hult A. Hyperbranched aliphatic polyesters. Macromolecules. 1995,28(5):1698-1703.
    [137]Trollsas M, Hawker C, Remenar J, Hedrick J, Johansson M, Ihre H, Hult A. Highly branched radial block copolymers via dendritic initiation of aliphatic polyesters. J Polym Sci Part A:Polym Chem.1998,36(15):2793-2798.
    [138]Claesson H, Malmstrom E, Johansson M, Hult A. Synthesis and characterisation of star branched polyesters with dendritic cores and the effect of structural variations on zero shear rate viscosity. Polymer.2002,43(12):3511-3518.
    [139]Bai R, You Y, Pan C. Study on controlled free-radical polymerization in the presence of dithiobenzoic acid (DTBA). Polym Int.2000,49(8):898-902.
    [140]Le T, Moad G, Rizzardo E, Thang S. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization:the RAFT process. Macromolecules.1999,32(6):2071-2074.
    [141]Grijpma D, Hou Q, Feijen J. Preparation of biodegradable networks by photo-crosslinking lactide, ε-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester. Biomaterials.2005,26(16):2795-2802.
    [142]丛日新.两亲性高分子药物释放载体的合成、表征及控制释放行为研究.西安:西北工业大学,2006.
    [143]Mitsukami Y, Donovan M, Lowe A, McCormick C. Water-soluble polymers.81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules.2001,34(7):2248-2256.
    [144]Moore J, Stupp S. Room temperature polyesterification. Macromolecules.1990,23(1): 65-70.
    [145]Stenzel-Rosenbaum M, Davis T, Chen V, Fane A. Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization. J Polym Sci Part A:Polym Chem.2001,39(16):2777-2783.
    [146]Shalati M, Scott R. Thermal polymerization of dimethylaminoethyl methacrylate. Macromolecules.1975,8(2):127-130.
    [147]Favier A, Charreyre M. Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process. Macromol Rapid Comm.2006,27(9):653-692.
    [148]朱健.苯乙烯和(甲基)丙烯酸酯类的可逆加成-断裂链转移(RAFT)聚合研究.苏州:苏州大学,2004.
    [149]Gottschalk C, Frey H. Hyperbranched polylactide copolymers. Macromolecules.2006, 39(5):1719-1723.
    [150]Bruckner S, Crescenzi V, Zotteri L. Configurational statistics of polylactone chains. Eur Polym J.1971,7(10):1473-1483.
    [151]Babin J, Lepage M, Zhao Y. "Decoration" of shell cross-linked reverse polymer micelles using ATRP:a new route to stimuli-responsive nanoparticles. Macromolecules.2008,41(4): 1246-1253.
    [152]De Paz Banez M, Robinson K, Biitun V, Armes S. Use of oxyanion-initiated polymerization for the synthesis of amine methacrylate-based homopolymers and block copolymers. Polymer.2001,42(1):29-37.
    [153]Thun M, Namboodiri M, Heath Jr C. Aspirin use and reduced risk of fatal colon cancer. New Engl J Med.1991,325(23):1593-1596.
    [154]Hui H, Xiao-dong F, Zhong-lin C. Thermo-and pH-sensitive dendrimer derivatives with a shell of poly(N, N-dimethylaminoethyl methacrylate) and study of their controlled drug release behavior. Polymer.2005,46(22):9514-9522.
    [155]高原.含有聚甲基丙烯酸二甲胺基乙酯的两亲性嵌段聚合物的制备与组装.长春:吉林大学,2008.
    [156]Landolt A. UBVRI photometric standard stars in the magnitude range 11.5    [157]Wu C, Wang X. Globule-to-coil transition of a single homopolymer chain in solution. Phys Rev Lett.1998,80(18):4092-4094.
    [158]Chilkoti A, Dreher M, Meyer D, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliver Rev.2002,54(5):613-630.
    [159]Wei H, Chen W, Chang C, Cheng C, Cheng S, Zhang X, Zhuo R. Synthesis of star block, thermosensitive poly(L-lactide)-star block-poly(N-isopropylacrylamide-co-N-hydroxy methyl acrylamide) copolymers and their self-assembled micelles for controlled release. J Phys Chem C.2008,112:2888-2894.
    [160]Xu X, Liu C, Huang J. Synthesis, characterization, and stimuli-sensitive properties of triblock copolymer poly(ethylene oxide)-b-poly(2-(diethylamino) ethyl methacrylate)-b-poly(N-isopropylacrylamide). J Appl Polym Sci.2008,108(4):2180-2188.
    [161]Li J, He W, Han S, Sun X, Li L, Zhang B. Synthesis and micellization of PSt-PNIPAM-PDMAEMA hetero-arm star polymer with double thermo-responsibility. J Polym Sci Part A: Polym Chem.2009,47(3):786-796.
