分子结构调控环缩醛衍生聚合物的光致异构与光控水解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在智能传感和生物医药等领域的应用,近年来光响应聚合物备受关注。最近,我们课题组设计合成了一种环缩醛键接生色基团的新型光敏聚合物,该聚合物具有独特的光化学调控机制,即能够通过调节肉桂基的Z-异构化程度来调控环缩醛的价键稳定性。为进一步将其应用于药物控释材料,我们仍需优化该光敏聚合物的分子结构。本论文着重探讨了环缩醛衍生光敏聚合物的光致异构行为和水解行为的分子结构依赖性。本论文采用可见光活化室温RAFT聚合,设计合成了结构精确的光敏聚合物聚5-乙基-5-甲基丙烯酰氧甲基-2-苯乙烯基-[1,3]二氧环己烷(PEMSD)禾(?)聚5-乙基-5-甲基丙烯酰氧甲基-2-p-甲氧基苯乙烯基-[1,3]二氧环己烷(PEMpMSD),同时采用热引发RAFT聚合合成了聚5-乙基-5-甲基丙烯酰氧甲基-2-o-甲氧基苯乙烯基-[1,3]二氧环己烷(PEMoMSD)。研究结果表明,光敏单体的可见光活化室温RAFT聚合具有“活性”/可控特征;生色基团苯环甲氧基取代,提高了光敏单体的聚合反应活性。该类光敏聚合物的光致异构化过程具有明显的分子结构依赖性。苯环邻位甲氧基取代,显著提高聚合物中肉桂基的光致异构化程度;而苯环对位甲氧基取代,导致其光致异构化程度的提高不明显。进一步研究表明,该类光敏聚合物的水解过程同样具有明显的分子结构依赖性。肉桂基苯环对位甲氧基取代,显著加速聚合物中E-肉桂基邻近环缩醛的水解过程,其Z-生色团邻近环缩醛的水解也明显快于相应未取代的。而苯环邻位甲氧基取代,仅能加速E-肉桂基邻近环缩醛的水解过程,而其Z-肉桂基邻近环缩醛的水解速率与相应未取代的基本一致。肉桂基苯环的邻位甲氧基取代,显著拓宽了光控水解过程的调控幅度。
Photoresponsive polymers are of great importance bcause of their wide potential applications for smart materials and biomedical fields. Recently, our research group designed and synthesized a new type of photosensitive polymer whose chromophores were bound with cyclic acetal linkages. The property of this polymer is that the stability of cyclic acetal linkages could be controlled by adjusting the degree of Z-cinnamyl chromophores via photo-isomerization. Considering the utilization of such photosensitive polymer for the drug delivery application, we should optimize the molecular structure of this photosensitive polymer. This thesis describes the light-switchable hydrolysis of their acid-labile cyclic acetal linkages of photosensitive polymers as the methoxy-substitution of their cinnamyl pendent groups. To this end, the well-defined poly[5-ethyl-5-methacryloyloxymethyl-2-styryl-[1,3]dioxane] (PEMSD) and poly[5-ethyl-5-methacry-loyloxymethyl-2-p-meth-oxystyryl-[1,3]dioxane] (PEMpMSD) were synthesized via visible light activating RAFT polymerization at 25℃, and poly[5-ethyl-5-methacryloyloxymethy1-2-o-methoxystyry1-[1,3]dioxane] (PEMoMSD) was synthesized via conventional RAFT polymerization at 70℃. Kinetic studies indicated the "living'/controlled character of the visible light activating RAFT polymerization, and the pendant methoxy para-substituted chromophore improves the polymerization reactivity of monomer. Photoisomerization behaviors of these photosensitive polymers exhibited strong molecular structure dependence. The pendant methoxy ortho-substituted chromophore remarkably increased the degree of isomerization of E-type chromophores, while methoxy para-substituted chromophore slightly increased the degree of this isomerization. Hydrolysis behaviors of these photosensitive polymers were also found to have strong molecular structure dependence. The introduction of methoxy groups in the para-positions remarkably accelerates the hydrolysis process of cyclic acetal linkages both neighboring E-cinnamyl and Z-cinnamyl chromophores, while in the ortho positions can only accelerate those of neighboring E-cinnamyl chromophores. Moreover, the introduction of methoxy groups in the ortho positions increases the modulating range of this photo-controlling hydrolysis.
