恶性肿瘤基因工程纳米疫苗的研制及其药代动力学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤严重地威胁着人类的健康,已成为人类主要死因之一。手术、化疗和放疗是治疗恶性肿瘤的三大传统疗法,其治疗效果并非尽如人意。随着免疫学、细胞生物学及分子生物学的飞速发展,肿瘤疫苗的研制与应用已成为治疗肿瘤复发、转移的有力手段。但是,现有肿瘤疫苗由于缺乏有效的抗原提呈,以及MHC限制性、肿瘤异质性、疫苗生物利用度差等问题,在走向临床运用的过程中还面临很多困难。黑色素瘤相关抗原MAGE(Melanoma associate antigen)属于肿瘤/睾丸抗原,其中MAGE1、MAGE3是肿瘤免疫治疗的理想靶分子,在多种肿瘤组织中表达而不在正常组织表达(除睾丸和胎盘),被称为肿瘤特异性共有抗原。热休克蛋白是一种抗原递呈的辅助分子,可以增强肿瘤的免疫原性。在以往本室的研究中已证实MAGE1、MAGE3与HSP70的融合蛋白可以增强动物机体针对MAGE1和/或MAGE3的免疫反应,是一种优良的抗原物质,并构建了“恶性肿瘤基因工程纳米疫苗”。为了进一步提高该疫苗的抗肿瘤免疫活性,提高疫苗的生物利用度,也为了将该疫苗推向临床前研究,逐步进入成果的转化开发,本研究以肿瘤特异性抗原MAGE1、MAGE3与热休克蛋白HSP70融合蛋白等前期研究工作为基础,采用周期短、产率高且稳定可靠的中试发酵工艺,生产了足够后期临床前研究所用的重组蛋白,并对其进行酯化,再以纳米长循环脂质体作为载体,制备恶性肿瘤基因工程纳米脂质体疫苗,而后研究该疫苗对机体细胞免疫和体液免疫的作用,以及该疫苗在小鼠体内的吸收、分布、转化和排泄等过程的速度规律。
     1.鉴定重组工程菌pET28a-MAGE1/HSP70/MAGE3(MHM)/BL21(DE3)并检测其生物学性状的稳定性。结果显示含有该表达载体的工程菌经IPTG诱导后以包涵体形式表达重组蛋白,新生的蛋白条带能够和抗MAGE1单抗和抗MAGE3多抗特异性结合;对重组工程菌进行摇瓶培养,菌体经裂菌、包涵体的洗涤、溶解变性和透析复性,最后经亲和层析柱纯化获得纯度>80%的重组蛋白;该重组工程菌菌株连续传至50代后,进行质粒性状、扫描电镜观察、融合蛋白表达水平、细菌染色及各项生化反应检测,发现该菌株呈现典型的大肠杆菌形态,生物学形状稳定,可作为生产用菌种。
     2.为满足临床前各项实验的需要,将工程菌发酵和蛋白纯化工艺放大至中试规模。采用溶氧反馈-分批补料培养方式,对影响工程菌生长及目的蛋白表达的因素如发酵培养基、活化时间、诱导浓度及时间、pH值及分批补加营养物质等条件进行优化,在20L发酵罐中连续进行了三批工程菌发酵,工程菌生长正常,目的蛋白MHM和M3H的表达量均大于35%,保证了工程菌的稳定性;对实验室摸索的蛋白纯化工艺进行改进,连续纯化了三批M3H融合蛋白,纯度均在90%以上,生产规模达到中试要求;通过对融合蛋白的理化性质、纯度、生物学活性和残留杂质等几方面的控制,确认目的蛋白符合基因工程药物质量标准的要求。
     3.为有效提高脂质体包裹大分子蛋白的包封率,提高肿瘤抗原的生物利用度,运用化学合成方法将肿瘤特异性抗原融合蛋白与硬脂酸交联,使融合蛋白酯化后再进行纳米包裹,成功制备出平均粒径为87.9nm(CV=0.371)的衍生肿瘤抗原纳米脂质体疫苗,其药物包封率达到86%,显著高于单纯肿瘤抗原纳米脂质体(37%),有效增强了抗原的生物利用率。该疫苗于4℃放置6月后无沉淀及分层,具备优良的理化性质。通过IFN-γELISPOT和LDH释放实验检测疫苗激活小鼠特异性细胞免疫反应的情况,发现该疫苗比游离蛋白疫苗能更好的诱导机体产生针对MAGE3的特异性CTL,对表达MAGE3的肿瘤细胞具有更强的杀伤作用。间接ELISA结果显示,该疫苗能够提高机体MAGE3的抗体水平,有效激活小鼠的体液免疫反应。
     4.在小鼠体内对该疫苗进行了药代动力学研究,首先制备~(125)I标记的衍生融合蛋白(~(125)I-SA-MH)和~(125)I标记的衍生融合蛋白脂质体(~(125)I-L-SA-MH),小鼠单次给药后,三氯醋酸(TCA)沉淀法测定血浆、组织、尿和粪的放射性含量,3p97软件拟合药物动力学模型,并计算相应参数。结果显示,~(125)I-SA-MH和~(125)I-L-SA-MH单次静脉注射后在小鼠体内的动力学过程符合两室模型。在相同剂量条件下,~(125)I-L-SA-MH分布相半衰期T1/2α和消除相半衰期T1/2β和AUC均有所增加;~(125)I-SA-MH的总体清除率比~(125)I-L-SA-MH大,证明脂质体包裹能保护药物,有一定的缓释作用,可进一步提高药物的生物利用度。体内分布试验结果表明,~(125)I-SA-MH进入血液后首先迅速聚集到肝脏,而~(125)I-L-SA-MH进入血液后则到脾脏发挥作用。排泄实验结果显示,~(125)I-SA-MH和~(125)I-L-SA-MH主要通过泌尿系统排泄。
     综上所述,我们研制的“恶性肿瘤基因工程纳米疫苗”能有效激发机体的细胞和体液免疫反应,杀伤肿瘤细胞;药代动力学显示该药物具有靶向性、缓释性及较高的生物利用率;同时还建立了稳定的中试发酵和蛋白纯化生产工艺,为进行临床前研究及药物开发奠定了基础。
Neoplasm is a life-threatening disease and the leading cause of death. The traditional therapies such as surgery, radiotherapy and chemotherapy are far from satisfaction. With the progress in immunology, cellular biology and molecular biology, tumor vaccines are regarded as a promising method and play an important role in the prevention and treatment of tumor. However, there are still many difficulties before the tumor vaccines could be used clinically. The lack of tumor specific antigens, the shortage of effective antigen-presenting tools, the limitation of MHC, the polymorph of tumor cells and the low bioavailability are the major factors. The Melanoma Antigen-associated Gene (MAGE) belongs to Cancer/Testis antigen, which was the first reported example of tumor specific antigens expressed in most malignant tumors but not in normal tissue except for testis and placenta, and has been used as the ideal target in tumor immunotherapy. Heat shock protein (HSP) participates in processing and presentation of tumor antigen and plays an important role in promoting anti-tumor immunity. Our recent researches have demonstrated that the fusion protein of MAGE1 and MAGE3 to M. tuberculosis HSP70 can lead to the enhancement of tumor vaccines potency in tumor immunotherapy, and we have prepared nanoemulsion encapsulated tumor antigen protein vaccine. To improve its antitumor immunoactivity and bioavailability and meet the requirement of pre-clinical experiments, based on the MAGE1, MAGE3 and HSP70 fusion protein, a short cycle, high expression and stabilized fermentation process of recombinant fusion protein has been used, which would be the basis for further purification and large-scale production of recombinant fusion protein. To prepare nanoliposome encapsulated tumor specific antigen derivative vaccine, the purified recombinant fusion protein was esterified and then was wrapped up with long circulating nano-liposome. Its immunological mechanisms and the dynamic rules of ADME in mice were studied.