    [162]Liu Y, Cao X, Luo M, Le Z, Xu W. Self-assembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. J Colloid Interf Sci.2009, 329(2):244-252.
    [163]Xue L, Agarwal U, Lemstra P. High molecular weight PMMA by ATRP. Macromolecules. 2002,35(22):8650-8652.
    [164]Cai Y, Armes S. Synthesis of well-defined Y-shaped zwitterionic block copolymers via atom transfer radical polymerization. Macromolecules.2005,38(2):271-279.
    [165]Chen S, Zhang X, Cheng S, Zhuo R, Gu Z. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules.2008,9(10):2578-2585.
    [166]Bernaerts K, Fustin C, Bomal-D'Haese C, Gohy J, Martins J, Du Prez F. Advanced polymer architectures with stimuli-responsive properties starting from inimers. Macromolecules. 2008,41(7):2593-2606.
    [167]Wang J, Dong C. Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(ε-caprolactone)s with different arms. Polymer.2006,47(9):3218-3228.
    [168]Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev.2001,101(9): 2921-2990.
    [169]Lu X, Zhang L, Meng L, Liu Y. Synthesis of poly(N-isopropylacrylamide) by ATRP using a fluorescein-based initiator. Polym Bull.2007,59(2):195-206.
    [170]Matyjaszewski K, Shipp D, Wang J, Grimaud T, Patten T. Utilizing halide exchange to improve control of atom transfer radical polymerization. Macromolecules.1998,31(20): 6836-6840.
    [171]Matyjaszewski K, Nakagawa Y, Jasieczek CB. Polymerization of n-butyl acrylate by atom transfer radical polymerization. Remarkable effect of ethylene carbonate and other solvents. Macromolecules.1998,31(5):1535-1541.
    [172]Xia Y, Yin X, Burke N, Stover H. Thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules. 2005,38(14):5937-5943.
    [173]Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separation of biomolecules. Biomacromolecules.2008,9(4):1340-1347.
    [174]Cui Y, Ma X, Tang X, Luo Y. Synthesis, characterization, and thermal stability of star-shaped poly (s-caprolactone) with phosphazene core. Eur Polym J.2004,40(2):299-305.
    [175]Wang J, Dong C. Synthesis, sequential crystallization and morphological evolution of well-defined star-shaped poly(ε-caprolactone)-b-poly(L-lactide) block copolymer. Macromol Chem Phys.2006,207(5):554-562.
    [176]Lu C, Guo S, Zhang Y, Yin M. Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers. Polym Int.2006,55(6):694-700.
    [177]Seretoudi G, Bikiaris D, Panayiotou C. Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(ε-caprolactone) block copolymers. Polymer.2002,43(20): 5405-5415.
    [178]Bogdanov B, Vidts A, Van Den Bulcke A, Verbeeck R, Schacht E. Synthesis and thermal properties of poly(ethylene glycol)-poly(ε-caprolactone) copolymers. Polymer.1998, 39(8-9):1631-1636.
    [179]柯扬船,何平笙.高分子物理教程.北京:化学工业出版社.2006.
    [180]Crescenzi V, Manzini G, Calzolari G, Borri C. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J.1972,8(3):449-463.
    [181]Mahmud A, Xiong X, Lavasanifar A. Novel self-associating poly (ethylene oxide)-block-poly (ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules.2006,39(26):9419-9428.
    [182]Bougard F, Giacomelli C, Mespouille L, Borsali R, Dubois P, Lazzaroni R. Influence of the macromolecular architecture on the self-assembly of amphiphilic copolymers based on poly (N, N-dimethylamino-2-ethyl methacrylate) and poly (ε-caprolactone). Langmuir.2008, 24(15):8272-8279.
    [183]Chang C, Wei H, Quan C, Li Y, Liu J, Wang Z, Cheng S, Zhang X, Zhuo R. Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J Polym Sci Part A:Polym Chem.2008,46(9):3048-3057.
    [184]Riess G. Micellization of block copolymers. Prog Polym Sci.2003,28(7):1107-1170.
    [185]Yuk S, Cho S, Lee S. pH/temperature-responsive polymer composed of poly ((N, N-dimethylamino) ethyl methacrylate-co-ethylacrylamide). Macromolecules.1997,30(22): 6856-6859.
    [186]Smith A, Xu X, Abell T, Kirkland S, Hensarling R, McCormick C. Tuning nanostructure morphology and gold nanoparticle "locking" of multi-responsive amphiphilic diblock copolymers Macromolecules.2009,42:4152-4166.
    [187]Yusa S, Sugahara M, Endo T, Morishima Y. Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure. Langmuir.2009,25(9):1568-1572.
    [188]Gao M, Jia X, Kuang G, Li Y, Liang D, Wei Y. Thermo-and pH-responsive dendronized copolymers of styrene and maleic anhydride pendant with poly (amidoamine) dendrons as side groups. Macromolecules.2009,42:4273-4281.
