锂离子电池用凝胶聚合物电解质的设计、制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文着重研究锂离子电池用凝胶聚合物电解质。设计制备了四种体系共十种凝胶聚合物电解质,其四个体系分别为膜支撑凝胶聚合物电解质、改性两相凝胶聚合物电解质、semi-IPN凝胶聚合物电解质、以及改性PVdF多孔凝胶聚合物电解质等。采用FTIR、NMR、DSC、TGA、XRD、SEM等物理和化学测试手段,以及交流阻抗谱和线性扫描伏安法等电化学测试手段,研究凝胶聚合物电解质的化学结构、膜表面形态、热性能和电化学性能。分析不同工艺制备条件和原料组成比例对产物性能的影响,以实现体系力学性能和电化学性能的统一,使制备的凝胶聚合物电解质有实际应用前景。
     1.设计制备了膜支撑凝胶聚合物电解质,分别为“PPEGMA/PMMA膜支撑凝胶聚合物电解质”、“HBP/PEO膜支撑凝胶聚合物电解质”、以及“MAPTMS/MMA膜支撑凝胶聚合物电解质”。研究发现交联预聚物的涂覆固化并不破坏PE微孔膜的结晶度,PE膜在体系中依然保持较好的力学支撑性能。极性交联组分在微孔膜上固化后呈现多孔状形态,由于其化学结构和极性与液体电解质的相似性,有利于吸附液体电解质于其内并凝胶化,使体系具有较高的离子导电率。此外,涂覆的极性交联聚合物有利于提高微孔膜和金属锂电极之间的接触性能,使对金属锂片的电化学稳定性较好。体系室温离子导电率在10~(-3)S cm~(-1)数量级。电化学稳定窗口>4.5V,且其与金属锂片的接触较为稳定,降低了液体电解质和锂金属反应的可能性,防止金属锂的钝化而失效。
     2.制备改性两相凝胶聚合物电解质:“PMMA-g-NBR/PMMA改性两相凝胶聚合物电解质”、以及“PMMA-g-PVC/PMMA改性两相凝胶聚合物电解质”。通过接枝聚合对聚合物母体NBR和PVC进行改性,两者分别与PMMA共混后,吸附液体电解质以制备改性两相凝胶聚合物电解质。PMMA的链段接枝可提高共混两相聚合物的相间相容性,通过光学显微镜和扫描电镜观察,得到均相透明的共混两相聚合物薄膜。PMMA组分在体系中吸附大量液体电解质形成离子导电通道,使得体系在室温下离子导电率达到10~(-3)S cm~(-1)数量级,而接枝共聚物组分在体系中保持较好的力学强度。
     3.通过热聚合或紫外光辐照聚合的方法,分别制备了如“(PPEG200MA-co-MMA/NBR)半互穿凝胶聚合物电解质”、“MAPTMA-co-PEGDMA/NBR半互穿凝胶聚合物电解质”,以及“XPEG/PMMA半互穿凝胶聚合物电解质”。制备得到的聚合物薄膜表面均一,未发现由于相分离而出现的卷曲或者裂痕。通过DSC或XRD观察证明,整个体系呈现无定形态。整个semi-IPN薄膜的力学性能随着共混聚合物的比例而变化。与普通的共混型凝胶聚合物电解质相比,semi-IPN凝胶电解质体系相间相容性好,体系不仅保持较好力学性能,而且极性交联组分可吸附大量液体电解质,交联网状结构也有利于液体电解包覆于其内凝胶化,以实现较高的室温离子导电率。体系的室温离子导电率达到10~(-3)S cm~(-1)数量级,且电化学稳定窗口超过4.5V。
     4.通过两种方法改性PVdF多孔膜,制备改性PVdF多孔凝胶聚合物电解质。第一种手段通过将水解交联的预聚物涂覆于PVdF多孔膜表面,紫外光固化后,再吸附液体电解质凝胶化,以制备复合PVdF多孔凝胶聚合物电解质;第二种手段溶利用分散聚合方法合成带有PEG支链的极性共聚物,将其共混PVdF,制备共混改性PVdF多孔凝胶聚合物电解质。所涂覆的交联聚合物溶液浓度以及共混聚合物的添加量均影响PVdF多孔膜表面的孔隙大小(1-5μm)和孔隙率。在体系中,PVdF保持较好的力学强度和电化学稳定性;涂覆或共混的共聚物组分有利于吸附液体电解质以凝胶化,此外,共聚物极性较强,易于将液体电解质吸附其内,且其链段中极性基团与锂离子有络合作用,可促进锂盐离解,增加锂离子含量,提高室温离子导电率,以达到实用的10~(-3)S cm~(-1)水平。此外,改性PVdF多孔膜凝胶聚合物电解质电化学窗口均超过4.5V,电化学稳定性好。
     上述设计的凝胶聚合物电解质,制备方法简便,性能良好,具有实际应用价值。
The novel gel polymer electrolytes (GPEs) for Secondary Lithium-ion Battery have been investigated. Four kinds of gel polymer electrolyte were prepared, including membrane supporting gel polymer electrolyte (MSGPE), modified dual-phase polymer electrolyte (DPE), semi-IPN gel polymer electrolyte and modified PVdF microporous gel polymer electrolyte. The chemical characteristics, surface morphology, thermal behavior, ionic conductivity, interfacial stability between lithium metal electrode have been investigated by using of FT-IR, Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Optical microscopic images, Alternating Current Impedance (AC Impedance) and Linear Sweep Voltammetry (LSV), respectively. Analysis the effects of preparation conditions and the proportions of raw materials on the properties of obtained GPEs, the aim of the paper is to develop the high ionic conductivity GPE with good mechanical strength.
    1. The membrane supporting gel polymer electrolytes (MSGPE), such as MSGPE-PPEGMA/PMMA, MSGPE-HBP/PEO and MSGPE-MAPTMS-MMA were prepared and investigated. For the polar prepolymers coated and cured PE membrane, the crystallinity property of PE, which imparted the mechanical strength to MSGPE was found to be almost maintenance. The coated polar copolymer presented a microporous structure, the absorbed liquid electrolyte could be trapped in the pores and formed gel polymer electrolyte due to good compatibility between them. In addition, the coated copolymer could increase the surface area in contact with the electrode, which would be benefit to the electrochemical stability between them. The ionic conductivity at room temperature reached 10~(-3)S cm~(-1) and the electrochemical stability window was more than 4.5V.
    2. Dual-phase polymer electrolytes (DPEs) with enhanced phase compatibility, such as DPE-PMMA-g-NBR/PMMA and DPE-PMMA-g-PVC/PMMA were prepared. The polymer host NBR and PVC were modified with MMA by solution grafting polymerization. The grafted copolymer was first blend with PMMA and then absorbed the liquid electrolyte to prepare a new type DPE with enhanced phase compatibility. The films of DPE so obtained were homogeneous and transparent. In the DPE systems, the blending PMMA absorbed vast
    liquid electrolyte and formed ionic conduction channel to make the ionic conductivity at room temperature reach 10~(-3)S cm~(-1) scale, while the PMMA-g-NBR or PMMA-g-PVC component kept excellent mechanical properties.