     1. The structure and stability of biological characteristics of recombinant bacterial strain pET28a-MAGE1/HSP70/MAGE3(MHM)/BL21(DE3) were studied. The recombinant fusion protein expressed in inclusion bodies induced with IPTG. The expressed protein, binding with anti-MAGE1 mAb as well as anti- MAGE3 polyclonal Ab specifically, is over 30% of total bacteria protein. Then the engineering bacteria were cultured in shake flask. The inclusion bodies were washed, denatured, renatured and purified by affinity chromatography. The purity of the product was over 80%. The recombinant strain was subcultured for 50 passages, and the expression level of MHM,property of plasmid,as well as morphology,cultivation characters and biochemical reactions of various passages were studied.pET28a-MHM/BL21(DE3) showed a typical morphology of E.coli, and the characteristics of various passages were not significantly different from that of primary strain.The strain is suitable for large-scale production.
     2. To match the requirement of pre-clinical experiments, the production and purification procedure of recombinant fusion protein were scaled up to pilot-scale. The bacteria were cultured in 20L DO feed-back fed-batch culture system. The effects of the composition of the fermentation medium, activation time, induction time, the range of pH and fed-batch carbon sources on the expression level of MHM and cell output were analyzed.We performed a triplicate fermentation. The expression level of recombinant fusion protein MHM and M3H was higher than 35 % of the total protein in E.coli. Three batches M3H protein were purified to homogeneity and the products amounted to 600-700mg/batch. Quality control was established by the tests of characteristics, purity, bioactivity and impurity residue of the fusion protein.
     3. To improve the efficiency of envelopment of protein by liposomes and the bioavailability of tumor antigen, the recombinant fusion protein was cross linked with stearic acid by chemical methods. The purified recombinant fusion protein was esterified and then was wrapped up with nano-liposome. Nanoliposome-encapsulated tumor specific antigen derivative vaccine (L-SA-MH) was prepared and its shape and size were detected by electron microscope and particle sizing system. The mean size of nano-liposomes was 87.9nm(CV=0.371), the encapsulation rate was 86%, and L-SA-MH had the required stability after stored in 4℃for 6 months. The anti-tumor immunity was tested by Enzyme-linked immunospot assay (ELISPOT) and Cytotoxicity assays. ELISPOT and Cytotoxicity assays showed the immunization using L-SA-MH vaccine enhanced the frequency of splenocytes secretingγ-IFN significantly compared with immunization using free protein vaccine alone. Cytotoxicity assays showed the MAGE3 B16 lysis of CTLs from mice immunized with L-SA-MH vaccine was greater than that from mice immunized with free protein vaccine. The fusion protein MH, SA-MH, L-MH and L-SA-MH vaccine could induce higher titer of anti-MAGE3 antibody than control groups. These results showed that nanoliposome had novel characters, and nanoliposome-encapsulated tumor specific antigen derivative vaccine could greatly enhance the potency of MAGE3 protein vaccines, and generate specific anti-tumor immunity against MAGE3 expression tumors.
     4. To clarify the process and properties of ADME and supply the pharmacokinetic parameters for safe use of nano-liposome L-SA-MH in clinics, ~(125)I-SA-MH and ~(125)I-L-SA-MH were prepared. The radioactivity in plasma or tissues or urine or feces was determined following trichloroacetic (TCA) precipitation of after a single intravenous injection. The concentration-time curves of ~(125)I-SA-MH and ~(125)I-L-SA-MH were proved to comply with two-compartment model. At the same amount of dosage, the distribution half life T1/2α, the elimination half life T1/2βand the AUC for plasma were increased after a single i.v. with ~(125)I-L-SA-MH compared i.v. with ~(125)I-SA-MH, and the total body clearance rate of ~(125)I-SA-MH was higher than that of ~(125)I-L-SA-MH. So liposome can protect drug and prolong the half time of SA-MH in serum and tissues, which enhanced drug bioavailability. ~(125)I-L-SA-MH was aggregated in most tissues especially in spleen while 25I-SA-MH in liver. Urinary system excretion test proved it to be the major pathway of ~(125)I-SA-MH and ~(125)I-L-SA-MH elimination.
     In summary, we constructed nanoliposome-encapsulated tumor specific antigen derivative vaccine, and it can induce tumor cell specific cellular and humoral immune reaction effectively. The enhanced immunity resulted in potential therapeutic effects against MAGE3-expressing tumors. The pharmacokinetic data indicate that it is tumor-targeting, delayed released and has higher bioavailability. Moreover, we established a stable production procedure of recombinant fusion protein and set up a standard of quality control. The data from this study grounds the large scale production and pre-clinical experiments of vaccine.
引文
[1] Jakobisiak M, Lasek W, Golab J. Natural mechanisms protecting against cancer. Immunol Lett 2003,90(2–3):103–22.
    [2] Gillespie AM, Coleman RE. The potential of melanoma antigen expression in cancer therapy. Cancer Treat Rev. 1999,25(4):219-227
    [3] Shurin MR, Kirkwood JM, Esche C. Cytokine-based therapy for melanoma: pre-clinical studies. Forum (Genova). 2000,10(3):204-226
    [4] Dallal RM, Lotze MT. Immunotherapy of metastasis. Surg Oncol Clin N Am. 2001, 10(2):433-447
    [5] Zeng G. MHC class II-restricted tumor antigens recognized by CD4+ T cells: new strategies for cancer vaccine design. J Immunother. 2001,24(3):195-204
    [6] Eisenbach L, Bar-Haim E, El-Shami K. Antitumor vaccination using peptide based vaccines. Immunol Lett. 2000,74(1):27-34
    [7] Yamana H, Itoh K. Specific immunotherapy with cancer vaccines. Gan To Kagaku Ryoho. 2000,27(10):1477-1488
    [8] Martinon-Ego C, Berthier R. Dendritic cells: orchestration of the immune response. Ann Biol Clin (Paris). 2000,58(5):541-556
    [9] Rivoltini L, Loftus DJ, Squarcina P, Castelli C, Rini F, Arienti F, Belli F, Marincola FM, Geisler C, Borsatti A, Appella E, Parmiani G.Recognition of melanoma-derived antigens by CTL: possible mechanisms involved in down-regulating anti-tumor T-cell reactivity. Crit Rev Immunol. 1998, 18(1-2):55-63.
    [10] Schlom J, Hodge JW. The diversity of T-cell co-stimulation in the induction of antitumor immunity. Immunol Rev. 1999,170:73-84
    [11] Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002,3(11):991-998.
    [12] Algarra I, Collado A, Garrido F. Altered MHC class I antigens in tumors. Int J Clin. Lab Res. 1997, 27(2):95-102.
    [13] Cabrera T, Angustias Fernandez M, Sierra A, Garrido A, Herruzo A, Escobedo A, Fabra A, Garrido F.High frequency of altered HLA class I phenotypes in invasive breast carcinomas.Hum Immunol. 1996,50(2):127-134
    [14] Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL.Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 1997,18(2):89-95.
    [15] de Vries TJ, Fourkour A, Wobbes T, Verkroost G, Ruiter DJ, van Muijen GN. Heterogeneous expression of immunotherapy candidate proteins gp100, MART-1, and tyosinase inhuman melanoma cell lines and in human melanocytic lesions. Cancer Res. 1997,57(15):3223-3229.
    [16] Davidson WF, Giese T, Fredrickson TN. Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J Exp Med. 1998,187(11):1825-1838.