    [189]Mi K, Yong K, Young M, Chong S. Effect of polymer complex formation on the cloud-point of poly (N-isopropylacrylamide)(PNIPAAm) in the poly (NIPAAm-co-acrylic acid): polyelectrolyte complex between poly (acrylic acid) and poly (L-lysine). Polymer.1998, 39(16):3703-3708.
    [190]Eeckman F, Amighi K, Mos A. Effect of some physiological and non-physiological compounds on the phase transition temperature of thermoresponsive polymers intended for oral controlled-drug delivery. Int J Pharm.2001,222(2):259-270.
    [191]中国药典.北京:化学工业出版社,2000.
    [192]Wei H, Zhang X, Zhou Y, Cheng S, Zhuo R. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials.2006,27(9):2028-2034.
    [193]Chung J, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release.1999,62(1-2): 115-127.
    [194]Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Polymers with complex architecture by living anionic polymerization. Chem Rev.2001,101(12):3747-3792.
    [195]Hadjichristidis N. Synthesis of miktoarm star (μ-star) polymers. J Polym Sci Part A:Polym Chem.1999,37(7):857-871.
    [196]Gao H, Matyjaszewski K. Synthesis of molecular brushes by "grafting onto" method: combination of ATRP and click reactions. J Am Chem Soc.2007,129(20):6633-6639.
    [197]Guo Y, Xu J, Pan C. Block and star block copolymers by mechanism transformation. IV. Synthesis of S-(PSt)2(PDOP)2 miktoarm star copolymers by combination of ATRP and CROP. J Polym Sci Part A:Polym Chem.2001,39(3):437-445.
    [198]Peleshanko S, Jeong J, Shevchenko V, Genson K, Pikus Y, Ornatska M, Petrash S, Tsukruk V. Synthesis and properties of asymmetric heteroarm PEOn-b-PSm star polymers with end functionalities. Macromolecules.2004,37(20):7497-7506.
    [199]Han D, Pan C. Preparation and characterization of heteroarm H-shaped terpolymers by combination of reversible addition-fragmentation transfer polymerization and ring-opening polymerization. J Polym Sci Part A:Polym Chem.2007,45(5):789-799.
    [200]Durmaz H, Karatas F, Tunca U, Hizal G. Heteroarm H-shaped terpolymers through the combination of the Diels-Alder reaction and controlled/living radical polymerization techniques. J Polym Sci Part A:Polym Chem.2006,44(13):3947-3957.
    [201]Priftis D, Pitsikalis M, Hadjichristidis N. Miktoarm star copolymers of poly(ε-caprolactone) from a novel heterofunctional initiator. J Polym Sci Part A:Polym Chem.2007,45(22): 5164-5181.
    [202]Balamurugan A, Ho K, Chen S. One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application. Synthetic Met.2009, 159(23-24):2544-2549.
    [203]Lu Y, Mei Y, Ballauff M, Drechsler M. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles. J Phys Chem B.2006,110(9):3930-3937.
    [204]Choudhury A. Polyaniline/silver nanocomposites:dielectric properties and ethanol vapour sensitivity. Sensor Actuat B-Chem.2009,138(1):318-325.
    [205]Fuke M, Kanitkar P, Kulkarni M, Kale B, Aiyer R. Effect of particle size variation of Ag nanoparticles in Polyaniline composite on humidity sensing. Talanta.2010,81(1-2): 320-326.
    [206]Manno D, Filippo E, Di Giulio M, Serra A. Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J Non-cryst Solids.2008,354 (52-54):5515-5520.
    [207]Balogh L, Swanson D, Tomalia D, Hagnauer G, McManus A. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Letters.2001,1(1):18-21.
    [208]Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller J, Mecking S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun.2002, (24):3018-3019.
    [209]Ho C, Tobis J, Sprich C, Thomann R, Tiller J. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater.2004,16(12):957-961.
    [210]Yuan W, Fu J, Su K, Ji J. Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloid Surface B.2010,76(2): 549-555.
    [211]An J, Yuan X, Luo Q, Wang D. Preparation of chitosan-graft-methyl methacrylate Ag nanocomposite with antimicrobial activity. Polym Int.2009,59(1):62-70.
    [212]Blends P. Cornet-like phosphotriazine/diamine polymers as reductant and matrix for the synthesis of silver nanocomposites with antimicrobial activity. Macromol Mater Eng.2010, 295:100-107.
    [213]Gladitz M, Reinemann S, Radusch HJ. Preparation of silver nanoparticle dispersions via a dendritic-polymer template approach and their use for antibacterial surface treatment. Macromol Mater Eng.2009,294(3):178-189.
    [214]Liu BS, Huang TB. Nanocomposites of genipin-crosslinked chitosan/silver nanoparticles-structural reinforcement and antimicrobial properties. Macromol Biosci.2008,8(10): 932-941.