    3. Semi-IPN gel electrolytes such as SIN-(PPEG200MA-co-MMA/NBR), SIN-(MAPTMS -co-PEGDMA/NBR) and SIN-(XPEG/PMMA) were prepared by means of thermal polymerization or ultraviolet (UV) radiation. The surfaces of the semi-IPN polymer films were uniform and homogeneous, and hardly any cracks were observed. In the semi-IPN systems, the blending polymer chains tend to tangle with each other. The results of DSC and XRD analysis confirmed that the prepared hosts present amorphous state. The mechanical properties of the semi-IPN hosts varied with the proportion of the polymer blends. The phase compatibility of the semi-IPN gel electrolytes so obtained was better than the former blending type gel polymer electrolyte. This gel polymer electrolyte could not only retain the good mechanics, but also absorb a mass of liquid electrolyte to withstand a highly ionic conductivity. The ionic conductivity of gel polymer electrolyte reached 10~(-3)S cm~(-1) and the electrochemical stability window was more than 4.5V.
    4. Modified PVdF microporous gel polymer electrolytes with enhanced properties were prepared by two methods. For the first method, PVdF microporous membranes were coated with polar cross-linked copolymer by means of UV radiation. For the second method, PVdF was blent with the polar copolymer which was prepared by means of dispersion polymerization, to prepare the microporous membrane. The images of the vacuum-dried films showed that micropores of 1-5μm were formed, which were influenced by concentration of the coated and the blending copolymer, respectively. PVdF kept good mechanical property and electrochemical stability in the GPE system. The addition of coated or blending copolymers helped to absorb the liquid electrolyte and gelatinize. In addition, the complexation effect of the copolymer and Li~+ ion could promote the dissociation of the Li salt, which eventually increased the number of conductive ions and enhanced the ionic conductivities. The prepared microporous gel polymer electrolyte reached 10~(-3)S cm~(-1) and the electrochemical stability window exceeded 4.5V.
    In a word, the above preparation methods of gel polymer electrolytes (GPEs) are quite
    simple. GPEs so prepared have good properties, which made it possible to be used for secondary Lithium-ion battery in practice.
引文
[1] Kazuo T., Akiya K., Ralph B. Production processes for lithium ion batteries. J. ITE Letters, 2001, 2(5): 16-19.
    [2] Yoshio N. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources, 2001, 100: 101-106.
    [3] Nagaura T., Tozawa K. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells 1990, 209: 9-15.
    [4] Pillot C. The World-Wide Battery Market and Its Main Applications (1998-2003), Batteries 2000, Markets and Techologies for Portable Electronic Devices, Paris, 2000.
    [5] 陈振兴主编.高分子电池材料,化学工业出版社,北京,2006.
    [6] 雷永泉,万群,石永康主编.新能源材料,天津大学出版社,天津,2000.
    [7] 吴宇平,万春荣,姜长印,方世璧主编.锂离子二次电池,北京,2002.
    [8] 黄挥,张文魁,马淳安,张孝彬,卢换明.纳米碳管的制备及其在化学电源中的应用.化学通报,2002,2:96-100.
    [9] 吴川,吴锋,陈实,王国庆.锂离子电池正极材料研究进展,电池,2000,30(1):36-38.
    [10] 刘景,温兆银,吴梅梅,樊增钊,林祖壤.锂离子电池正极材料的研究进展,无机材料学报,2002,(1):1-9.
    [11] Y Matsuda, H Satake. Mixed organic electrolytes for high energy density batteries. J. Electrochem. Soc. 1980, (127):207-211.
    [12] Y Matsuda, H Nakashima, M Morita, Y Takasu. Behavior of some ions in mixed organic electrolytes of high energy density batteries. J. Electrochem. Soc., 1981, 128: 2552-2256.
    [13] Song J. Y., Wang Y. Y., Wan C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources, 1999, 77:183~197.
    [14] B Scrosati. Lithium rocking chair batteries: an old concepe? J. Electrochem. Soc. 1992, 139: 2776-2781.
    [15] 金明刚.我国固态锂离子电池工业发展近况,电池工业,2000,5(2):88-92.
    [16] 赵健,杨维芝,赵佳明.锂离子电池的应用开发.电池工业,2000,5(1):31~36.
    [17] 陈猛,史鹏飞,程新群.塑料锂离子电池研究概况.电池,2000,30(3),129~133.
    [18] 陈立泉.锂离子电池最新动态和进展.锂离子电池专讯.1998,(2):1~2.
    [19] Matsumoto Isao. Advanced metal-hydrride, Li-ion batteries based on the market trends. Yoyuen Oyobi Koon Kagaku, 1999, 42(3): 200~212.
    [20] Amine K, Liu J. Development of high-power lithium ion batteries or hybrid vehicle application. ITE Lett. Batteries, New Technol Med, 2000(1):59~63.
    [21] Uraoka Yasushi, Takatsuka Yuichi, Hara Kenji. Jpn Kokai Tokkyo Koho JP 2000, 82:471.
    [22] Takamoro Kenji, Kawashima Nobuhiro, Morita Yuichi, Application of the lithium-ion rechargeable battery for portable telephone. NEC Res Dev, 2000,41(1):24-27.
    