    [17] Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K.Critical role for tumor necrosis factor-related apoptosis-induced ligand in immune surveillance against tumor development. J Exp Med. 2002,195(2):161-169.
    [18] Yang S ,Darrow TL,Seigler HF.Generation of primary tumor specific cytotoxic T lymphocytes from autologous and human lymphocyte antigen classⅠ matched allogeneic peripheral blood lymphocytes by B7 gene modified melanoma cells.Cancer Res, 1997,57(8):1561-1568.
    [19] Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Scienc. 1990,248 (4961):1349-1356.
    [20] Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI.Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol. 1998,160(3):1224-1232.
    [21] Sharma S, Stolina M, Lin Y, Gardner B, Miller PW, Kronenberg M, Dubinett SM.T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol. 1999,163(9):5020-5028.
    [22] Ristimaki A, Honkanen N, Jankala H, Sipponen P, Harkonen M. Expression of cycleocoxygenase 2 in human gastric carcinoma. Cancer Res. 1997,57(7):1276-1280
    [23] Chen W, Frank ME, Jin W, Wahl SM. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity. 2001,14(6):715-725.
    [24] Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ, Green DR, Kratzke RA. Human lung carcinomas express Fas ligand. Cancer Res. 1997,57(6): 1007-1012.
    [25] Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J.Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science. 1996,274(5291):1363-1366.
    [26] Cappello P, Novelli F, Forni G, Giovarelli M. Death receptor ligands in tumors. J Immunother.2002,25(1):1-15.
    [27] Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L. Tumor-associated B7-H1 promotes T-cells apoptosis: A potential mechanism of immune evasion. Nature Med. 2002,8(8):793-800.
    [28] Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T.Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001,8(182):18-32.
    [29] Chamberlain RS, Kaufman H. Innovations and strategies for the development of anticancer vaccines. Expert Opin Pharmacother. 2000,1(4):603-614
    [30] Rosenberg, SA. (ed.) Principles and Practice of the Biologic Therapy of Cancer (Lippincott, Philadelphia, 2000).
    [31] Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT. A progress report on the treatment of 157 patients with advanced cancer using lymphokine activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med. 1987,316:889-897
    [32] Ringhoffer M, Muller CR, Schenk A, Kirsche H, Schmitt M, Greiner J, Gschwend JE. Simultaneous expression of T-cell activating antigens in renal cell carcinoma: implications for specific immunotherapy. J Urol. 2004,171(6 Pt 1):2456-60.
    [33] Vaishampayan U, Abrams J, Darrah D, Jones V, Mitchell MS. Active immunotherapy of metastatic melanoma with allogeneic melanoma lysates and interferon alpha. Clin Cancer Res. 2002,8(12):3696-701
    [34] Mahnke YD, Speiser D, Luescher IF, Cerottini JC, Romero P. Recent advances in tumour antigen-specific therapy: in vivo veritas. Int J Cancer. 2005,113(2):173-8.
    [35] Boon T, Van Pel A. T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis.Immunogenetics. 1989,29(2):75-9.
    [36] Copier J, Dalgleish A. Overview of tumor cell-based vaccines.Int Rev Immunol. 2006,25(5-6):297-319.
    [37] Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 2005,54(3):187-207
    [38] van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde BJ, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.J Immunol. 2007,178(5):2617-21
    [39] Ohman Forslund K, Nordqvist K. The melanoma antigen genes--any clues to their functions in normal tissues? Exp Cell Res. 2001,265(2):185-194
    [40] Lurquin C, De Smet C, Brasseur F, Muscatelli F, Martelange V, De Plaen E, Brasseur R, Monaco AP, Boon T. Two members of the human MAGE B gene family located in Xp21.3 are expressed in tumors of various histological origins. Genomics. 1997,46(3):397-408
    [41] Itoh K, Hayashi A, Nakao M, Hoshino T, Seki N, Shichijo S.Human tumor rejection antigens MAGE. J Biochem (Tokyo) 1996,119(3):385-390
    [42] Chen H, Cai S, Wang Y, Zhao H, Peng J, Pang X, Zhu J, Cong X, Rui J, Leng X, Du R, Wang Y, Vaughan H, Cebon J, Burgess AW, Chen W. Expression of the MAGE-1 gene in human hepato cellular carcinomas.Chin Med J (Engl). 2000,113(12):1112-1118.
    [43] Kariyama K, Higashi T, Kobayashi Y, Nouso K, Nakatsukasa H, Yamano T, Ishizaki M, Kaneyoshi T, Toshikuni N, Ohnishi T, Fujiwara K, Nakayama E, Terracciano L, Spagnoli GC, Tsuji T. Expression of MAGE-1 and -3 genes and gene products in human hepatocellular carcinoma. Br J Cancer. 1999,81(6):1080-1087.
    [44] Cai S, Zhao H, Leng X, Cheng J, Gong S, Peng J, Cong X, Wang Y, Rui J, Hui Y, Du R, Chen W. Melanoma antigen-3 expression in human hepatocellular carcinoma. Zhonghua Wai Ke Za Zhi. 2000,38(9):693-696
    [45] Tahara K, Mori M, Sadanaga N, Sakamoto Y, Kitano S, Makuuchi M. Expression of the MAGE gene family in human hepatocellular carcinoma.Cancer. 1999,85(6):1234-1240
    [46] Tartaglia J, Bonnet MC, Berinstein N, Barber B, Klein M, Moingeon P. Therapeutic vaccines against melanoma andcolorectal cancer. Vaccine. 2001,19(17-19):2571-5
    [47] Juretic A, Spagnoli GC, Schultz-Thater E, Sarcevic B. Cancer/testis tumour-associated antigens: immunohistochemical detection with monoclonal antibodies. Lancet-Oncol. 2003,4(2): 104-9
    [48] Kobayashi Y, Higashi T, Nouso K, Nakatsukasa H, Ishizaki M, Kaneyoshi T, Toshikuni N, Kariyama K, Nakayama E, Tsuji T. Expression of MAGE, GAGE and BAGE genes in hu man liver diseases: utility as molecular markers for hepatocellular carcinoma. J Hepatol. 2000;32(4):612-617.
    [49] Tahara K, MoriM, Sadanaga N, et al. Expression of the MAGE gene family in human hepatocellular carcinoma. Cancer. 1999 Mar 15;85(6):1234-1240.
    [50] Saha A, Chatterjee SK, Foon KA, Primus FJ, Sreedharan S, Mohanty K, Bhattacharya-Chatterjee M. Murine dendritic cells pulsed with an anti-idiotype antibody induce antigen-specific protective antitumor immunity.Cance Res2003,63(11):2844-54
    [51] Meijer SL, Dols A, Urba WJ, Hu HM, Smith II JW, Vetto J, Wood W, Doran T, Chu Y, Sayaharuban P, Alvord WG, Fox BA. Adoptive cellula rtherapy with tumor vaccine draining lymphnode lymphocytes after vaccination with HLA-B7/beta2-microglobulin gene-modified autologous tumor cells. J Immunother 2002,25(4):359-372.
    [52] Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K, Hodi FS, Jaklitsch M, Mentzer S, Swanson S, Lukanich J, Bueno R, Wain J, Mathisen D, Wright C, Fidias P, Donahue D, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Sugarbaker D, Mihm M, Dranoff G. Vaccination with irradiated autologous tumor cells engineered to secretegranulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 2003,21(4): 624-630.
    [53] Schaed SG, Klimek VM, Panageas KS, Musselli CM, Butterworth L, Hwu WJ, Livingston PO, Williams L, Lewis JJ, Houghton AN, Chapman PB.T-cell responses against tyrosinase 368-376(370D) peptide in HLA*A0201+ melanoma patients: randomized trial comparing incomplete Freund's adjuvant, granulocyte macrophage colony-stimulating factor, and QS-21 as immunological adjuvants. Clin Cancer Res. 2002,8(5):967-972.
