脉冲电磁场对糖尿病大鼠急性下肢缺血血管再生作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖尿病导致的下肢缺血是缺血性疾病中的常见症状,具有发生率高、致残率高及病死率高等特点,严重的影响人们的生活质量,成为社会经济发展的沉重负担。对于缺血性疾病,治疗性血管性新生是当前的研究热点。治疗性血管新生主要包括包括干细胞移植、直接注射重组成血管因子的蛋白疗法和基于传递编码成血管因子基因的基因疗法。这些方法在缺血性疾病中取得了一定的疗效,但是其价格昂贵,技术要求高,对具有庞大患病人群但医疗资源相对十分缺乏的我国难以普遍推广。随着脉冲电磁场的发展,在临床中广泛应用于促进骨愈合、治疗肿瘤和一些神经损伤性疾病,取得了较好的疗效,在实验研究方面,已发现脉冲电磁场可促进内皮细胞增殖、加快血管化的作用,因此,本实验研究脉冲电磁场对糖尿病大鼠急性缺血下肢血管再生的影响。
     研究目的
     建立糖尿病大鼠急性下肢缺血模型,对实验组大鼠给予脉冲电磁场处理,应用激光多普勒、免疫组化、免疫荧光、ELISA、Western-blot等多种方法研究脉冲电磁场对糖尿病大鼠急性下肢缺血模型血管再生的作用,并探讨其机制。
     实验方法
     1.糖尿病大鼠模型的建立:雄性SD大鼠禁食12小时,以60mg/kg的剂量腹腔注射链脲菌素(streptozotocin, STZ)(溶于0.1 mol/L新鲜配制柠檬酸缓冲液中)。1周后检测空腹血糖,采用鼠尾采血方法,空腹血糖>300mg/dl者为造模成功。
     2.急性下肢缺血动物模型的建立选用符合糖尿病标准的SD雄性大鼠,术前常规禁食12小时,自由饮水,腹腔注射3%戊巴比妥进行麻醉,麻醉成功后在大鼠的右侧腹股沟韧带致膝关节间切一纵行切口,分离各层组织,暴露股动、静脉,分离股动脉,于近心端结扎,并切除下端及其分支。术后随机分为实验组和对照组(每组60只),实验组:术后即给予脉冲电磁场治疗(脉冲宽度4.5 ms、频率15 Hz、磁感应强度为12 Gs)。治疗时间为每天2小时,共28天。对照组除给予正常饮食外不给予任何处理。
     3.在术后当天及术后7、14、28天运用激光多普勒技术检测脉冲电磁场治疗组及对照组下肢血流灌注情况。并于术后7、14、28天在实验组与对照组每组随机每次处死10只大鼠,分离缺血后肢的肌肉,采用免疫组织化染色法检测CD31、α-SMA的表达;免疫荧光方法检测RECA-1的表达,ElISA检测VEGF、FGF-2;采用Western-blot法检测VEGF、FGF-2、VEGFR2、FGFR1、ERK1/2、P-ERK1/2、P38及P-P38的表达。
     实验结果
     1.激光多普勒检测显示:在术后、术后7天、14天、28天,实验组缺血右下肢与对侧相应部位的血流比率分别为:0.15±0.013,0.32±0.017,0.64±0.020,0.85±0.021;而对照组分别为:0.15±0.009,0.27±0.014,0.48±0.023,0.61±0.021。在术后14天及28天,实验组血流恢复明显高于对照组(P<0.05),而术后当天及术后7天,实验组与对照组的血流恢复无明显差异(P>0.05)。
     2.免疫组化染色结果显示:术后7、14、28天,实验组CD31的表达分别为430.2±18.15/mm~2,677.4±15.63/mm~2,837.2±25.60/mm~2;而对照组为357.8±26.64/mm~2,495.2±25.31/mm~2,619.4±19.24/ mm~2。实验组术后14、28天明显高于对照组(P<0.05),而术后7天两组无显著性差异(P>0.05)。实验组α-SMA的表达在7、14、28天分别为22.6±1.91/mm~2,35.8±2.08/mm~2和50.6±3.08/mm~2;对照组为18.2±1.07/mm~2,25.6±1.94/mm~2和32.4±1.72/mm~2,两组α-SMA的表达对比结果与CD31一致。
     3.免疫荧光染色可见:术后7、14、28天,实验组RECA-1表达分别为:96.4±4.00/mm~2,179.8±6.95/mm~2,253.0±8.67/mm~2;对照组为89.6±4.51/mm~2, 150.4±5.35/mm~2,184.6±6.09/mm~2;实验组在14、28天时明显高于对照组(P<0.05);而7天时两者差异无统计学意义(P>0.05)。
     4.VEGF、FGF-2及其受体检测结果:实验组7、14、28天等不同时间点VEGF的ELISA检测值分别为38.6±6.27pg/ml,91.4±10.51pg/ml,59.8±6.48 pg/ml;对照组为40.4±5.83 pg/ml,80.4±10.88pg/ml,51.6±2.90 pg/ml;两组相比差异无统计学意义(P >0.05),Western blot的结果与ELISA一致。实验组FGF-2的ELISA检测值在各个时间段内分别为13.4±1.91pg/ml,28.4±3.67 pg/ml,47.4±6.80 pg/ml;对照组分别为:7.6±1.21pg/ml,11.8±1.53 pg/ml,10.8±2.17 pg/ml,在各个时间点实验组明显高于对照组(P<0.05),Western的结果与之一致。同时Western对VEGF受体VEGFR2检测,未发现差异有统计学意义(P>0.05),而对FGF-2受体FGFR1检测,我们发现,实验组在各个阶段明显高于对照组(P<0.05)。