引文
[1]Roy D.; Cambre J. N.; Sumerlin B. S. Future Perspectives and Recent Advances in Stimuli-Responsive Materials [J]. Prog. Polym. Sci.2010,35,278-301.
    [2]Schumers J. M.; Fustin C. A.; Gohy J. F. Light-Responsive Block Copolymers [J]. Macromol. Rapid Commun.2010,31,1588-1607.
    [3]Zhao Y. Photocontrollable Block Copolymer Micelles:What Can We Control? [J]. J. Mater. Chem. 2009,19,4887-4895.
    [4]Ruhmann R. Polymers for Optical Storage—Photoresponsive Polymers by Structure Variation in Side-Group Polymethacrylates [J]. Polym. Int.1997,43,103-108.
    [5]Shimoboji T.; Larenas E.; Fowler T.; Kulkarni S.; Hoffman A. S.; Stayton P. S. Photoresponsive Polymer-Enzyme Switches [J]. Proc. Natl. Acad. Sc.i USA 2002,99,16592-16596.
    [6]He J.; Tong X.; Zhao Y. Photoresponsive Nanogels Based on Photocontrollable Cross-links [J]. Macromolecules 2009,42,4845-4852.
    [7]Alonso M.; Reboto V.; Guiscardo L.; San M. A.; Rodriguez J. C. Spiropyran Derivative of An Elastin-Like Bioelastic Polymer:Photoresponsive Molecular Machine to Convert Sunlight into Mechanical Work [J]. Macromolecules 2000,33,9480-9482.
    [8]Moniruzzaman M.; Sabey C. J.; Fernando G. F. Photoresponsive Polymers:An Investigation of Their Photoinduced Temperature Changes during Photoviscosity Measurements [J]. Polymer 2007, 48,255-263.
    [9]Nagasaki T. Photoresponsive Polymeric Materials for Drug Delivery Systems:Double Targeting with Photoresponsive Polymers [J]. Drug Delivery Syst.2008,23,637-643.
    [10]Kumar G. S. Photochemistry of Azobenzene-Containing Polymers [J]. Chem. Rev.1989,89, 1915-1925.
    [11]Wang G.; Tong X.; Zhao Y. Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates [J]. Macromolecules 2004,37, 8911-8917.
    [12]Tong X.; Wang G.; Soldera A.; Zhao Y. How Can Azobenzene Block Copolymer Vesicles Be Dissociated and Reformed by Light? [J].J. Phys. Chem. B 2005,109,20281-20287.
    [13]Liu X.; Jiang M. Optical Switching of Self-Assembly:Micellization and Micelle-Hollow-Sphere Transition of Hydrogen-Bonded Polymers [J]. Angew. Chem. Int. Ed.2006,45,3846-3850.
    [14]Yamada M.; Kondo M.; Mamiya J.; Yu Y.; Kinoshita M.; Barrett C. J.; Ikeda T. Photomobile Polymer Materials:Towards Light-Driven Plastic Motors [J]. Angew. Chem. Int. Ed.2008,47,4986-4988.
    [15]Puntoriero F.; Ceroni P.; Balzani V.; Bergamini G.; Vogtle F. Photoswitchable Dendritic Hosts:A Dendrimer with Peripheral Azobenzene Groups [J]. J. Am. Chem. Soc.2007,129, 10714-10719.
    [16]Jiang J.; Qi B.; Lepage M.; Zhao Y. Polymer Micelles Stabilization on Demand through Reversible Photo-Cross-Linking [J]. Macromolecules 2007,40,790-792.
    [17]Babin J.; Lepage M.; Zhao Y. "Decoration" of Shell Cross-Linked Reverse Polymer Micelles Using ATRP:A New Route to Stimuli-Responsive Nanoparticles [J]. Macromolecules 2008,41,1246-1253.