    [23] Majima Masatoshi, Ujiie Satoshi, Yagasaki Eriko, Trial manufacturing of a large scale lithium ion battery for power storage. Electrochemistry (Tokyo),2000,68(3):167-173.
    
    [24] Kezuka K., Hatazawa T., Nakajima K. The satus of Sony Li-ion polymer battery. J. Power Sources, 2001, (97-98): 755-757.
    
    [25] Ritchie A.G. Recent developments and likely advances in lithium rechargeable batteries. J. Power Sources, 2004, 136: 285-289.
    
    [26] Fenton D. E., Parker J. M., Wright P. V. Complexes of alkaline metal ions with poly(ethylene oxide). Polymer, 1973, 14(4): 589-594.
    
    [27] Armand M B., Chabagno J. M., Duclot M. Second International Meeting on Solid Electrolytes. St. Andrews, Scotland, September, 19.
    
    [28] Borghini M. C, Mastragostino M., Zanelli A. Investigation on lithium/polymer electrolyte interface for high performance lithium rechargeable batteries. J. Polymer Sources, 1997, 68(1):52-58.
    
    [29] Dias F.B., Plomp L., Veldhuis J. B.J. Trends in polymer electrolytes for secondary lithium batteries. J Power Sources, 2000, 88: 169-191.
    
    [30] Armand M.B., in: J.R. MacCallum, C.A. Vincent(Eds.), Polymer Electrolyte Reviews- I,Elsevier, London, 1987, p. 1, Chap. 1.
    
    [31] MacCallum J.R., Vincent C.A.,in: J.R. MacCallum, C.A. Vincent(Eds.), Polymer Electrolyte Reviews- I,Elsevier, London, 1987, p.23, Chap.2.
    
    [32] Takahash Y, Tadokoro H. Structural studies of polyethers, (-CH2)m-O-)n.X. Crystal structure of polyethylene oxide. Macromolecules, 1973,6: 672-675.
    
    [33] Berthier C., Goreck W., Minier M., Armand M. B., Chabagno J.M., Rigaud P. Solid State Ionics, 1983,11,91.
    
    [34] F. Muller-Plathe, W.F. van Gunstern. Computer simulation of a polymer electrolyte: Lithium iodide in amorphous polyethylene oxide). J. Chem. Phys. 1995, 103: 4745-4756.
    
    [35] Meyer W. H. Polymer electrolyte for lithium-ion batteries. Adv. Mater, 1998, 10(6): 439-447.
    
    [36] Chen Y.W., Hwang J.J., Chang F.H. Polyphosphazene Electrolytes. 1.Preparation and conductivities of New Polymer Electrolytes Based on Polybis(amino)phosphazene and Lithium Perchlorate, Macromolecules, 1997, 30: 3825-3831.
    
    [37] Du Y.-L., Wen T.-C. The feasibility study of composite electrolytes comprising thermoplastic polyurethane and poly(ethylene oxide), Materials Chem. Phys., 2001, 71: 62-69.
    