    [54] Boon T, Lucas. Rejection antigens of tumors and specific immunotherapy of cancer. Bull Mem Acad R med Belg,1996,51:469-479.
    [55] Marchand M, van Baran N, Weynanta P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, van der Bruggen P, Boon T. Tumor regressions observed in patients with metastatic melanoma treated with an antigen peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer, 1999,80:219-230.
    [56] Schmittel A, Scheibenbogen C, Letsch A, Asemissen AM, Thiel E, Keilholz U. Malignant melanoma--clinical development of peptide-based melanoma vaccines.Front Radiat Ther Oncol. 2006,39:171-80.
    [57] Dakappagari NK, Pyles J, Parihar R, Carson WE, Young DC, Kaumaya PT. A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses. J Immunol 2003,170(8):4242-4253.
    [58] Ye J, Chen GS, Song HP, Li ZS, Huang YY, Qu P, Sun YJ, Zhang XM, Sui YF. Heat shock protein 70 / MAGE-1 tumor vaccine can enhance the potency of MAGE-1-specific cellular immune responses in vivo. Cancer Immunol Immunother. 2004,53(9):825-834.
    [59] Ma JH, Sui YF, Ye J, Huang YY, Li ZS, Chen GS, Qu P, Song HP, Zhang XM. Heat shock protein 70/MAGE-3 fusion protein vaccine can enhance cellular and humoral immune responses to MAGE-3 in vivo. Cancer Immunol Immunother 2005,54(9): 907-914
    [60] Ge W, Sui YF, Wu DC, Sun YJ, Chen GS, Li ZS, Si SY, Hu PZ, Huang Y, Zhang XM. MAGE-1/Heat shock protein 70/MAGE-3 fusion protein vaccine in nanoemulsion enhances cellular and humoral immune responses to MAGE-1 or MAGE-3 in vivo. Cancer Immunol Immunother 2005,6:1-9.
    [61] Miconnet I, Koenig S, Speiser D, Krieg A, Guillaume P, Cerottini JC, Romero P. CpG are efficient adjuvants for specific CTL induction against tumor antigen-derived peptide. J Immunol 2002,168(3):1212-1218.
    [62] Davila E, Celis E. Repeated administration of cytosinphosphorothiolated guanine-containing oligonucleotides together with peptide/protein immunization results in enhanced CTLs responses with antitumor activity. J Immunol 2000,165(1):539-547.
    [63] von Mehren M, Arlen P, Tsang KY, Rogatko A, Meropol N, Cooper HS, Davey M, McLaughlin S, Schlom J, Weiner LM. Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin Cancer Res. 2000,6(6):2219-2228.
    [64] DeWeese TL,van der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R, Haulk T, DeMarzo AM, Piantadosi S, Yu DC, Chen Y, Henderson DR, Carducci MA, Nelson WG, Simons JW. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 2001,61(20):7464 -7472.
    [65] Loudon PT, Blakeley DM, Boursnell ME, Day DA, Duncan IA, Lowden RC, McLean CS, Martin G, Miller JC, Shaw ML. Preclinical safety testing of DISC-hGMCSF to support phase I clinical trials in cancer patients. J Gene Med. 2001,3 (5):458-467
    [66] Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science 1990,247(4949 Pt 1):1465-1468.
    [67] Park JH, Kim CJ, Lee JH, Shin SH, Chung GH, Jang YS. Effective immunotherapy of cancer by DNA vaccination. Mol Cella, 1999,9(4): 384-391
    [68] Sun X, Hodge LM, Jones HP, Tabor L, Simecka JW. Co-expression of granulocyte- macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination.Vaccine. 2002,20(9-10):1466-74.
    [69] Walsh P, Gonzalez R, Dow S, Elmslie R, Potter T, Glode LM, Baron AE, Balmer C, Easterday K, Allen J, Rosse P. A phase I study using direct combination DNA injections for the immunotherapy of metastatic melanoma. Trial. Hum Gene Ther 2000,11(9): 1355-1368
    [70] Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, Georgiev G, Petrov S, Meryman HT. Naked DNA and adenoviral immunizations for immunothe- rapy of prostate cancer: a phase I/II clinical trial. Eur Urol 2000,38(2):208-217.
    [71] Wang R, Doolan DL, Le TP, Hedstrom RC, Coonan KM, Charoenvit Y, Jones TR, Hobart P, Margalith M, Ng J, Weiss WR, Sedegah M, de Taisne C, Norman JA, Hoffman SL.. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science. 1998,282(5388):476-480
    [72] Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest. 2002,109 (12):1519-1526.
    [73] Guo Y, Wu M, Chen H, Chen H, Wang X, Liu G, Li G, Ma J, Sy MS. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science,1994,263 (5146):518-520
    [74] Dallal RM, Mailliard R, Lotze MT. Principles and Practice of the Biologic Therapy of Cancer 3rd edn (ed. Rosenberg, S. A.) 705–721 (Lippincott, Philadelphia, 2000)
    [75] Gong J, Nikrui N, Chen D, Koido S, Wu Z, Tanaka Y, Cannistra S, Avigan D, Kufe D. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol. 2000, 3:1705–1711
    [76] Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Garcia-Prats MD, DeLeo AB, Lotze MT. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. STEM CELLS. 1997,15:94-103
    [77] Timmerman JM, Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med. 1999,50:507-529
    [78] Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998,4:328-332
    [79] Gong J, Chen D, Kashiwaba M, Li Y, Chen L, Takeuchi H, Qu H, Rowse GJ, Gendler SJ, Kufe D.Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc Natl Acad Sci USA. 1998,95:6279-6283
    [80] Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 1996,184:465-472
    [81] Butterfield LH, Jilani SM, Chakraborty NG, Bui LA, Ribas A, Dissette VB, Lau R, Gamradt SC, Glaspy JA, McBride WH, Mukherji B, Economou JS. Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. J Immunol. 1998,161:5607-5613
    [82] Ribas A, Butterfield LH, McBride WH, Dissette VB, Koh A, Vollmer CM, Hu B, Chen AY, Glaspy JA, Economou JS.Characterization of antitumor immunization to a defined melanoma antigen using genetically engineered murine dendritic cells. Cancer Gene Ther. 1999,6:523-536
    [83] Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 1997, 158:3270-3276
    [84] Chaput N, Schartz NE, Andre F, Taieb J, Novault S, Bonnaventure P, Aubert N, Bernard J, Lemonnier F, Merad M, Adema G, Adams M, Ferrantini M, Carpentier AF, Escudier B, Tursz T, Angevin E, Zitvogel L. Exosomes as potent cell free peptide based vaccine Exosomes in CpG adjuvants efficiently prime na?ve Tc1 lymphocytes leading to tumor rejection. J Immunol 2004,172:2137-2146.
    [85] Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002,196 (12):1627-1638.
    [86] Feuerstein B, Berger TG, Maczek C, Roder C, Schreiner D, Hirsch U, Haendle I, Leisgang W, Glaser A, Kuss O, Diepgen TL, Schuler G, Schuler-Thurner B. A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods. 2000,245 (1-2):15-29.
    [87] Sai T, Milling SW, Mintz B. Freezing and thawing of bone marrow-derived murine dendritic cells with subsequent retention of immunophenotype and of antigen processing and presentation characteristics. J Immunol. Methods. 2002,264 (1-2):153-162.