     5.P-ERK1/2、T-ERK1/2、P-P38、T-P38检测结果通过Western blot方法检查,实验组P-ERK1/2与T-ERK1/2比值在各个时间段均高于对照组(P<0.05),而两组P-P38与T-P38比值无显著性差异(P >0.05)。
     结论
     一定频率、脉冲宽度、磁感应强度的PEMF可促进糖尿病大鼠急性下肢缺血的血管新生,在脉冲电磁场促血管新生作用过程中,FGF-2是重要的促血管新生因子,而MAPK/ERK1/2是FGF-2促进血管新生的一种重要信号转导途径。
Background
     Ischemic diseases, particularly in diabetics, result in significant morbidity and mortality and have a profound economic impact. To ischemic disease, therapeutic angiogenesis is the focus of current research.Stem and progenitor cell therapy, protein of promoting angiogenesis factor therapy and gene therapy were the main methods to improve neovascularization and function of ischemic tissue. These methods in ischemic diseases have certain effect, but they were expensive, technically, especially to our country of lack of medical resources,it is still very difficult for the general clinical promotion. Therefore, we need an effective treatment..
     It is well documented that electromagnetic fields play a role in the repair of human issues.Electrical stimulation by means of capacitive coupling, combined magnetic fields and pulsed electromagnetic fields has been used for over 30 years to augment healing. and subsequently demonstrated electromagnetic fields increase angiogenesis in animal experiments . Based on the above findings, we hypothesized that pulsed electromagnetic fields might be beneficial in diabetic limb ischemia . In this study, we discuss pulsed electromagnetic fields on lower limb ischemia in diabetic rats the impact of angiogenesis, and explore its mechanism.
     AIM
     To observe the effects of pulsed electromagnetic fields (PEMF) on acute hindlimb ischemia diabetic rats in microcirculation angiogenesis. Establishing diabetic rats acute hindlimb ischemia model, the experimental group was given pulsed electromagnetic field treatment, analysis effects of pulsed electromagnetic fields on hindlimb ischemia diabetic rat microcirculation angiogenesis, and explore its mechanism.
     Methods
     Diabetes were induced by intraperitoneal injection of streptozotocin(60μg/g body with in 50 mmol/L citric acid buffer, pH 4.5) once to Sprague-Dawley rats. Then, 1 week later, blood was obtained periorbitally after 8 hours of fasting. Only rats with blood glucose values >300 mg/dl were kept in the protocol and randomized for experiment.