    [215]Kong H, Jang J. Synthesis and antimicrobial properties of novel silver/polyrhodanine nano fibers. Biomacromolecules.2008,9(10):2677-2681.
    [216]Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P. Clusters of poly(acrylates) and silver nanoparticles:structure and applications for antimicrobial fabrics. J Phys Chem C.2008,112(31):11758-11766.
    [217]Stofik M, Stryhal Z, Maly J. Dendrimer-encapsulated silver nanoparticles as a novel electrochemical label for sensitive immunosensors. Biosens Bioelectron.2009,24(7): 1918-1923.
    [218]Lesniak W, Bielinska A, Sun K, Janczak K, Shi X, BakerJr J, Balogh L. Silver/dendrimer nanocomposites as biomarkers:fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett.2005,5(11):2123-2130.
    [219]Ishii T, Otsuka H, Kataoka K, Nagasaki Y. Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by a-biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)]. Langmuir.2003,20(3):561-564.
    [220]Li Y, Smith A, Lokitz B, McCormick C. In Situ formation of gold-"decorated" vesicles from a RAFT-synthesized, thermally responsive block copolymers. Macromolecules.2007,40 (24):8524-8526.
    [221]Yuan JJ, Schmid A. Armes SP, Lewis AL. Facile synthesis of highly biocompatible poly(2-(methacryloyloxy)ethyl phosphorylcholine)-coated gold nanoparticles in aqueous solution. Langmuir.2006,22(26):11022-11027.
    [222]Feng C, Shen Z, Li Y, Gu L, Zhang Y, Lu G, Huang X. PNIPAM-b-(PEA-g-PDMAEA) double-hydrophilic graft copolymer:synthesis and its application for preparation of gold nanoparticles in aqueous media. J Polym Sci Part A:Polym Chem.2009,47(7):1811-1824.
    [223]Petrov P, Tsvetanov C, Jerome R. Stabilized mixed micelles with a temperature-responsive core and a functional shell. J Phys Chem B.2009:7527-7533.
    [224]黄飞PAMAM树枝状分子的合成及其表面活性研究.北京:北京化工大学,2004.
    [225]王俊.树枝状大分子聚酰胺-胺的合成与性能研究.大连:大连理工大学,2005.
    [226]Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers:starburst-dendritic macromolecules. Polym J.1985,17(1):117-132.
    [227]Cheng F, Zhang K, Chen D, Zhu L, Jiang M. Self-assembly of heteroarms core-shell polymeric nanoparticles (HCPNs) and templated synthesis of gold nanoparticles within HCPNs and the superparticles. Macromolecules.2009,42(18):7108-7113.
    [228]Wu D, Liu Y, He C. Thermal- and pH-responsive degradable polymers. Macromolecules. 2008,41(1):18-20.
    [229]Liu Y, Wu D, Ma Y, Tang G, Wang S, He C, Chung T, Goh S. Novel poly (amino ester)s obtained from Michael addition polymerizations of trifunctional amine monomers with diacrylates:safe and efficient DNA carriers. Chem Commun.2003,2003(20):2630-2631.
    [230]Wang H, Chen X, Pan C. Synthesis of novel star-like hyperbranched polymers with poly (amido amine) core and poly (L-lysine) shell. Eur Polym J.2008,44(7):2184-2193.
    [231]Ternat C, Kreutzer G, Plummer C, Nguyen T, Herrmann A, Ouali L, Sommer H, Fieber W, Velazco M, Klok H. Amphiphilic multi-arm star-block copolymers for encapsulation of fragrance molecules. Macromol Chem Phys.2007,208(2):131-145.
    [232]Terreau O, Luo L, Eisenberg A. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) aggregates in solution.1. Vesicles. Langmuir.2003,19(14): 5601-5607.
    [233]Shen H, Eisenberg A. Block length dependence of morphological phase diagrams of the ternary syatem of PS-b-PAA/dioxane/H2O. Macromolecules.2000,33(7):2561-2572.
    [234]Butun V, Armes S, Billingham N. Synthesis and aqueous solution properties of near-mono disperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer.2001, 42(14):5993-6008.
    [235]Vamvakaki M, Unali G, Butun V, Boucher S, Robinson K, Billingham N, Armes S. Effect of partial quaternization on the aqueous solution properties of tertiary amine-based polymeric surfactants:unexpected separation of surface activity and cloud point behavior. Macromolecules.2001,34(20):6839-6841.
    [236]Gohy J, Antoun S, Jerome R. pH-Dependent micellization of poly(2-vinylpyridine)-block-poly((dimethylamino) ethyl methacrylate) diblock copolymers. Macromolecules.2001, 34(21):7435-7440.
    [237]Peponi L, Tercjak A, Torre L, Kenny JM, Mondragon I. Morphological analysis of self-assembled SIS block copolymer matrices containing silver nanoparticles. Compos Sci Technol.2008,68(7-8):1631-1636.