    [88] Timmerman JM, Singh G, Hermanson G, Hobart P, Czerwinski DK, Taidi B, Rajapaksa R, Caspar CB, Van Beckhoven A, Levy R. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B2 cell lymphoma. Cancer Res 2002,62(20):5845-5852.
    [89] Lou D, Kohler H. Enhanced molecular mimicry of CEA using photo affinity cross linked C3d peptide. Nat Biotecnol 1998,6:458-462.
    [90] Saha A, Chatterjee SK, Foon KA, Primus FJ, Sreedharan S, Mohanty K, Bhattacharya-Chatterjee M. Murine dendritic cells pulsed with an anti-idiotype antibody induce antigen-specific protective antitumo immunity. Cancer Res 2003,63(11): 2844-2854.
    [91] Jung G, Brandl M, Eisner W, Fraunberger P, Reifenberger G, Schlegel U, Wiestler OD, Reulen HJ, Wilmanns W. Local immunotherapy of glioma patients with a combination of bispecific antibody fragments and resting autologous lymphocytes: Evidence for in situ T cell activation and therapeutic efficacy. Int J Cancer 2001,91: 225-230.
    [92] Nanni P, Rossi I, De Giovanni C, Landuzzi L, Nicoletti G, Stoppacciaro A, Parenza M, Colombo MP, Lollini PL. Interleukin 12 gene therapy of MHC-negative murine melanoma metastases.Cancer Res1998,58:1225-1230.
    [93] Bramson JL, Hitt M, Addison CL, Muller WJ, Gauldie J, Graham FL. Direct intratumor injection of an adenovirus expressing Interleukin-12 induce regression and long-lasting immunity that is associated with high localized expression of Interleukin-12. Hum Gene Ther 1996,7:1995-2002.
    [94] Izquierdo M, Cortes M, de Felipe P, Martin V, Diez-Guerra J, Talavera A, Perez-Higueras A. Long-term rat survival after malignant brain tumor regression by retroviral genetherapy.Gene Ther 1995,2(1):66-69.
    [95] Asada H, Kishida T, Hirai H, Satoh E, Ohashi S, Takeuchi M, Kubo T, Kita M, Iwakura Y, Imanishi J, Mazda O. Significant antitumor effects obtained by autologous tumor cellvaccine engineered to secrete interleukin(IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 2002,5(5):609-616.
    [96] Yei S, Bartholomew RM, Pezzoli P, Gutierrez A, Gouveia E, Bassett D, Soo Hoo W, Carlo DJ. Novel membrane-bound GM-CSF vaccines for the treatment of cancer: generation and evaluation of mbGM-CSF mouse B16F10 melanoma cell vaccine. Gene Ther 2002,9(19):1302-1311.
    [97] Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens.Science. 1994,264(5161):961-5.
    [98] Meijer SL, Dols A, Urba WJ, Hu HM, Smith II JW, Vetto J, Wood W, Doran T, Chu Y, Sayaharuban P, Alvord WG, Fox BA. Adoptive cellula rtherapy with tumor vaccine draining lymphnode lymphocytes after vaccination with HLA-B7/beta2-microglobulin gene-modified autologous tumor cells. J Immunother 2002,25(4):359-372.
    [99] Tahara H, Lotze MT. IL-12 gene therapy using direct njection tumors with genetically engineered autologous fibroblasts. Hu Gene Ther 1995,6:1607-1624.
    [100] Antonias J, Seigne J, Diaz J, Muro-Cacho C, Extermann M, Farmelo MJ, Friberg M, Alsarraj M, Mahany JJ, Pow-Sang J, Cantor A, Janssen W. Phase I trial of a B7-1(CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J Urol, 2002,167(5): 1995-2000
    [101] Jang YJ, Nam SY, Kim MS, Seong RH, Park YS, Chung YH, Chung HY. Simultaneous expression of allogenic class MHC and B7.1(CD80) molecules in A20 B-lymphoma cell line enhances tumor immunogenicity.Mol Cells 2002,13(1):130-136
    [102] Walker B Jr, Mouton CP. Nanotechnology and nanomedicine: a primer.J Natl Med Assoc. 2006,98(12):1985-8.
    [103] Medvedeva NV, Ipatova OM, Ivanov IuD, Drozhzhin AI, Archakov AI. Nanobiotechnology and nanomedicine. Biomed Khim. 2006,52(6):529-46
    [104] 赵修建,张联盟译. 超微颗粒导论. 武汉:武汉工业大学出版社,1991
    [105] Malik MA, O Brien P, Revaprasadu N. A novel route for the preparation of CuSe and CuINSe2 nanoparticles. Adv Mate. 1999,11(17):1441-1444
    [106] Gao L,Zhang QH. Effects of amorphous contents and particles size on the photocatalytic properties of TiO2 nanoparticles. Scripta Mater.2001,44:1195-1198
    [107] 王疆英.NiMn2O4纳米粉体的制备.材料研究学报. 1997,10(11):523-526
    [108] Iwanaga H, Fujii M,Takeuch S. Inter-leg angles in terapod ZnO particles.Journal of Crystal Growth. 1998,183:190-195
    [109] Olivier JC. Drug Transport to Brain with Targeted Nanoparticles. Neurorx. 2005,2(1):108-119
    [110] Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine-coated nanoparticles. J Control Release. 2003, 93(3): 271-82.
    [111] Foster KA, Yazdanian M, Audus KL. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol. 2001,53(1):57-66.
    [112] Benns JM, Kim SW. Tailoring new gene delivery designs for specific targets. J Drug Target. 2000,8(1):1-12.
    [113] Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol. 2004,31(6 Suppl 13):196-205.
    [114] Bonadio J, Smiley E, Patil P, Goldstein S. Localized, direct plasmid gene delivery invivo: prolonged therapy results in reproducible tissue regeneration. Nat Med. 1999,5(7):753-9.
    [115] J.Olivier,R. Huertas, H.Lee. Synthesis of pegylated immunonanoparticles. Pharm Res. 2002,19(8):1137-43.
    [116] 张志荣,龚艳,黄援等. 抗人乳腺癌单克隆抗体偶联米托蒽醌白蛋白纳米球的初步研究. 药学学报,2001,36(2):151-154
    [117] S.M. Moghimi, A.C. Hunter, J.C. Murray. Long-circulating and target specific nanoparticles: theory to practice. Pharmacol. Rev. 2001,53(2):283-318
    [118] Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol. 2005,27(2):127-44.
    [119] 崔正刚 殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,2001:75
    [120] Sakaeda T, Hirano K.O/W lipid emulsion for parenteral drug delivery.Ⅱ .Effect of composition on pharmacokinetics of incorporated drug. J Drug Target, 1995,3(3):221 -30
    [121] L.M.Prince.Microemulsion,Theory and practice.New York:Academic Press, 1997,5
    [122] Shukla A,Janich M,Jahn K,Neubert RH.Microemulsions for dermal drug delivery studied by dynamic light scattering:ettect of interparticle interactions in oil-in-water microemulsions.J Pharm Sci,2003,92(4):730-8
    [123] Holt Trotta M, Pattarino F, Ignoni T.Stability of drug-carrier emulsions containing phosphatidylcholine mixtures.Eur J Pharm Biopharm. 2002,53(3):203-8
    [124] 钟静芬 欧阳辉主编.表面活性剂在药剂学中的应用[M].北京:人民卫生出版社,1996:50-51
    [125] 叶海英 张忠义.常见载药微乳液制剂及其特性.第一军医大学学报,2001,21(12):82-83
    [126] Yang JH,Kim YI,Kim KM.Preparation and evalution of aceclofenac microemulsion for transdermal delivery system. Arch Pharm Res, 2002, 25 (4) :534-40
    [127] van Dijkhuizen-Radersma R, Metairie S, Roosma JR, de Groot K, Bezemer JM. Controlled release of proteins from degradable poly(ether-ester) multiblock copolymers. J Control Release. 2005,101(1-3):175-86
    [128] Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst. 2004,21(5):387-422.