    [38] Wen T.-C, Du Y.-L., Digar M. Compositional effect on the morphology and ionic conductivity of thermoplastic polyurethane based electrolytes. Eur Polym J, 2002,38: 1039-1048.
    [39] Hooper R. Highly conductive siloxane polymers. Macromolecules, 2001, 34:931-936
    [40] 丁黎民,石晶,林云青,杨承宗.梳状高分子固体电解质的二级玻璃化转变及离子传输研究.化学快报,1997,55:254-258.
    [41] 齐力,林云青,王佛松.一种梳状高分子固体电解质的分子运动和离子导电性.高分子学报,1995.4:459-464.
    [42] 丁黎明,林云青,粱洪泽,汪东梅,王佛松.新型梳状高分子固体电解质的研究(Ⅱ).应用化学,1995,12(4):96-98.
    [43] 丁黎明,林云青,周子南,王佛松.交替马来酸酐共聚物多缩乙二醇酯盐络合物的离子传导性(Ⅲ).材料研究学报,1995,9(2),183-185.
    [44] Lauter U., Meyer W. H., Wegner G. Molecular composites from rigid-rod poly(p-phenylene)s with oligo(oxyethylene) side chains as novel polymer electrolytes. Maromolecules, 1997, 30: 2092-2101.
    [45] Wang X. L., Chen J. J., Ling H., Tang X. Z. Synthesis and Ionic Conductivity of Hyperbranched Poly(glycidol), J. Polym. Sci.:Part B, Polymer Physice, 2001, 39: 2225-2230.
    [46] Rocco A. M., Fonseca da C. P., Pereira R. P. A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methylvinyl ether-maleic acid) and LiClO_4. Polymer 2002, 43: 3601-3609.
    [47] G. Feullade, P. Perche, J. Appl. Electrochem. 5(1975) 63.
    [48] Lee H. S., Yang Q. X. Ionic conductivity of a polymer electrolyte with modified carbonate as a plasticizer for poly(ethylene oxide). J Electrochen Soc, 1994, 144: 886-889.
    [49] 李为立,杨慕杰.锂离子二次电池固体电解质材料发展现状及展望.高分子材料科学与工程,2005,21(2):1-5.
    [50] Ito Y, Kanehori K, Miyauchi K, Kodu T. Ionic conductivity of electrolytes formed from PEO-LiCF_3SO_3 complex with low molecular weight poly(ethylene glycol). J Mater Sci 1987, 22:1845-1853.
    [51] Nagasubramanian G, Di Stefano S. 12-Crown-4 ether assisted enhancement of ionic conductivity and interface kinetics in PEO electrolytes. J Electrochem Soc 1990; 137:3830-3836.
    [52] Borghini M. C., Mastragostino M., Zanelli A. Reliability of lithium batteries with crosslinked polymer electrolytes. Electrochimica Acta., 1996, 41(15): 2369-2373.
    [53] Huang H., Chen L., Huang X., Xue R. Two-component epoxy network-LiClO4 polymer electrolyte. Electrochim. Acta, 1992, 37:1569-1572
    [54] Appetecchi G. B., Scrosati B. A lithium ion polymer battery. Electrochim Acta, 1998; 43:1105-1112.
    [55] Rajendran S., Mahendran O., Mahalingam T. Thermal and ionic conductivity studies of plasticized PMMA/PVdF blend polymer electrolytes. Euro. Polym. J., 2002, 38: 49-55.
    [56] Yang C. R., Perng J. T., Wang Y. Y. Conductive behaviour of lithium ions in polyacrylonitrile J Power Sources, 1996; 62: 89-93.
    [57] Choi B.K., Kim Y.W., Shin H .K. Ionic conduction in PEO-PAN blend polymer electrolytes. Electrochimica Acta, 2000, 45: 1371-1374
    
    [58] Wen T.-C., Kuo H.-H., Gopalan A. The influence of lithium ions on molecular interaction and conductivity of composite electrolyte consisting of TPU and PAN. Solid State Ionics, 2002, 147: 171-180
    
    [59] Alamgir M., Abraham K.M. Lithium Batteries-New Materials, Developments and Perspectives, In: G Pistoia (Ed.), Elsevier, 1994, Chap.3,p.l 14,.
    
    [60] Iijima T, Toyoguchi Y, Eda N. Quasi-solid organic electrolytes gelatinized with poly methylmethacrylate and their applications for lithium batteries. Denki Kagaku, 1985, 53: 619.[in Japanese].
    
    [61] Bohnke O, Frand M, Rezrazi M, Rousselot C, Truche C. Fast ion transport in new lithium electrolytes gelled with PMMA-influence of polymer concentration. Solid State Ionics, 1993, 66: 97-103.
    
    [62] Tsuchida E, Ohno H, Tsunemi K. Conductivity of lithium-ions in PVdF and its derivatives-I. Electrochim Acta, 1983, 28: 591-600.
    
    [63] Tsunemi K, Ohno H, Tsuchida E. Mechanism of ionic conducion of PVdF-lithium perchlorate hybrid films. Electrochim. Acta, 1983, 28: 833-838.
    
    [64] Jiang Z., Carrol B., Abraham K.M. Studies of some PVdF electrolytes. Electrochim Acta, 1997, 42: 2667-2677.
    
    [65] Gozdz A.S., Tarascon J.M., Schmutz C.N., Warren P.C., Gebizlioglu O.S., Shokkoochi F. Ext. Abstr.-ECS Fall Meeting, Miami, Florida, October 9-14 94/2 (117)( 1994).
    
    [66] Capiglia C, Saito Y, Kataoka H, Kodama T, Quartarone E, Mustraelli P. Structure and transport of polymer gel electrolytes based on PVdF-HFP and LiN(C_2F_5SO_2)_2. Solid State Ionics, 2001, 131: 291-299.
    
    [67] Mary Sukeshini A., Nishimoto A., Watanabe M. Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes. Solid State Ionics, 1996, 86-88: 385-391.
    
    [68] Han H.-S., Kang H.-R., Kim S.-W., Kim H.-T. Phase-separated polymer electrolyte based on poly(vinyl chloride)/poly(ethyl methacrylate) blend. J. Power Sources, 2002, 112: 461-468
    
    [69] Du Y.-L., Wen T.-C. The feasibility study of composite electrolytes comprising thermoplastic polyurethane and poly(ethylene oxide). Mater. Chem.& Phy. 2001, 71: 62-69.
    
    [70] Rajendran S., Mahendran O., Mahalingam T. Thermal and ionic conductivity studies of plasticized PMMA/PVdF blend polymer electrolytes. Euro. Polym. J. 2002, 38: 49-55.
    