    [238]Henglein A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem.1993,97(21):5457-5471.
    [239]Kuo P, Chen C, Jao M. Effects of polymer micelles of alkylated polyethylenimines on generation of gold nanoparticles. J Phys Chem B.2005,109(19):9445-9450.
    [240]Zhang Y, Peng H, Huang W, Zhou Y, Yan D. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interf Sci.2008,325(2): 371-376.
    [241]江明.各类多组分聚合物中的特殊相互作用.高等学校化学学报.1991,12(1):127-132.
    [242]Liu S, Fang Y, Hu D, Gao G, Ma J. Complexation between poly(methacrylic acid) and poly (vinylpyrrolidone). J Appl Polym Sci.2001,82(3):620-627.
    [243]Iliopoulos I, Audebert R. Polymer complexes stabilized through hydrogen bonds. Influence of "structure defects" on complex formation:potentiometric study. Eur Polym J.1988, 24(2):171-175.
    [244]Turro N, Caminati G, Kim J. Phosphorescence from a bromonaphthalene lumophore as a photophysical probe of polymer conformation and interpolymer interactions. Macromolecules.1991,24(14):4054-4060.
    [245]Maltesh C, Somasundaran P, Kulkarni R, Gundiah S. Polymer-polymer complexation in dilute aqueous solutions:poly(acrylic acid)-poly(ethylene oxide) and poly(acrylic acid)-poly (vinylpyrrolidone). Langmuir.1991,7(10):2108-2111.
    [246]Nurkeeva Z, Mun G, Khutoryanskiy V, Bitekenova A, Dubolazov A, Esirkegenova S. pH effects in the formation of interpolymer complexes between poly(N-vinylpyrrolidone) and poly(acrylic acid) in aqueous solutions. Eur Phys J E.2003,10(1):65-68.
    [247]Shuping J, Liu M, Chen S, Chen Y. Complexation between poly(acrylic acid) and poly (vinylpyrrolidone):influence of the molecular weight of poly(acrylic acid) and small molecule salt on the complexation. Eur Polym J.2005,41(10):2406-2415.
    [248]Ohno H, Abe K, Tsuchida E. Solvent effect on the formation of poly (methacrylic acid)-poly (N-vinyl-2-pyrrolidone) complex through hydrogen bonding. Die Makromolekulare Chemie. 1978,179(3):755-763.
    [249]Ohno H, Nii A, Tsuchida E. Solvent effect on the complex formation of poly (methacrylic acid) with proton-accepting polymers. Die Makromolekulare Chemie.1980,181(6): 1227-1235.
    [250]Bayramov D, Singh P, Cleary G, Siegel R, Chalykh A, Feldstein M. Non-covalently crosslinked hydrogels displaying a unique combination of water-absorbing, elastic and adhesive properties. Polym Int.2008,57(5):785-790.
    [251]Pinteala M, Budtova T, Epure V, Belnikevich N, Harabagiu V, Simionescu B. Interpolymer complexes between hydrophobically modified poly(methacrylic acid) and poly (N-vinylpyrrolidone). Polymer.2005,46(18):7047-7054.
    [252]Zhunuspayev DE, Mun GA, Hole P, Khutoryanskiy VV. Solvent effects on the formation of nanoparticles and multilayered coatings based on hydrogen-bonded interpolymer complexes of poly(acrylic acid) with homo- and copolymers of N-vinyl pyrrolidone. Langmuir.2008, 24(23):13742-13747.
    [253]Torrens F, Soria V, Codo er A, Abad C, Campos A. Compatibility between polystyrene copolymers and polymers in solution via hydrogen bonding. Eur Polym J.2006,42(10): 2807-2823.
    [254]Natarajan P, Raja C. Novel features of the interpolymer self-organisation behaviour investigated using covalently linked protoporphyrin IX as fluorescent probe in the macromolecules. Eur Polym J.2001,37(11):2207-2211.
    [255]Liu G, Guan C, Zou W, Zhu H, Peng J, Zhang L, Bi X. Swelling behaviors and mechanical properties of polymer gel/poly (N-vinyl-2-pyrrolidone) complexes. J Polym Res.2007, 14(6):461-465.
    [256]Kireeva P, Shandryuk G, Kostina J, Bondarenko G, Singh P, Cleary G, Feldstein M. Competitive hydrogen bonding mechanisms underlying phase behavior of triple poly (N-vinyl pyrrolidone)-poly (ethylene glycol)-poly (methacrylic acid-co-ethylacrylate) blends. J Appl Polym Sci.2007,105(5):3017-3036.
    [257]Gao W, Bai Y, Chen E, Li Z, Han B, Yang W, Zhou Q. Controlling vesicle formation via interpolymer hydrogen-bonding complexation between poly (ethylene oxide)-block-polybutadiene and poly (acrylic acid) in solution. Macromolecules.2006,39(14): 4894-4898.