    [18]lliopoulos K.; Krupka O.; Gindre D.; SalleM. Reversible Two-Photon Optical Data Storage in Coumarin-Based Copolymers [J].J. Am. Chem. Soc.2010,132,14343-14345.
    [19]Jiang J.; Tong X.; Zhao Y. A New Design for Light-Breakable Polymer Micelles [J].J. Am. Chem. Soc.2005,127,8290-8291.
    [20]lonov L.; Diez S. Environment-Friendly Photolithography Using Poly(N-isopropylacrylamide)-Based Thermoresponsive Photoresists [J]. J. Am. Chem. Soc. 2009,131,13315-13319.
    [21]Schmidt G. M. J. Photodimerization in the Solid State [J]. Pure Appl. Chem.1971,27,647-678.
    [22]Rennert J.; Soloway S.; Waltcher I.; Leong B. Competing Reactions of Electronically Excited 1,3-Trimethylene Dicinnamate [J]. J. Am. Chem. Soc.1972,94,7242-7244.
    [23]Egerton P. L.; Hyde E. M.; Trigg J.; Payne A.; Beynon P.; Mijovic M. V.; Reiser A. Photocycloaddition in Liquid Ethyl Cinnamate and in Ethyl Cinnamate Glasses. The Photoreaction as a Probe into the Micromorphology of the Solid [J]. J. Am. Chem. Soc.1981, 103,3859-3863.
    [24]Lewis F. D.; Oxman J. D. Photodimerization of Lewis Acid Complexes of Cinnamate Esters in Solution and the Solid State [J]. J. Am. Chem. Soc.1984,106,466-468.
    [25]Laschewsky A.; Rekai E. D. Photochemical Modification of The Lower Critical Solution Temperature of Cinnamoylated Poly(N-2-hydroxypropylmethacrylamide) in Water [J]. Macromol. Rapid Commun.2000,21,937-940.
    [26]Jiang X.; Luo S.; Armes S. P.; Shi W.; Liu S. UV Irradiation-Induced Shell Cross-Linked Micelles with pH-Responsive Cores Using ABC Triblock Copolymers [J]. Macromolecules 2006,39,5987-5994.
    [27]Yusa S.; Sugahara M.; Endo T.; Morishima Y. Preparation and Characterization of a pH-Responsive Nanogel Based on a Photo-Cross-Linked Micelle Formed From Block Copolymers with Controlled Structure [J]. Langmuir 2009,25,5258-5265.
    [28]Lewis F. D.; Elbert J. E.; Upthagrove A. L.; Hale P. D. Configuration-Dependent Photoisomerization of (E)-Cinnamamides [J]. J. Am. Chem. Soc.1988,110,5191-5192.
    [29]Ichimura K.; Akita Y.; Akiyama H.; Kudo K.; Hayashi Y. Photoreactivity of Polymers with Regioisomeric Cinnamate Side Chains and Their Ability To Regulate Liquid Crystal Alignment [J]. Macromolecules 1997,30,903-911.
    [30]Leroux J.; Roux E.; Garrec D.; Hong K.; Drummond D. C. N-isopropylacrylamide Copolymers for The Preparation of pH-Sensitive Liposomes and Polymeric Micelles [J]. J. Controlled Release 2001,72,71-84.
    [31]Katayose S.; Kataoka K. Water-Soluble Polyion Complex Associates of DNA and Poly(ethylene glycol)-poly(Llysine) Block Copolymer [J]. Bioconjugate Chem.1997,8, 702-707.
    [32]Ding C; Gu J.; Qu X.; Yang Z. Preparation of Multifunctional Drug Carrier for Tumor-Specific Uptake and Enhanced Intracellular Delivery through the Conjugation of Weak Acid Labile Linker [J]. Bioconjugate Chem.2009,20,1163-1170.
    [33]Teasdale I.; Wilfert S.; Nischang I.; Briiggemann O. Multifunctional and Biodegradable Polyphosphazenes for Use as Macromolecular Anti-Cancer Drug Carriers [J]. Polym. Chem. 2011,2,828-834.