    [71] Oh B., Kim Y. R. Evaluation and characteristics of a blend polymer for a solid polymer electrolyte. Solid State Ionics, 1999, 1: 83-89
    
    [72] Choi B. K., Kim Y.W., Shin H.K. Ionic conduction in PEO-PAN blend polymer electrolytes. Electrochim. Acta, 2000, 45: 1371-1374
    
    [73] Matsumoto M., Ichino T., Rutt J. S., Nishi S. Ionic conductivity of dual-phase polymer electrolyte comprised of NBR/SBR latex films swollen with lithium solutions. J. Electrochem. Soc, 1994, 141: 1989-1925.
    [74] Hou W. -H., Chen C. -Y. Studies on comb-like polymer electrolyte with a nitrile group. Electrochim. Acta 2004, 49:2105-2112.
    [75] Weston J. E., Steele B. C. Effects of Inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics, 1982, 7: 75-79.
    [76] Krawice W., Scanlon L. G. Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources, 1995, 54: 310-315.
    [77] Croce F., Appetecchil G. B., Persi L. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394: 456-459.
    [78] 邱玮丽,杨清河,马晓华,付延鲍,宗祥福;锂蓄电池PEO基全固态聚合物电解质研究进展.电源技术,2004,28:440-448
    [79] Park N. -H. Suh K. -D. Organic-inorganic microhybrid materials via a novel emulsion mixing method. J Appli Polym. Sci, 1996, 71:1597-1605.
    [80] Varia R A, Giamnelis E P. Synthesis and properties of two-dimensional nanotructures by direct intercalation of polymer melts in layered silicates, Chem Mater, 1993, 5: 1694-1696.
    [81] Gray H., Hu S., Juuang E., Gin D. L. Highly ordered polymer-inorganic nanocomposites via monomer self assembly: In situ condensation approach. Adv. Mater., 1997, 9:731-736.
    [82] Tian D., Dubois P., Jerdne R. A new poly(ε-caprolactone) containing hybrid ceramer prepared by the sol-gel process. Polymer, 1996, 37:3983-3987.
    [83] Eusworkth U W, Novak B M. Construction of a light-activated protein by unnatural amino acid mutagenesis. JACS 1991, 113: 2758-2760.
    [84] Singh T. J., Bhat S. V. Increased lithium-ion conduct$ivity in (PEG)_(46)LiClO_4 solid polymer electrolyte with δ-Al_2O_3 nanoparticles. J. Power Sources, 2004, 129: 280-287.
    [85] Best A. S., Ferry A., MacFarlane D. R., Forsyth M. Conductivity in amorphous polyether nanocomposite materials. Solid State lonics, 1999, 126: 269-276.
    [86] Fiory F. S., Croce F., Depifanio A. S., Licoccia B., Scrosati E. PEO based polymer electrolyte lithium-ion battery. J. Euro Ceramic Soc, 2004, 24: 1385-1387.
    [87] Croce F., Persi L., Ronci F. Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State lonics, 2000, 135: 47-52.
    [88] Persi L., Croce F., Scrosati B. Poly(ethylene oxide)-based nanocomposite electrolytes as improved separators for rechargeable lithium polymer batteries., J Electrochem. Soc., 2002, 149:212-216.
    [89] Wen Z. Y., Itoh T., Ikeda M. Characterization of composite electrolytes based on a hyperbranched polymer. J Power Sources, 2000, 90: 20-26.
    [90] Sun H. Y., Takeda Y., Imanishi O. Feroelectric materials as a ceramic filler in composite polyethylene oxide—based electrolytes. J Electrochem Soc, 2000, 147: 2 462-2468.
    
    [91] Itoh T., Ichikawa Y., Uno T. Composite polymer electrolytes based on poly(ethylene oxide) hyperbranched polymer, BaTiO_3 and LiN(CF_3SO_2)_2. Solid State Ionics, 2003,156: 393-399.
    
    [92] Itoh T, Ikeda M, Hirata M. Ionic conductivity of the hyperbranched polymer lithium metal salt systems. J Power Sources, 1999, 81-82: 824-829.
    
    [93] Kumar B., Lawrence G., Scanlon, Spry R. J. On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J. Power Sources, 2001, 96: 337-342.
    
    [94] Kumar B., Scanlon L., Marsh R., Manson R., Higgins R., Baldwin R. Structural evolution and conductivity of PEO:LiBF-4-MgO composite electrolytes. Electrochim. Acta, 2001, 46: 1515-1521.
    
    [95] Croce F., Persi L., Scrosati B. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta, 2001,46: 2457-2461.
    
    [96] Yerian J. A., Khan S. A., Fedkiw P. S. Crosslinkable fumed silica-based nanocomposite electrolytes: role of methacrylate monomer in formation of crosslinked silica. J. Power Sources, 2004, 135: 232-239.
    
    [97] Liu Y., Lee J.Y., Hong L. In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes. J. Power Sources, 2004, 129:303-311.
    
    [98] Kasemagi H., Klintenberg M., Aabloo A. Molecular dynamics simulation of temperature and concentration dependence of the 'filler' effect for the LiCl/PEO/Al_2O_3 nanoparticle system. Electrochim. Acta, 2003, 48: 2273-2278.
    
    [99] Slane S., Salomon M. Composite gel electrolyte for rechargeable lithium batteries. J. Power Sources, 1995, 55(1): 7-10.
    
    [100] Appetecchi G.B., Romagnoli P., Scrosati B. Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochem. Commun. 2001,3: 281-284.
    
    [101] Lee K.H., Lee Y.G., Park J.K., Seung D.Y. Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA) copolymer. Solid State Ionics, 2000, 133: 257-263.
    
    [102] Rajendran S., Uma T. Effect of ZrO_2 on conductivity of PVC-LiBF_4-DBP polymer electrolytes. Mater. Lett, 2000, 44(3-4): 208-214.
    