    [258]Hameed N, Guo Q. Nanostructure and hydrogen bonding in interpolyelectrolyte complexes of poly(ε-caprolactone)-block-poly(2-vinyl pyridine) and poly (acrylic acid). Polymer.2008, 49(24):5268-5275.
    [259]Lefevre N, Fustin C, Varshney S, Gohy J. Self-assembly of block copolymer complexes in organic solvents. Polymer.2007,48(8):2306-2311.
    [260]Matejicek P, Uchman M, Lokajova J, Stepanek M, Prochazka K, Spirkova M. Interpolymer complexes based on the core/shell micelles. Interaction of polystyrene-block-poly (methacrylic acid) micelles with linear poly (2-vinylpyridine) in 1,4-dioxane water mixtures and in aqueous media. J Phys Chem B.2007,111 (29):8394-8401.
    [261]Kabanov A, Kabanov V. Interpolyelectrolyte and block ionomer complexes for gene delivery:physico-chemical aspects. Adv Drug Deliver Rev.1998,30(1-3):49-60.
    [262]Wong S, Pelet J, Putnam D. Polymer systems for gene delivery-past, present, and future. Prog Polym Sci.2007,32(8-9):799-837.
    [263]Philipp B, Dautzenberg H, Linow K, Kotz J, Dawydoff W. Polyelectrolyte complexes: recent developments and open problems. Prog Polym Sci.1989,14(1):91-172.
    [264]Pergushov D, Remizova E, Feldthusen J, Zezin A, Muller A, Kabanov V. Novel water-soluble micellar interpolyelectrolyte complexes. J Phys Chem B.2003,107(32): 8093-8096.
    [265]Pergushov D, Remizova E, Gradzielski M, Lindner P, Feldthusen J, Zezin A, Muller A, Kabanov V. Micelles of polyisobutylene-block-poly (methacrylic acid) diblock copolymers and their water-soluble interpolyelectrolyte complexes formed with quaternized poly (4-vinylpyridine). Polymer.2004,45(2):367-378.
    [266]Pergushov DV, Gradzielski M, Burkhardt M, Remizova EV, Zezin AB, Kabanov VA, Muller AHE. Novel "core-shell-corona" architectures via complexation of micelles of ionic amphiphilic diblock copolymers with oppositely charged polyelectrolytes. Polym Prepr. 2004,45(2):236-237.
    [267]Burkhardt M, Ruppel M, Tea S, Drechsler M, Schweins R, Pergushov D, Gradzielski M, Zezin A, Muller A. Water-soluble interpolyelectrolyte complexes of polyisobutylene-block-poly(methacrylic acid) micelles:formation and properties. Langmuir.2008,24(5): 1769-1777.
    [268]Lysenko E, Chelushkin P, Bronich T, Eisenberg A, Kabanov V, Kabanov A. Formation of multilayer polyelectrolyte complexes by using block ionomer micelles as nucleating particles. J Phys Chem B.2004,108(33):12352-12359.
    [269]Lysenko EA, Bronich TK, Eisenberg A, Kabanov VA, Kabanov AV. Polyion complex nanomaterials from block polyelectrolyte micelles and linear polyelectrolytes of opposite charge:1. solution behavior. J Phys Chem B.2007,111(29):8419-8425.
    [270]Simmons C, Webber S, Zhulina E. Association of ionized polymer micelles with oppositely charged polyelectrolytes. Macromolecules.2001,34(14):5053-5066.
    [271]Talingting M, Voigt U, Munk P, Webber S. Observation of massive overcompensation in the complexation of sodium poly (styrenesulfonate) with cationic polymer micelles. Macromolecules.2000,33(26):9612-9619.
    [272]Karanam S, Goossens H, Klumperman B, Lemstra P. "Controlled" synthesis and characterization of model methyl methacrylate/tert-butyl methacrylate triblock copolymers via ATRP. Macromolecules.2003,36(9):3051-3060.
    [273]Bartels T, Tan Y, Challa G. Some aspects on the polymerization of N-vinylpyrrolidone in the presence of poly(methacrylic acid) templates. J Polym Sci:Polym Chem Edit.1977,15(2): 341-351.
    [274]Koetsier D, Challa G Tan Y. Formation of polyvinylpyrrolidone-syndiotactic poly (methacrylic acid) complexes in dimethylformamide. Polymer.1981,22(12):1709-1715.
    [275]Abe K, Koide M, Tsuchida E. Selective complexation of macromolecules. Macromolecules. 1977,10(6):1259-1264.
    [276]Hara M, Wu J, Lee AH. Effect of intra- and intermolecular interactions on solution properties of sulfonated polystyrene ionomers. Macromolecules.1988,21(7):2214-2218.