     Diabetic rats were anesthetized intraperitoneally with 3% pentobarbital. An incision was made along the inner right hind limb along the line of the femoral artery and vein. The proximal end of the femoral artery was tied with 4-0 silk suture .The femoral artery was dissected free from the limb and its peripheral branches. The distal end was severed, the artery was removed, and the skin was sutured closed. After surgery, rats were randomly divided into experimental group and control group(n=60).After operation, rats in experiment group were exposed to pulsed electromagnetic fields for 2 hours every day while those in control group were not given any treatment. Laser-Doppler perfusion measurements was used to determine the blood flow of ischemia hindlimbs respectively on the day 0, 7, 14 and 28 after operation, and immunohistochemistry analysis of CD31 andα-SMA were used to evaluate the changes in angiogenesis,immunofluorescence to detect expression of RECA-1. ELISA and Western blot were analyzed for the protein levels of VEGF,VEGFR2,FGF-2,FGFR1, P-ERK1/2,ERK1/2, P-P38 and P38.
     Results
     The perfusion ratios were significantly higher in pulsed electromagnetic field-treated diabetic rats at day 14 and 28 compared with those in controls (0.64±0.02、0.85±0.021vs0.48±0.023、0.61±0.021,P<0.05)。CD31 density in tissues measured by immunohistochemistry significantly increased in pulsed electromagnetic field-treated groups on 14d and 28d(677.4±15.63/mm~2、837.2±25.60/mm~2vs495.2±25.31/mm~2、619.4±19.24/mm~2 , P<0.05 ) . Immunohistochemical analysis revealed significantly higher numbers ofα-SMA in animals exposed to PEMF at day 14 and 28(35.8±2.08/mm~2、50.6±3.08/mm~2vs 25.6±1.94/mm~2、32.4±1.72/mm~2,P<0.05), . Immunofluorescence analysis of RECA-1 density in tissues were significantly increased in pulsed electromagnetic field–treated groups at day 14 and 28 ( 179.8±6.95vs150.4±5.35/mm~2,253.0±8.67vs184.6±6.09/ mm~2,P<0.05).The levels of FGF-2 and FGFR1 in ischemic hindlimbs significantly increased in PEMF group at all time points and the same were p-ERK1/2 /total ERK1/2. No significant differences were observed in VEGF, VEGFR2 and p-p38/total p38 between the two groups.
     Conclusion
     Pulsed electromagnetic fields can promote angiogenesis on acute hindlimb ischemia diabetic rat by up-regulation of FGF-2. As an indispensable signal pathway for FGF2-induced angiogenesis, MAPK/ERK1/2 is responsible for coupling FGFR1 to multiple downstream pathways to mediate blood vessel formation.
引文
1 King H,Aubert R E,Herman,W. H.Global burden of diabetes 1995–2025:prevalence,numerical estimates and projections.Diabetes Care,1998,21(9):1414–1431.
    2 Tentolouris N, Al-Sabbagh S, Walker MG, et al.Motality in diabetic and nondiabetic patients after amputations performed from 1990 to 1995:a 5-year follow-up study.Diabetes Care,2004 ,27(7):1598-604.
    3 Boulton AJ, Vileikyte L, Ragnarson-Tennvall G,et al..The global burden of diabetic foot disease. Lancet,2005,366(9498):1719-1724.
    4 Schaper W,Pasyk S.Influence of collateral flow on the ischemic tolerance of the heart following acute and subacute coronary occlusion.Circulation,1976,53(3suppl):57-62
    5 Ameia GP, Patton WF, Beer DM . et al.Endothelial cell response to pulsed electromagnetic fields:stimulation of growth rate and angiogenesis in vitro.J cell physiol, 1988,134(1):37-46.
    6 Tepper OM, Callaghan MJ,Chang EI, et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2.FASEB J,2004,18(11):1231-1233.
    7 Arora S,Pomposelli F,LoGerfo FW.et al. A Cutaneous mirocirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularizaion.J Vasc Surg,2002 , 35(3): 501 - 505.