    [129] 张灵芝. 脂质体制备及其在生物医学中的应用[M].北京:北京医科大学 中国协和医科大学联合出版社,1998:1
    [130] Xiang TX, Anderson BD. Liposomal drug transport: a molecular perspective from molecular dynamics simulations in lipid bilayers.Adv Drug Deliv Rev. 2006, 58(12-13):1357-78.
    [131] Rahman, Y.E., Cerny, E.A., Tollaksen SL, Wright BJ, Nance SL, Thomson JF. Liposome-Encapsulated Actinomycin D: Potential in Cancer Chemotherapy. Proc Soc Exp Biol Med, 1974,146(4):1173-1176.
    [132] 陆彬.药物新剂型与新技术[M].人民卫生出版社.1998(4):119
    [133] Garheng Kong, Gopal Anyarambhatla, William P. Efficacy of Liposomes and Hyperthermia in a Human Tumor Xenograft Model: Importance of Triggered Drug Release. Cancer Research 2000,60(24):6950-7
    [134] Bibby DC, Talmadge JE, Dalal MK, Kurz SG, Chytil KM, Barry SE, Shand DG, Steiert M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int J Pharm. 2005,293(1-2):281-90
    [135] Nobs L, Buchegger F, Gurny R, Allemann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci. 2004 ,93(8):1980-92
    [136] Morilla MJ, Montanari J, Frank F, Malchiodi E, Corral R, Petray P, Romero EL. Etanidazole in pH-sensitive liposomes: Design, characterization and in vitro/in vivo anti-Trypanosoma cruzi activity. J Control Release. 2005,103(3):599-607.
    [137] Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002,54(5):631-51
    [138] Voinea M, Simionescu M. Designing of 'intelligent' liposomes for efficient delivery of drugs. J Cell Mol Med. 2002,6(4):465-74
    [139] Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems.Methods Find Exp Clin Pharmacol. 2005,27(2):127-44
    [140] Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems.Pharmazie. 2006,61(5):375-86.
    [141] 张阳德.纳米药物学[M].北京:化学工业出版社.2006,83
    [142] Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery.Gene Ther. 2006,13(4):283-7
    [143] Vijayanathan V,Thomas T,Thomas TJ. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry. 2002,41(48):14085-94
    [144] Ramachandran S, Quist AP, Kumar S, Lal R. Recent advances in delivery systems for anti-HIV1 therapy.J Drug Target. 2007,15(1):21-36
    [145] Gulati M, Grover M, Singh S. Stability-indicating analysis of isoxazolyl penicillins using dual wavelength high-performance liquid chromatography.J Chromatogr B Biomed Sci Appl. 1998,708(1-2):153-9.
    [146] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004,56(11):1649-59
    [147] Brannon-Peppas L, Ghosn B, Roy K, Cornetta K. Encapsulation of nucleic acids and opportunities for cancer treatment.Pharm Res. 2007,24(4):618-27
    [148] Chen JH, Wang L, Ling R, Li Y, Wang Z, Yao Q, Ma Z. Body distribution of nanoparticle-containing adriamycin injected into the hepatic artery of hepatoma-bearing rats. Dig Dis Sci. 2004,49(7-8):1170-3.
    [149] Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacr ylate nanoparticles. Biomaterials. 2000,21(1):1-7
    [150] Zerouga M, Stillwell W, Jenski LJ. Synthesis of a novel phosphatidylcholine conjugated to docosahexaenoic acid and methotrexate that inhibits cell proliferation.Anticancer Drugs. 2002,13(3):301-11
    [151] Socinski M. Update on nanoparticle albumin-bound paclitaxel.Clin Adv Hematol Oncol. 2006,4(10):745-6
    [152] Raucher D, Chilkoti A. Enhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition.Cancer Res. 2001,61(19):7163-70.
    [153] Bourdon O, Mosqueira V, Legrand P, Blais J. A comparative study of the cellular uptake, localization and phototoxicity of meta-tetra(hydroxyphenyl) chlorin encapsulated in surface-modified submicronic oil/water carriers in HT29 tumor cells.J Photochem Photobiol B. 2000,55(2-3):164-71
    [154] Cuvier c,treupel l,biochem pharm1992,44(3):509
    [155] Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors.J Immunol. 2004,173(5):3148-54
    [156] Raghuvanshi RJ, Mistra A, Talwar GP, Levy RJ, Labhasetwar V. Enhanced immune response with a combination of alum and biodegradable nanoparticles containing tetanus toxoid. J Microencapsul. 2001,18(6):723-32
    [157] Frey A, Mantis N, Kozlowski PA, Quayle AJ, Bajardi A, Perdomo JJ, Robey FA, Neutra MR. Immunization of mice with peptomers covalently coupled to aluminum oxide nanoparticles. Vaccine. 1999,17(23-24):3007-19
    [158] Michel C, Aprahamian M, Defontaine L, Couvreur P, Damge C. The effect of site of administration in the gastrointestinal tract on the absorption of insulin from nanocapsules in diabetic rats.J Pharm Pharmacol. 1991,43(1):1-5
    [159] Gautier JC,Grangier JL,Barbier A.Biodegradable nanoparticles for subcut aneous administration of growth hormone releasing factor(hGRF).J Control Release. 1992,20:67-72
    [160] 孙礼林, 孙玉, 沈良骏.含萘普生高分子药物及纳米微球的制备和表征.安徽师范大学学报(自然科学版).2005,28(2):185-188
    [161] 马国,邓盛齐. 纳米技术在药学中的研究应用进展. 国外医药.抗生素分册.2004,25(5):233-237
    [162] Kim YI, Fluckiger L, Hoffman M, Lartaud-Idjouadiene I, Atkinson J, Maincent P. The antihypertensive effect of orally administered nifedipine-loaded nanoparticles in spontaneously hypertensive rats.Br J Pharmacol. 1997,120(3):399-404.
    [163] Gautier S, Grudzielski N, Goffinet G, de Hassonville SH, Delattre L, Jerjme R. Preparation of poly(D,L-lactide) nanoparticles assisted by amphiphilic poly(methyl methacrylate-co-methacrylic acid) copolymers. J Biomater Sci Polym Ed. 2001, 12(4):429-50
    [164] Kawakami S, Yamashita F, Hashida M. Disposition characteristics of emulsions and incorporated drugs after systemic or local injection. Adv Drug Deliv Rev. 2000,45(1):77-88
    [165] Sonaje K, Italia JL, Sharma G, Bhardwaj V, Tikoo K, Kumar MN. Development of Biodegradable Nanoparticles for Oral Delivery of Ellagic Acid and Evaluation of Their Antioxidant Efficacy Against Cyclosporine A-Induced Nephrotoxicity in Rats.Pharm Res. 2007 Mar 22; [Epub ahead of print]
    [166] Ugazio E, Cavalli R, Gasco MR. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN) Int J Pharm. 2002,241(2):341-4
    [167] Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier.J Control Release. 2001,74(1-3):317-23.
    [168] Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats.J Control Release. 2007 Feb 12;117(2):163-70
    [169] Janl PU, McCarthy, Florence AT. Nanosphere and microsphere uptake via Peyer’s patches: observation of the rate of uptake in the rat after a single oral dose. Int J Pharm. 1992,86(3):239-246
    [170] Koping-Hoggard M, Sanchez A, Alonso MJ. Nanoparticles as carriers for nasal vaccine delivery.Expert Rev Vaccines. 2005 ,;4(2):185-96
    [171] Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines.Vaccine. 2001,19(17-19):2666-72
    [172] Artmann C, Roding J, Ghyczy M, Pratzel HG. Liposomes from soya phospholipids as percutaneous drug carriers. 1st communication: qualitative in vivo investigations with antibody-loaded liposomes.Arzneimittelforschung. 1990,40(12):1363-5.