    [34]Murthy N.; Thng Y. X.; Schuck S.; Xu M. C.; Frechet J. M. J. A Novel Strategy for Encapsulation and Release of Proteins:Hydrogels and Microgels with Acid-Labile Acetal Cross-Linkers [J]. J. Am. Chem. Soc.2002,124,12398-12399.
    [35]Qiao Z.; Du F.; Zhang R.; Liang D.; Li Z. Biocompatible Thermoresponsive Polymers with Pendent Oligo(ethylene glycol) Chains and Cyclic Ortho Ester Groups [J]. Macromolecules 2010,43,6485-6494.
    [36]Morinaga H.; Morikawa H.; Wang Y.; Sudo A.; Endo T. Amphiphilic Copolymer Having Acid-Labile Acetal in the Side Chain as a Hydrophobe:Controlled Release of Aldehyde by Thermoresponsive Aggregation-Dissociation of Polymer Micelles [J]. Macromolecules 2009,42,2229-2235.
    [37]Chen D.; Li N.; Gu H.; Xia X.; Xu Q.; Ge J.; Lu J.; Li Y. A Novel Degradable Polymeric Carrier for Selective Release and Imaging of Magnetic Nanoparticles [J]. Chem:Commun. 2010,46,6708-6710.
    [38]Kaihara S.; Matsumura S.; Fisher J. P. Synthesis and Properties of Poly[poly(ethylene glycol)-co-cyclic acetal] Based Hydrogels [J]. Macromolecules 2007,40,7625-7632.
    [39]Cordes E. H.; Bull H. G. Mechanism and Catalysis for Hydrolysis of Acetals, Ketals, and Ortho Esters [J]. Chem. Rev.1974,74,581-603.
    [40]Fife T.; Jao L. K. Substituent Effects in Acetal Hydrolysis [J]. J. Org. Chem.1965,30, 1492-1495.
    [41]Gillies E. R.; Frechet J. M. J. A New Approach Towards Acid Sensitive Copolymer Micelles for Drug Delivery [J]. Chem. Commum.2003,1640-1641.
    [42]Gillies E. R.; Jonsson T. B.; Frechet J. M. J. Stimuli-Responsive Supramolecular Assemblies of Linear-Dendritic Copolymers [J]. J. Am. Chem. Soc.2004,126, 11936-11943.
    [43]Gillies E. R.; Frechet J. M. J. pH-Responsive Copolymer Assemblies for Controlled Release of Doxorubicin [J]. Bioconjugate Chem.2005,16,361-368.
    [44]Chen W.; Meng F.; Li F.; Ji S.; Zhong Z. pH-Responsive Biodegradable Micelles Based on Acid-Labile Polycarbonate Hydrophobe:Synthesis and Triggered Drug Release [J]. Biomacromolecules 2009,10,1727-1735.
    [45]Griset A. P.; Walpole J.; Liu R.; Gaffey A.; Colson Y. L.; Grinstaff M. W. Expansile Nanoparticles:Synthesis, Characterization, and in Vivo Efficacy of an Acid-Responsive Polymeric Drug Delivery System [J]. J. Am. Chem. Soc.2009,131,2469-2471.
    [46]Li Y.; Tang Y.; Yang K.; Chen X.; Lu L.; Cai Y. Facile Synthesis and Photo-Tunable Properties of a Photosensitive Polymer Whose Chromophores Bound with pH-Labile Cyclic Acetal Linkages [J]. Macromolecules 2008,41,4597-4606.
    [47]Helmlinger G.; Sckell A.; Dellian M.; Forbes N. S.; Jain R. K. Cancer Biology, Immunology, Cytokines:Acid Production in Glycolysis-impaired Tumors Provides New Insights into Tumor Metabolism [J]. Clin. Cancer Res.2002,8,1284-1291.
    [48]Lu L.; Yang N.; Cai Y. Well-controlled Reversible Addition-Fragmentation Chain Transfer Radical Polymerisation under Ultraviolet Radiation at Ambient Temperature [J]. Chem. Commun.2005,5287-5288.