    [277]Chun MK, Cho CS, Choi HK. Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization. J Control Release.2002,81(3):327-334.
    [278]Harada A, Kataoka K. Chain length recognition:core-shell supramolecular assembly from oppositely charged block copolymers. Science.1999,283(5398):65-67.
    [279]Ilhan F, Galow TH, Gray M, Clavier G, Rotello VM. Giant vesicle formation through self-assembly of complementary random copolymers. J Am Chem Soc.2000,122(24): 5895-5896.
    [280]Schrage S, Sigel R, Schlaad H. Formation of amphiphilic polyion complex vesicles from mixtures of oppositely charged block ionomers. Macromolecules.2003,36(5):1417-1420.
    [281]Liu S, Zhu H, Zhao H, Jiang M, Wu C. Interpolymer hydrogen-bonding complexation induced micellization from polystyrene-b-poly(methyl methacrylate) and PS(OH) in toluene. Langmuir.2000,16(8):3712-3717.
    [282]Liu X, Jiang M, Yang S, Chen M, Chen D, Yang C, Wu K. Micelles and hollow nanospheres based ε-caprolactone-containing polymers in aqueous media. Angew Chem Int Edit.2002, 41(16):2950-2952.
    [283]McKee M, Elkins C, Long T. Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships. Polymer.2004,45(26):8705-8715.
    [284]Van den Bosch E, Berghmans H. Structure formation in solutions of isotactic poly (methacrylic acid) in dimethyl formamide. Polym Bull.2007,58(1):153-160.
    [285]Lee J, Lentz B. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry.1997,36(21):6251-6259.
    [286]Menger F, Gabrielson K. Cytomimetic organic chemistry:early developments. Angew Chem Int Edit.2003,34(19):2091-2106.
    [287]Menger F, Angelova M. Giant vesicles:imitating the cytological processes of cell membranes. Accounts Chem Res.1998,31(12):789-797.
    [288]Siegel D, Epand R. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine:implications for membrane fusion mechanisms. Biophys J.1997, 73(6):3089-3111.
    [289]Menger FM, Peresypkin A. Strings of vesicles:flow behavior in an unusual type of aqueous gel. J Am Chem Soc.2003,125:5340-5345.
    [290]Furukawa T, Uchida S, Ishizu K. Synthesis and polyelectrolyte behavior of poly (methacrylic acid) star polymers. J Appl Polym Sci.2007,105(3):1543-1550.
    [291]Tan JF, Blencowe A, Goh TK, Dela Cruz ITM, Qiao GG. A general method for the synthesis and isolation of well-defined core cross-linked multistar assemblies:a route toward enhanced pH-responsive polymers. Macromolecules.2009,42(13):4622-4631.
    [292]Bharadwaj S, Montazeri R, Haynie D. Direct determination of the thermodynamics of polyelectrolyte complexation and implications thereof for electrostatic layer-by-layer assembly of multilayer films. Langmuir.2006,22(14):6093-6101.
    [293]Oth A, Doty P. Macro-ions. Ⅱ. polymethacrylic acid. J Phys Chem.1952,56(1):43-50.
    [294]Van Duffel B, Schoonheydt R, Grim C, De Schryver F. Multilayered clay films:atomic force microscopy study and modeling. Langmuir.1999,15(22):7520-7529.
    [295]Jin W, Toutianoush A, Tieke B. Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes. Langmuir.2003,19(7):2550-2553.
    [296]Budd P, Ricardo N, Jafar J, Stephenson B, Hughess R. Zeolite/polyelectrolyte multilayer pervaporation membranes for enhanced reaction yield. Ind Eng Chem Res.2004,43(8): 1863-1867.
    [297]Sullivan D, Bruening M. Ultrathin, cross-linked polyimide pervaporation membranes prepared from polyelectrolyte multilayers. J Membrane Sci.2005,248(1-2):161-170.
    [298]Palumbo M, Pearson C, Nagel J, Petty M. Surface plasmon resonance sensing of liquids using polyelectrolyte thin films. Sensor Actuat B-Chem.2003,91(1-3):291-297.
    [299]Yang X, Johnson S, Shi J, Holesinger T, Swanson B. Polyelectrolyte and molecular host ion self-assembly to multilayer thin films:an approach to thin film chemical sensors. Sensor Actuat B-Chem.1997,45(2):87-92.
    [300]Zhao N, Shi F, Wang Z, Zhang X. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir. 2005,21(10):4713-4716.
    [301]Shi F, Wang Z, Zhao N, Zhang X. Patterned polyelectrolyte multilayer:surface modification for enhancing selective adsorption. Langmuir.2005,21(4):1599-1602.
    [302]Izumrudov V, Kharlampieva E, Sukhishvili S. Multilayers of a globular protein and a weak polyacid:role of polyacid ionization in growth and decomposition in salt solutions. Biomacromolecules.2005,6(3):1782-1788.