    [173] Mainardes RM, Silva LP. Drug delivery systems: past, present, and future. Curr DrugTargets. 2004,5(5):449-55
    [174] Pison U, Welte T, Giersig M, Groneberg DA. Nanomedicine for respiratory diseases. Eur J Pharmacol. 2006,533(1-3):341-50.
    [175] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001 Jun;53(2):283-318.
    [176] 张华,齐宪荣,张强.柔红霉素长循环脂质体的药剂学性质及大鼠体内药代动力学研究.药学学报. 2002,37(4):299-303
    [177] Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery.Gene Ther. 2006,13(4):283-7.
    [178] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice.Pharmacol Rev. 2001,53(2):283-318
    [179] Kohori F, Yokoyama M, Sakai K, Okano T. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J Control Release. 2002,78(1-3):155-63.
    [180] 张阳德,龚连生.磁性阿霉素白蛋白纳米粒的研制. 中国现代医学杂志. 2001,11(3): 2-3
    [181] 龚连生,张阳德.磁性阿霉素白蛋白纳米粒在移植性肝癌模型中的磁靶向性.中国现代医学杂志. 2003,9(9):543-547
    [182] Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size.Cancer Res. 2000 ,60(16):4440-5.
    [183] Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tum or-targeted therapy.Cancer Gene Ther. 2001,8(9):649-54
    [184] Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis KK, Scott MJ, Chinen LK, Fuhrhop RW, Scherrer DE, Wickline SA. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis.Circulation. 2002,106(22):2842-7.
    [185] Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F. Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles.Int J Pharm. 2007,331(2):190-6.
    [186] Na K, Bum Lee T, Park KH, Shin EK, Lee YB, Choi HK. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system.Eur J Pharm Sci. 2003,18(2):165-73
    [187] Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles.J Biosci Bioeng. 2005,100(1):1-11
    [188] Chen Y, Dalwadi G, Benson HA. Drug delivery across the blood-brain barrier. Curr Drug Deliv. 2004,1(4):361-76
    [189] Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995,674(1):171-4.
    [190] 钟惟德.医用硅纳米粒跨越血前列腺屏障的实验研究.中华泌尿外科杂志. 2004,5(25):340-343
    [191] Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release.J Control Release. 2006,115(1):46-56
    [192] Avgoustakis K. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv. 2004,1(4):321-33.
    [193] 王华芳.聚乳酸纳米颗粒载体材料的研究现状. 中华医学杂志.2002,26(4): 221-222
    [194] Fernandez-Urrusuno R, Fattal E, Feger J, Couvreur P, Therond P. Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles. Biomaterials. 1997,18(6):511-7.
    [195] Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P. Degradation of poly (isobutyl cyanoacrylate) nanoparticles.Biomaterials. 1984,5(2): 65-8.
    [196] Cameron JL, Woodward SC, Pulaski EJ, Sleeman HK, Beandes G, Kulkarni RK, Leonard F. The degradation of cyanoacrylate tissue adhesive.I.Surgery. 1965,58: 424-30.
    [197] Son SJ, Bai X, Nan A, Ghandehari H, Lee SB. Template synthesis of multifunctional nanotubes for controlled release.J Control Release. 2006,114(2):143-52
    [198] Campbell RB. Tumor physiology and delivery of nanopharmaceuticals.Anticancer Agents Med Chem. 2006,6(6):503-12
    [199] Rahman A, Carmichael D, Harris M, Roh JK. Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes.Cancer Res. 1986,46(5):2295-9
    [200] Kunii R, Onishi H, Machida Y. Preparation and antitumor characteristics of PLA/(PEG-PPG-PEG) nanoparticles loaded with camptothecin.Eur J Pharm Biopharm. 2007 Jan 28; [Epub ahead of print]
    [201] Lecaroz MC, Blanco-Prieto MJ, Campanero MA, Salman H, Gamazo C. Poly(D,L-Lactide-Coglycolide) Particles Containing Gentamicin: Pharmacokinetics and Pharmacodynamics in Brucella melitensis- Infected Mice.Antimicrob Agents Chemother. 2007,51(4):1185-90..
    [202] Leroux JC,Cozens R, Roesel JL, Galli B, Kubel F, Doelker E, Gurny R. Pharmacokinetics of a novel HIV-1 protease inhibitor incorporated into biodegradable or enteric nanoparticles following intravenous and oral administration to mice.J Pharm Sci. 1995,84(12):1387-1391
    [203] Kim SY, Lee YM, Shin HJ, Kang JS. Indomethacin-loaded methoxy poly(ethylene glycol)/ poly(epsilon-caprolactone) diblock copolymeric nanosphere: pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats.Biomaterials. 2001,22(14) :2049-56
    [204] Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res, 2000, 20 (4) :2665-2676.
    [205] Korst RJ, Crystal RG. Active, specific immunotherapy for lung cancer: hurdles and strategies using genetic modification.Ann Thorac Surg. 2003,76(4):1319-26
    [206] Velders MP, Markiewicz MA, Eiben GL, Kast WM. CD4+ T cell matters in tumor immunity.Int Rev Immunol. 2003,22(2):113-40.
    [207] Castelli C, Rivoltini L, Rini F. Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother. 2004,53(3):227-33.
    [208] Gordon MS. Novel antiangiogenic therapies for renal cell cancer. Clin Cancer Res. 2004,10(18 Pt 2):6377S-81S.
    [209] He X, Tsang TC, Luo P, Zhang T, Harris DT. Enhanced tumor immunogenicity through coupling cytokine expression with antigen presentation. Cancer Gene Ther. 2003 Sep;10(9):669-77.
    [210] Nagai E, Ogawa T, Kielian T, Ikubo A, Suzuki T. Irradiated tumor cells adenovirallyengineered to secrete granulocyte/macrophage-colony-stimulating factor establish antitumor immunity and eliminate pre-existing tumors in syngeneic mice. Cancer Immunol Immunother. 1998 ,47(2):72-80.
    [211] Lenarczyk A, Le TT, Drane D, Malliaros J, Pearse M, Hamilton R, Cox J, Luft T, Gardner J, Suhrbier A. ISCOM based vaccines for cancer immunotherapy. Vaccine. 2004,22(8):963-74.
    [212] Ostrand-Rosenberg S, Sinha P, Danna EA, Antagonists of tumor-specific immunity: tumor-induced immune suppression and host genes that co-opt the anti-tumor immune response. Breast Dis. 2004;20(2):127-35.
    [213] Suzue K, Young RA.Adjuvant-free HSP70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J Immunol,1996,156 (2): 873-879.
    [214] Suzue K,Zhou X,Eisen HN, Young RA.Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway.Proc Natl Acad Sci USA, 1997,94(24):13146-13151.
    [215] Wei G, Tang JG. Formation of inclusion bodies may be the key factor for the stability of expressed products in E. coli. Biochem Mol Biol Int. 1995, 37(5):895-901
    [216] Jin H, Uddin MS, Huang YL, Teo WK. Purification and renaturation of recombinant human lymphotoxin (tumour necrosis factor beta) expressed in Escherichia coli as inclusion bodies. J Chem Technol Biotechnol. 1994, 59(1):67-72.
    [217] Bailey SM, Blum PH, Meagher MM. Improved homogenization of recombinant Escherichia coli following pretreatment with guanidine hydrochloride. Biotechnol Prog. 1995, 11(5):533-539.