    
    [103] Morales E., Acosta J.L. Conductivity and electrochemical stability of composite polymer electrolytes. Solid State Ionics, 1998, 111 (1-2): 109-115.
    
    [104] Adebahr J., Byrne N., Forsyth M. Enhancement of ion dynamics in PMMA-based gels with addition of TiO_2 nano-particles. Electrochim. Acta, 2003,48: 2099-2103
    
    [105] Alexandre M., Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R ,2000, 28: 1-63.
    
    [106] Chen H.W., Chiu C.Y., Wu H.D., Shen I.W., Chang F.C. Solid hyphen state electrolyte nanocomposites based on poly(ethylene oxide), poly(oxypropylene) diamine, mineral clay and lithium perchlorate . Polymer, 2002, 43: 5011-5016.
    
    [107] Chen H.W., Chiu C.Y., Chang F.C. Conductivity enhancement mechanism of the poly(ethylene oxide)/modified-clay-LiClO_4 systems. J. Polym. Sci. Part B Polym. Phys. 2002,40: 1342.
    
    [108] Fan L., Nan C.W., Dang Z. Effect of modified montmorillonites on the ionic conductivity of (PEO)_(16)LiClO_4 electrolytes. Electrochim. Acta, 2002, 47: 3541-3544.
    
    [109] Fan L., Nan C.W., Li M. Thermal, electrical and mechanical properties of (PEO)_(16)LiClO_4 electrolytes with modified montmorillonites. Chem. Phys. Lett. 2003, 369: 698-702
    
    [110] Chen H., Lin T., Chang F. Ionic conductivity enhancement of the plasticized PMMA/LiClO_4 polymer nanocomposite electrolyte containing clay. Polymer, 2002, 43: 5281-5288.
    
    [111] Paulo Meneghetti, Syed Qutubuddin, Andrew Webber. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite. Electrochim. Acta, 2004,49: 4923-4931.
    
    [112] Jacob M.M.E., Hackett E., Emmanuel P. From nanocomposite to nanogel polymer electrolyte. J. Mater. Chem., 2003, 13:1-5.
    
    [113] Liao C.-S., Ye W.-B. Structure and conductive properties of poly(ethylene oxide)/layered ouble hydroxide nanocomposite polymer electrolytes. Electrochim. Acta, 2004, 49: 4993-4998
    
    [114] Liao C.-S., Ye W.-B. Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes. Mater. Chem. & Phy, 2004, 88: 84-89.
    
    [115] Cho M.S., Shin B., Choi S.D., Lee Y., Song K.G. Gel polymer electrolyte nanocomposites PEGDA with Mg-Al layered double hydroxides. Electrochim. Acta, 2004, 50: 331-334.
    
    [116] Kumai K., Miyashiro H., Kobayashi Y., Takei K., Ishikawa R. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources, 1999, 81-82: 715-719.
    
    [117] Kim D.-W., Oh B., Park J.-H., Sun Y.-K. Gel-coated membranes for lithium-ion polymer batteries. Solid State Ionics, 2000, 138: 41-49.
    
    [118] Abraham K.M., Alamgir M., Hoffman D.K. Polymer electrolytes reinforced by Celgard membranes. J. Electrochem. Soc. 1995, 142: 683-687.
    
    [119] Wang Y., Travas-Sejdic J., Steiner R. Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer battery. Solid State Ionics 148(2002) 443-449.
    
    [120] Kim D.-W., Noh K. A., Chun J.-H., Kim S.-H., Ko J.-M. Highly conductive polymer electrolytes supported by microporous membrane. Solid State Ionics, 2001, 144:329-337.
    
    [121] Kim H.-S., Kum K.-S., Cho W.-I., Cho B.-W., Rhee H.-W. Electrochemical and physical properties of composite polymer electrolyte of poly(methyl methacrylate) and poly(ethylene glycol diacrylate). J Power Sources, 2003, 124: 221-224.
    