    [303]Berg MC, Zhai L, Cohen RE, Rubner MF. Controlled drug release from porous polyelectrolyte multilayers. Biomacromolecules.2006,7(1):357-364.
    [304]Wood KC, Boedicker JQ, Lynn DM, Hammond PT. Tunable drug release from hydrolytically degradable layer-by-layer thin films. Langmuir.2005,21(4):1603-1609.
    [305]Caruso F, Yang W, Trau D, Renneberg R. Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly. Langmuir.2000, 16(23):8932-8936.
    [306]Schramm OG, Meier MAR, Hoogenboom R, van Erp HP, Gohy JF, Schubert US. Polymeric nanocontainers with high loading capacity of hydrophobic drugs. Soft Matter.2009,5(8): 1662-1667.
    [307]Plamper FA, Schmalz A, Penott-Chang E, Drechsler M, Jusufi A, Ballauff M, Muller AHE. Synthesis and characterization of star-shaped poly(N,N-dimethylaminoethyl methacrylate) and its quaternized ammonium salts. Macromolecules.2007,40(16):5689-5697.
    [308]Antoun S, Gohy JF, Jerome R. Micellization of quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) copolymers in water. Polymer.2001,42(8): 3641-3648.
    [309]Khopade A, Caruso F. Investigation of the factors influencing the formation of dendrimer/polyanion multilayer films. Langmuir.2002,18(20):7669-7676.
    [310]Sauerbrey GZ. Use of quartz crystal vibrator for weighting thin films on a microbalance. Zeitschrift Fur Physik.1959,155(2):206-222.
    [311]Klitzing R. Internal structure of polyelectrolyte multilayer assemblies. Phys Chem Chem Phys.2006,8(43):5012-5033.
    [312]Yoo P, Zacharia N, Doh J, Nam K, Belcher A, Hammond P. Controlling surface mobility in interdiffusing polyelectrolyte multilayers. ACS nano.2008,2(3):561-571.
    [313]Shiratori S, Rubner M. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules.2000,33(11):4213-4219.
    [314]Burke S, Barrett C. pH-responsive properties of multilayered poly (L-lysine)/hyaluronic acid surfaces. Biomacromolecules.2003,4(6):1773-1783.
    [315]Mendelsohn J, Barrett C, Chan V, Pal A, Mayes A, Rubner M. Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir.2000,16(11):5017-5023.
    [316]Zhao W, Xu JJ, Shi CG, Chen HY. Multilayer membranes via layer-by-layer deposition of organic polymer protected prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir.2005,21(21):9630-9634.
    [317]Baba A, Kaneko F, Advincula R. Polyelectrolyte adsorption processes characterized in situ using the quartz crystal microbalance technique:alternate adsorption properties in ultrathin polymer films. Colloid Surface A.2000,173(1-3):39-49.
    [318]Dobrynin A, Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci.2005,30(11):1049-1118.
    [319]Kim H, Lee K, Kumar S, Kim J. Dynamic sequential layer-by-layer deposition method for fast and region-selective multilayer thin film fabrication. Langmuir.2005,21(18): 8532-8538.
    [320]Yoo D, Shiratori S, Rubner M. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules.1998,31(13): 4309-4318.
    [321]Zhang F, Wu Q, Chen Z, Li X, Jiang X, Lin X. Bioactive galactose-branched polyelectrolyte multilayers and microcapsules:self-assembly, characterization, and biospecific lectin adsorption. Langmuir.2006,22(20):8458-8464.
    [322]Cho J, Lee S, Kang H, Char K, Koo J, Seung B, Lee K. Quantitative analysis on the adsorbed amount and structural characteristics of spin self-assembled multilayer films. Polymer.2003,44(18):5455-5459.
    [323]Schoeler B, Kumaraswamy G, Caruso F. Investigation of the influence of polyelectrolyte charge density on the growth of multilayer thin films prepared by the layer-by-layer technique. Macromolecules.2002,35(3):889-897.
    [324]Schlenoff J, Dubas S. Mechanism of polyelectrolyte multilayer growth:charge overcompensation and distribution. Macromolecules.2001,34(3):592-598.
    [325]Steitz R, Jaeger W, Klitzing R. Influence of charge density and ionic strength on the multilayer formation of strong polyelectrolytes. Langmuir.2001,17(15):4471-4474.
    [326]Dubas S, Schlenoff J. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules.1999,32(24):8153-8160.
    [327]Lefaux C, Zimberlin J, Dobrynin A, Mather P. Polyelectrolyte spin assembly:influence of ionic strength on the growth of multilayered thin films. J Polym Sci Pol Phys.2004,42(19): 3654-3666.
    [328]Lvov Y, Decher G, Haas H, M hwald H, Kalachev A. X-ray analysis of ultrathin polymer films self-assembled onto substrates. Physica B.1994,198(1-3):89-91.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.