    8 Second European Consensus Document on chronic critical leg ischemia. Circulation,1991,84(4Suppl):IV1–IV6.
    9金惠铭。治疗性血管新生研究的若干进展。国外医学生理病理科学与临床分册,2003,23(4):331~333
    10 Post MJ, Laham R, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res, 2001,49(3):522–31.
    11 Terence J. Ryan. Angiogenesis.The growth of the vascular system.. J Anat. 1987,155(12):219–220.
    12 Tomanek RJ , Schatteman GC. Angiogenesis:New Insights and Therapeutic Potential.Anat Rec.,2000 ,261(3):126-35.
    13 ShingY,FolkmanJ,SullivanR,eatl.Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984, 223(4642):1296–1299.
    14 Hirschi KK, D’Amore PA. 1996. Pericytes in the microvasculature. Cardiovasc Res 1996,32(4):687–698.
    15 Fam NP, Verma S, Kutryk M, et al. Clinician Guide to Angiogenesis. Circulation,2003,108(21):2613-2618.
    16 Carmeliet P. Angiogenesis in health and disease. Nat Med 2003,9(6):653–60.
    17 Beck Jr.L D’Amore PA.Vascular development:cellular and molecular regulation.FASEB J,1997,11(5):365-373
    18 Jain RK,Schlenger K,Hockel M,et al.Quantitative angiogenesis assays:progress and problems(J).Nat Med,1997,3(11):1203-1208
    19 Risau W.Mechanisms of angiogenesis. Nature,1997,386(17):671-674.
    20 Djonov V,Schmid M,Tschanz SA,et al.Intussusceptive angiogenesis:its role in embryonic vascular network formation.Circ Res,2000,86(3):
    286-292
    21 Patan S,Munn LL,Jain RK. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft:a novel mechanism of tumor angiogenesis.Microvasc Res,1996,51(2):260-272
    22 oyen N,Piek JJ,Buschmann I,et al.Stimulation of arteriogenesis,a new concept for the treatment of artery occlusive desease.Cardiovasc Res,2001, 49(3):543-553
    23 Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003;314(1):15–23.
    24 Thurston G, SuriC, SmithK, McClainJ, SatoTN, YancopoulosGD, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999;286(5449):2511–14.
    25 Kinnaird T, Stabile E, Burnett MS, et al.Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94(5):678–85.
    26 Isner JM, Kalka C, Kawamoto A, Asahara T. Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair.Ann N YAcad Sci 2001;953:75–84.
    27 Schaper W. Quo vadis collateral blood flow? A commentary on a highly cited paper. Cardiovasc Res 2000;45(1):220–223.
    28张均克,血管新生研究进展.。江汉大学学报(自然科学版),2005,33(2):90-96.
    29 Reidy MA,LindnerV..Basic FGF and growth of arterial cells.Ann NY Acad Sci,1991,638:290–299.
    30庆宏,郭畹华,与中脑黑质有关的神经营养因子,神经解剖学杂志:1995,11(3) :257
    31 SaG,Fox PL.Basic fibroblast growth factor stimulated endothelial cell movement is mediated by a pertussis toxin-senstive pathway regulating phospholipase A2 activity.J Biolchem.1994,269(5):3219-3225.
    32 Saadeh PB , Mehrara 2BJ , Steinbrech DS, et al. Mechanisms of fibroblast growth factor-2 modulation of vascular endothelial growth factor expression by osteoblastic cell. Endocrinology.2000 ,141(6):2075-2083.
    33 FerraraN,Henzel WJ. Pituitary follicular cells secrete a novel heparin bind ing growth factor specific for vascular endothelial cells. Biochem B iophys Res Commun, 1989, 161 (2): 851-858.
    34 Plate kH,Breier G,Weich HA, et al. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human glimas in vivo nature,1992,359(6398):845-848
    35 FerrarN,Houch K,Jakeman L, e1t al. Molecular and biologicalpropertiesof the vascularendothelialgrowth factorfamilyofproteins. Endoc Rev,1992,13(1):18 -32
    36 C de Vries, JA Escobedo, H Ueno,etal.The fms-like tyrosine kinase,a receptor for vascular endothelial growth factor(J),Science.1992,255(5047):989-991.
    37 Josko J, Gwozdz B, Jedrzejowska2Szypulka H, et al. Vascular endothelial growth factor(VEGF) and its effect on angiogenesis. M ed SciM onit, 2000, 6(5): 1047-1052.
    38 Yan Zhu,Tao Yu,Xiao-Chun Zhang,etal Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci. 2002 :5(8): 719–720.
    39 Kijowski J, Baj-Krzyworzeka M, Majka M,etal The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect prol-iferation and survival in lymphohematopoietic cells.Stem Cells,2001,19(5):453-466.
    40李秀兰,张杨,侯亭.一氧化氮及其在创面修复中的作用[J].中国中西医结合外科杂志。2000,6(3):219~220.