    [218] Fischer BE. Renaturation of recombinant proteins produced as inclusion bodies. Biotechnol Adv. 1994, 12(1):89-101.
    [219] Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem. 1992, 205(2):263-270
    [220] Werner M H, Clore G M. Refolding proteins by gel filtration chromatography. FEBS Lett. 1994, 345(2-3):125-130
    [221] Suttnar J, Dyr JE, Hamsikova E, Novak J, Vonka V. Procedure for refolding and purification of recombinant proteins from Escherichia coli inclusion bodies using a strong anion exchanger. J Chromatogr B Biomed Appl. 1994 , 656(1):123-126
    [222] Clark EDB. Refolding of recombinant proteins. Curr Opin Biotechnol. 1998,9(2):157-163
    [223] Imanaka T, Tsunekawa H, Aiba S. Phenotypic stability of trp operon recombinant plasmids in Escherichia coli. J Gen Microbiol. 1980,118:253-261.
    [224] Listner K, Bentley L, Okonkowski J, Kistler C, Wnek R, Caparoni A, Junker B, Robinson D, Salmon P, Chartrain M. Development of a highly productive and scalable plasmid DNA production platform.Biotechnol Prog. 2006,22(5):1335-45
    [225] Listner K, Bentley LK, Chartrain M. A simple method for the production of plasmid DNA in bioreactors.Methods Mol Med. 2006,127:295-309.
    [226] Jiang H, Shang L, Yoon SH, Lee SY, Yu Z. Optimal production of poly-gamma-glutamic acid by metabolically engineered Escherichia coli. Biotechnol Lett. 2006,28(16):1241-6.
    [227] 吴乃虎主编.基因工程原理[M].北京:科学出版社,1998,229-239.
    [228] Makides SC. Strategies for the achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 1996,60(3):512-538
    [229] Shiloach J, Fass R. Growing E. coli to high cell density--a historical perspective on method development. Biotechnol Adv. 2005,23(5):345-57.
    [230] Khalilzadeh R, Shojaosadati SA, Bahrami A, Maghsoudi N. Over-expression of recombinant human interferon-gamma in high cell density fermentation of Escherichia coli. Biotechnol Lett. 2003, 25(23):1989-1992
    [231] Tabandeh F, Shojaosadati SA, Zomorodipour A, Khodabandeh M, Sanati MH, Yakhchali B. Heat-induced production of human growth hormone by high cell density cultivation of recombinant Escherichia coli. Biotechnol Lett. 2004, 26(3):245-249
    [232] Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol. 2005,67(3):289-98.
    [233] Ishikawa H, Kawaguchi J, Yao Y, , , , . Large-scale preparation of recombinant human calcitonin from a multimeric fusion protein produced in Escherichia coli Biosci Bioeng. 1999,87(3):296- 301. Tamaoki H Ono T Fukui F Yoshikawa H
    [234] Sanden AM, Prytz I, Tubulekas I, Forberg C, Le H, Hektor A, Neubauer P, Pragai Z, Harwood C, Ward A, Picon A, De Mattos JT, Postma P, Farewell A, Nystrom T, Reeh S, Pedersen S, Larsson G. Limiting factors in Escherichia coli fed-batch production of recombinant proteins.Biotechnol Bioeng. 2003 ,81(2):158-66.
    [235] Mu X, Zhong Z. Preparation and properties of poly(vinyl alcohol)-stabilized liposomes. Int J Pharm. 2006,318(1-2):55-61
    [236] Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes.FEBS Lett. 1990 Jul 30;268(1):235-7.
    [237] Kshirsagar NA, Pandya SK, Kirodian GB, Sanath S. Liposomal drug delivery system from laboratory to clinic.J Postgrad Med. 2005,51 Suppl 1:S5-15.
    [238] Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006,58(14):1532-55.
    [239] Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment.Curr Drug Deliv. 2005,2(4):369-81
    [240] Pajean M,Herbage D.Effect of collagen on liposome permeability.Int J Pharm. 1993,91:209-215
    [241] Blume G, Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo.Biochim Biophys Acta. 1993 Mar 14;1146(2):157-68.
    [242] Kocher T, Schultz-Thater E, Gudat F, Schaefer C, Casorati G, Juretic A, Willimann T, Harder F, Heberer M, Spagnoli GC. Identification and intracellular location of MAGE-3 gene product.Cancer Res, 1995,55(11):2236-2239.
    [243] Suzue K, Young RA.Adjuvant-free HSP70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J Immunol,1996,156 (2): 873-879.
    [244] Suzue K,Zhou X,Eisen HN.Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway.Proc Natl Acad Sci USA, 1997,94(24):13146-13151.
    [245] Basu S, Srivastava PK.Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones, 2000 ,5(5):443-451.
    [246] Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002,16(10):1217-26.
    [247] Waeckerle-Men Y, Groettrup M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev. 2005 Jan 10;57(3):475-82
    [248] Shen Z, Reznikoff G, Dranoff G, Rock KL. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol. 1997 Mar 15;158(6):2723-30.
    [249] Kersemans V, Kersemans K, Cornelissen B, Staelens L, de Spiegeleer B, Mertens J, Slegers G. Optimization by experimental design of precursor synthesis and radiolabeling of 2-iodo-L-phenylalanine, a novel amino acid for tumor imaging.Cancer Biother Radiopharm. 2006,21(3):235-42
    [250] Kaneo Y, Hashihama S, Kakinoki A, Tanaka T, Nakano T, Ikeda Y. Pharmacokinetics and biodisposition of poly(vinyl alcohol) in rats and mice.Drug Metab Pharmacokinet. 2005,20(6):435-42.
    [251] Giblin MF, Gali H, Sieckman GL, Owen NK, Hoffman TJ, Volkert WA, Forte LR. In vitro and in vivo evaluation of 111In-labeled E. coli heat-stable enterotoxin analogs for specific targeting of human breast cancers.Breast Cancer Res Treat. 2006,98(1):7-15.
    [252] Hamel FG, Fawcett J, Tsui BT, Bennett RG, Duckworth WC. Effect of nelfinavir on insulin metabolism, proteasome activity and protein degradation in HepG2 cells.Diabetes Obes Metab. 2006,8(6):661-8.
    [253] Jansen JK, Thompson W, Kuffler DP The formation and maintenance of synaptic connections as illustrated by studies of the neuromuscular junction.Prog Brain Res. 1978,48:3-19
    [254] Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus.Clin Pharmacokinet. 2004,43(2):83-95.
    [255] Bebianno MJ, Geret F, Hoarau P, Serafim MA, Coelho MR, Gnassia-Barelli M, Romeo M. Biomarkers in Ruditapes decussatus: a potential bioindicator species.Biomarkers. 2004,9(4-5):305-30
    [256] Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment--a review.Environ Pollut. 2001,114(3):471-92
    [257] Jones S, Howl J. Biological applications of the receptor mimetic peptide mastoparan.Curr Protein Pept Sci. 2006,7(6):501-8.
    [258] Hu Z, Niu H, Yang X, Li H, Sang G, Li B. Recombinant human parathyroid hormone 1-34: pharmacokinetics, tissue distribution and excretion in rats.Int J Pharm. 2006,317(2):144-54.
    [259] Kameyama S, Okada R, Kikuchi T, Omura T, Nakase I, Takeuchi T, Sugiura Y, Futaki S. Distribution of immunoglobulin Fab fragment conjugated with HIV-1 REV peptide following intravenous administration in rats.Mol Pharm. 2006,3(2):174-80
    [260] Foster KA, Yazdanian M, Audus KL. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol. 2001,53(1):57-66.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.