    [122] Ichino T, Matsumoto M., New solid polymer electrolyte prepared from stylene-butadiene copolymer lattices, J Polym Sci, Part A, 1993, 31: 589-591.
    [123] Rutt S., Ichino T., Matsumoto M. Ion free latex films composed of fused polbutadiene and poly(vinyle pyrrolidone) particles as polymer electrolyte materials. J Polym Sci., 1994, 32:779-787.
    [124] Ichino T, Matsumoto M, Tukeshita Y. New concept for polymer electrolyte: Dual-phase polymer electrolyte. Electrochim. Acta 1995; 40(13/14): 2265.
    [125] Takeshita Y., Ichino T., Nishi S. Dual-phase polymer electrolyte with enhanced mechanical strength. J. Appl Polym Sci, 1998, 71: 1835-1839.
    [126] Ju J. L., Gu Q. C., Xu H. S., Yang C. Z. Ionic conductivity of new dual-phase polymer electrolyte composed of poly(epichlorohydrin-co-oxirane) and NBR. J. Appl. Polym Sci. 1998, 70: 353.
    [127] 剧金兰,娄永兵,顾庆超.高分子电解质中锂与高分子的相互作用.高分子材料科学与工程,2001;17(2):88-90.
    [128] 施良和,胡汉杰.高分子科学的今天与明天,化学工业出版社,北京,1994.
    [129] Manson J. A., Sperling L. H., Polymer Blends and Composites, New York, 1976.
    [130] Frisch H. L., Frisch K. C.. Klempner D. Mod Plast 54, 76(1977).
    [131] Sperling L. H. Interpenetration polymer networks and related materials. J. Polym Sci, Macromoi Rev, 1977, 12: 141-177.
    [132] Thomas D. A., Sperling L. H., in Polymer Blends, Vol 2. New York(1978).
    [133] Millar J. R. J. Chem Soc. 1311(1960).
    [134] G Goodyear. US Patent 3, 633(1844).
    [135] Aylsworth J. W. US Patent 1, 111, 784(1914).
    [136] Staudinger J. J. P., Hutchinson H. M. US Patent 2, 539, 377(1951).
    [137] Millar J. R., Smith D. G., Marr W. E. J Chem Soc. 1789(1962).
    [138] 黄宏慈,欧玉春译,L. H. Sperling.互穿聚合物网络和有关材料,科学出版社,1987.
    [139] 曹同玉,刘庆普,胡金生编.聚合物乳液合成原理性能及应用,化学工业出版社,北京,1997.
    [140] Kim H. -S., Shin J. -H., Moon S. -I., Kim S. -P. Preparation of gel polymer electrolyte using PMMA interpenetrating polymeric network and their electrochemical performances. Electrochim. Acta 2003, 48: 1573-1578.
    [141] Kalapala S., Easteal A. J. Novel poly(methyl methacrylate)-based semi-interpenetrating polyelectolyte gels for rechargeable lithium batteries. J Power Sources 2005, 147: 256-259.
    [142] Siow K. S., How X. Novel interpenetrating polymer network electrolytes. Polymer 2001, 42: 4181-4188.
    [143] 操建华.锂离子电池中聚合物电解质多孔膜的制备及其结构与性能的研究.浙江大学博士学位论文,2005.
    [144] Song J. M., Kang H. R., Kim S. W., Lee W. M., Kim H. T. Electrochemical characteristics of phase-separated polymer electrolyte based on poly(vinlidene fluoride-co-hexafluoropropane) and ethylene carbonate. Electrochim. Acta, 2003, 48:1339-1346.
    [145] Gozdz A. S., Schmutz C. N., Tarascon J. M. Rechargeable lithium interaction battery with hybrid polymeric electrolyte, US Patent No 5296318, 1994.
    [146] Gozdz A. S., Schmutz C. N., Tarascon J. M., Warren P. C. Polymeric electrolytic cell separator membrane. US Patent No 5418091, 1995.
    [147] Gozdz A. S., Schmutz C. N., Tarascon J. M., Warren P. C. Method of making an electrolyte activable lithium-ion rechargeable batter cell. US Patent No 5456000, 1995.
    [148] Gozdz A. S., Schmutz N., TaraScon J. M., Warren P. C. Method of making polymeric electrolytic cell Separator membrane. US Patent, No 5607485, 1997.
    [149] Pasquier A. D., Zheng T., Amatucci G. G., Gozdz A. S. Microstructure effects in plasticized electrodes based on PVdF-HFP for plastic Li-ion batteries. J Power Sources, 2001, 97-98:758-761.
    [150] Pasquier A. D., Warren P. C., Gozdz A. S., Amatucci G. G. Plastic PVdF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ionics, 2000; 135:249-257.
    [151] Tarascon J. M., Gozdz A. S., Schmutz C., Shokoohi F., Warren P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics, 1996; 86-88: 49-54.
    [152] Wang H. P., Huang H. T., Wunder S. L. Novel microporous poly(vinylidene fluoride) blend electrolytes for lithium-ion batteries. J Electrochem Soc, 2000, 147(8):2853-2861.
    [153] Sundaram Kalyana N. T., Subramania A. Microstructure of PVdF-co-HFP based electrolyte prepared by preferential polymer dissolution process. J Membr Sci, 2007, 289: 1-6.
    [154] 徐又一,徐志康.高分子膜材料.化学工业出版社,北京,2005.
    [155] Boudin F., Andrieu X., Jehoulet, Olsen I. I. Microporous PVdF gel for lithium-ion batteries J Power Sources, 1999, 81-82: 804-807.
    [156] Pasquier A. D., Zheng T., Amatucci G. G., Gozdz A. S. Microstructure effects in plasticized electrodes based on PVdF-HFP for plastic Li-ion batteries. J. Power Sources, 2001, 97-98:758-761.
    [157] Pu W., He X., Wang L., Jiang C., Wan C. Preparation of PVdF-HFP microporous membrane for Li-ion batteries by phase inversion. J Membr Sci, 2006, 272:11-14.
    [158] Saunier J., Alloin F., Sanchez J. Y., Cailion G. Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. J Power Sources, 2003, 119-121: 454-459.
    [159] Magistris A., Mustarelli P., Quartane E., Piaggio P., Bottino A. Poly(vinylidene fluoride) based porous polymer electrolytes. Electrochinim. Acta, 2001, 46: 1635-1639.
    [160] Magistris A, Mustarelli P, Parazzzolii F, Quartane E, Piaggio P, Bottino A. Structure, porosity and conductivity of PVdF films for polymer electrolytes. J Power Sources, 2001, 97-98: 657-660.
    [161] 赵天增编著.核磁共振碳谱.北京大学出版社,北京,1983.
    [162] Benedetti E, Catanorchi S, Alessio A D, Moggi G, Vergamini P, Pracella M, Ciardelli F. FTIR-micropectroscepy and DSC studies of poly(vinylidene fluoride). Polym Int, 1996,41:35-41.
    [163] Genies C, Mercier R, Siklion B, Petiaud P, Cornet N, Gebel G, Pineri M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer, 2001,42:5097-5105.
    
    【164】郑洪河等编著.锂离子电池电解质.化学工业出版社,北京,2007.
    
    [165] Lee Y. M., Kim J.-W., Choi N.-S., Lee J. A., Seol W.-H., Park J.-K. Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. J Power Sources, 2005, 139: 235-241.
    