    [49]Lu L.; Zhang H.; Yang N.; Cai Y. Toward Rapid and Well-controlled Ambient Temperature RAFT Polymerization under UV-Vis Radiation:Effect of Radiation Wave Range [J]. Macromolecules 2006,39,3770-3776.
    [50]Shi Y.; Gao H.; Lu L.; Cai Y. Ultra-fast RAFT Polymerisation of Polyethylene glycol) Acrylate in Aqueous Media under Mild Visible Light Radiation at 25℃ [J]. Chem. Commun.2009,45,1368-1380.
    [51]Deng J.; Shi Y.; Jiang W.; Peng Y.; Lu L.; Cai Y. Facile Synthesis and Thermoresponsive Behaviors of a Well-Defined Pyrrolidone Based Hydrophilic Polymer [J]. Macromolecules 2008,41,3007-3014.
    [52]Cao C.; Yang K.; Wu F.; Wei X.; Lu L.; Cai Y. Thermally Induced Swellability and Acid-Liable Dynamic Properties of Microgels of Copolymers Based on PEGMA and Aldehyde-Functionalized Monomer [J]. Macromolecules 2010,43,9511-9521.
    [53]Luo Q.; Zheng H.; Peng Y.; Gao H.; Lu L.; Cai Y. Facile Synthesis of Well-Defined pH-Liable Schiff-Base-Type Photosensitive Polymers via Visible-Light-Activated Ambient Temperature RAFT Polymerization [J]. J. Polym. Sci. Part A:Polym. Chem.2009,47, 6668-6681.
    [54]Muthukrishnan S.; Pan E. H.; Stenzel M. H.; Barner-Kowollik C.; Davis T. P.; Lewis D.; L. Barner. Ambient Temperature RAFT Polymerization of Acrylic Acid Initiated with Ultraviolet Radiation in Aqueous Solution [J]. Macromolecules 2007,40,2978-2980.
    [55]Millard P.; Barner L.; Stenzel M. H.; Davis T. P.; Barner-Kowollik C., Muller A. H. E. RAFT Polymerization of N-Isopropylacrylamide and Acrylic Acid under γ-Irradiation in Aqueous Media [J]. Macromol. Rapid Commun.2006,27,821-828.
    [56]Benaglia, M.; Rizzardo, E.; Alberti, A.; Guerra, M. Searching for More Effective Agents and Conditions for the RAFT Polymerization of MMA:Influence of Dithioester Substituents, Solvent, and Temperature [J]. Macromolecules 2005,38,3129-3140.
    [57]Hu X.; Chen X.; Cheng H.; Jing X. Cinnamate-Functionalized Poly(ester-carbonate):Synthesis and Its UV Irradiation-Induced Photo-Crosslinking [J]. J. Polym. Sci. Part A:Polym. Chem.2009,47, 161-169.
    [58]Subramanian K.; Krishnasamy V.; Nanjundan S.; Reddy A.V. R. Photosensitive Polymer:Synthesis, Characterization and Properties of a Polymer Having Pendant Photocrosslinkable Group [J]. Eur. Polym. J.2000,36,2343-2350.
    [59]Coqueret X. Photoreactivity of N-iso-propylcinnamamide, a Model for Cinnamoylated Polyvinylamine [J]. J. Photochem. Photobiol. A:Chem.1998,115,143-149.
    [60]Shen S.; Torkelson J. M.; Elbet J. E.; Lewis F. D. Thermally Irreversible Photoresponsive Polymers: Synthesis and Preliminary Characterization of Copolymers Containing Side-Chain trans-Cinnamamide Chromophores [J]. Makromol. Chem.1990,191,2367-2375.
    [61]Lewis F. D.; Zuo X. Torsional Barriers for Planar versus Twisted Singlet Styrenes [J]. J. Am. Chem. Soc.2003,125,2046-2047.
    [62]Lewis F. D.; Zuo X. Activated Decay Pathways for Planar vs Twisted Singlet Phenylalkenes [J]. J. Am. Chem. Soc.2003,125,8806-8813.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.