    [166] Matsumoto M., Ichino T., Rutt J. S., Nishi S. Ionic conductivity of Dual-Phase polymer electrolyte comprised of NBR/SBR latex films swollen with lithium salt solutions. J. Electrochem. Soc, 1994, 141: 1989-1993.
    
    [166] Appetecchi GB., Romagnoli P., Scrosati B. Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochem Commun, 2001, 3: 281-284.
    
    [167] Gaynor S.G, Edelman S, Matyjaszewski K. Synthesis of Branched and Hyperbranched Polystyrenes. Macromolecules, 1996;29(3): 1079-1081.
    
    [168] Malmstrom E., Johansson M., Hult A. Hyperbranched Aliphatic Polyesters. Macromolecules, 1995;28(5):1698-1703.
    
    [169] Bolton D.H., Wooley K.L. Synthesis and Characterization of Hyperbranched Polycarbonates. Macromolecules, 1997;30:1890-1896.
    
    [170] Doug-Youn L., Jung-Hyun K., Tae-IK M. Role of alkali-soluble random copolymer in emulsion polymerization. Colloid and Surfaces A, 1999; 153: 89-97.
    
    [171] Itoh T, Horii S., Uno T., Kubo M., Yamamoto O. Influence of hyperbranched polymer structure on ionic conductivity in composite polymer electrolytes of PEO/hyperbranched polymer/BaTiO3/Li salt system. Electrochim. Acta., 2004,50: 271-274
    
    [172] Magnusson H., Malmstrom E., Hult A. Structure Buildup in Hyperbranched Polymers from 2,2-Bis(hydroxymethyl)propionic Acid Macromolecules, 2000; 33:3099-3106.
    
    [177] Liu Y, Lee J.Y., Hong L. In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes J. Power Sources, 2004, 129: 303-308.
    
    [178] Wu P.-W., Holm S. R., Duong A. Dunn T., B., Kaner R. B. A Sol-Gel Solid Electrolyte with High Lithium Ion Conductivity Chem. Mater., 1997, 9: 1004-1011.
    
    [179] Maitra P., Ding J., Huang H.T., Wunder S.L. Poly(ethylene oxide) Silananted Nanosize Fumed Silica: DSC and TGA Characterization of the Surface Langmuir, 2003, 19: 8994-8999.
    
    [180] H.-J. Ryoo, H.-T. Kim, Y.G. Lee, J.-K. Park, S.-I. Moon, J. Solid State Electrochem 3 (1998) 1
    
    [181]. Bohnke O, Rousselt C, Gillet P.A., Truche G Gel electrolytes for solid-state electrochromic cells. J. Electrochem. Soc 1992,139:1862.
    
    [182] Manuel Stephan A, Karan RT, Renganathan NG, Pitchumani S, Muniyandi N, Ramamoorthy P. A study on polymer blend electrolytes based on PVC/PMMA with lithium salt. J Power Sources 1999, 81-82:752-759.
    
    [183] Manuel Stephan A, Karan RT, Renganathan NG, Pitchumani S, Sudersan J, Muniyandi N. Ionic conductivity studies on plasticized PVC/PMMA blend polymer electrolytes containing LiBF4 and LiCF-3SO_3 Solid State Ionics 2000; 130:123-132.
    
    [184] Manuel Stephan A, Karan RT, Renganathan NG, Pitchumani S, Muniyandi N. Ionic conductivity and FTIR studies on plasticized PVC/PMMA blend polymer electrolytes. J Power Sources 2000,89:80-87.
    [185] Huang B., Wang Z., Chen L., Xue R., Wang F. The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics, 1996, 91: 279-283.
    
    [186] Wang Z.X., Huang B.Y., Huang H., Chen L., Xue R., Wang F. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy Electrochim. Acta 1996, 41:1443-1446
    
    [187] Liang W.J., Kuo C.L., Lin C.L., Kuo P.L. J. Polym. Sci. Part A: Polym. Chem 2002,40,1226.
    [188] Digar M., Hung S.-L., Wen T.-C. Blending poly(methyl methacrylate) and poly(styrene-co-acrylonitrile) as composite polymer electrolyte. J. Appl. Polym. Sci. 2001,80: 1319-1328.
    [189] Kim H.-S., Shin J.-H., Doh C.-H., Moon S.-L, Kim S.-P. Preparation and electrochemical performance of gel polymer electrolytes using tri(ethylene glycol) dimethacrylate. J. Power Sources 2002, 112:469-476.
    
    [190] Sperling L.H., Interpenertrating Polymer Networks and Related Materials, Plenum, New York 1988, 3-10.
    
    [191] Frisch H.L., Zhou P.G Phase behavior of pseudo-IPN's of polycarbonate-urethane and polystyrene. J. Polym. Sci.(A) Polym. Chem., 1993,31: 1967-1971.
    [192] Hodge R.M.; Edward G.H.; Simon G.P. Polymer 1996, 37, 1371.
    
    [193] Koo J.H., Kim D. Poly(ethylene glycol) electrolyte gels prepared by condensation reaction. J Appl Polym Sci, 2002, 86: 948-956.
    
    [194] Kim C S, Oh S M. Performance of gel type polymer electrolytes according to the affinity between polymer matrix and plasticizing solvent molecules, Electrochimica Acta, 2001, 46:1323-1331.
    [195] Croucher M D, Winnlk M A. Nato ASI Ser, SerE(Future Dir Polym Colloid) 1987.
    [196] Barrett K E J (Ed), Dispersion Polymerization in Organic Media, New York, Interscience, 1975.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.