    41 Albina JE,M ills CD,H enry W L,etal.Regulation of macrophage physiology by L-arginine,role of the oxidative L-arginine deiminase pathway.J Immuno -logy.1989,143(11):3641~3646
    42 Morishita R, Nakamura S, Hayashi S, et al. Therapeutic angigensis induced by human recombinant hepatocyte growth factor in rabbit hind limb ische- mia model as cytodine supplement therapy. Hypertension, 1999, 33(6): 1379-1384.
    43 Morishita R, Aoki M, Hashiya N, et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheraarterial disease. Am heart Assoc Inc, 2004, 44(2): 203-209.
    44 Tbommen R,HumarR,Misevic G,etal.PDGF-BB increases endothelial migration on cord movemennts during angiogenesis in virro.J Cell Biochem.1997 ,64(2):403~413
    45 Loughna S,Sato T N.A combinatorial role of angiopoietin-1 and orphan receptor TIE1 pathways in establishing vascular polarity during angiogenesis,Mol Cell,2001,7(1):233~239
    46 Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ,Hammond HK, et al. Clinical trials in coronary angiogenesis: issues,problems, consensus: an expert panel summary. Circulation,2000;102(11): E73–86.
    47 Rissanen TT, Vajanto I, Yla-Herttuala S. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb—on the way to the clinic.Eur J Clin Invest 2001;31(8):651–66.
    48 Udelson JE, Dilsizian V, Laham RJ, et al.Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myoca- rdial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease.Circulation, 2000,102(14):1605-1610
    49 Henry TD, Annex BH, McKendall GR , et al·The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular angiogenesis. Cirula- tion, 2003, 107(10):1359-1365
    50 Kastrup J,Jorgensen E, Ruck A, et al.Direct intramyocardial plasmid vas- cular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial .J Am Coll Cardiol, 2005, 45(7):982-988.
    51 Grines CL, Watkins MW, Mahmarian JJA, et al,A randomized, double- blind, placebo-controlled trial of Ad5FGF- 4 gene therapy and its effect on myocardial perfusion inpatients with stable angina.J Am Coll Cardiol, 2003,42(8):1339-1347
    52 Sata M, Saiura A, Kunisato A, et al·Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis Nat Med, 2002,8(4):403-409.
    53何朝荣.造血干细胞与血管新生的关系.国外医学内科学分册.2003,30(1):24-27.
    54曲晓义,金惠铭.血管内皮祖细胞与缺血性心血管病的血管新生.中国病理生理杂志.2003,19(3):412-414
    55金惠铭.心血管疾病中的血管新生与促血管新生治疗。中国病理生理杂志,2002,18(13):1638-1640
    56 Caplice NM,Bunch TJ, Stalboerger PG, et al.Smooth muscle cells in huma-n coronary atherosclerosis can originate from cells administered at marrow transplantation.Proc Natl Acad Sci USA, 2003,100(8):4754-4759
    57 Murohara T, Ikeda H, Duan J, et al.Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization.J Clin Invest, 2000, 105(11): 1527-1536.
    58 Dobert N, Britten M, Assmus B.Transplantation of progenitor cells after reperfused acute myocardial infarction : evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT.Eur J Nucl Med Mol Imaging,2004,31(8):1146-1151.
    59 Bassett, C. A., Pawluk, R. J., and Pilla, A. A. Augmentation of bone repair by inductively coupled electromagnetic fields.Science 1974,184(136):575-577
    60 Scott, G., and King, J. B. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones.J Bone Joint Surg. Am. 1994.76(6): 820-826
    61 Sharrard, W. J. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg. Br. 1990,72(3): 347-355,
    62王鸿,高建青,张桂芬.等,脉冲电磁场的实验研究及其应用.中华物理医学与康复杂志,2001,23 (3):182-183
    63 Nakae M, Kamiya H, Naruse K,et al.Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats.Diabetes, 2006,55(5): 1470-1477.
    64 Kawasaki K, Smith RS Jr, Hsieh CM,et al.Activation of the Phosphatidylinositol 3-Kinase/Protein Kinase Akt Pathway Mediates Nitric Oxide-Induced Endothelial Cell Migration and Angiogenesis.Mol CellBiol, 2003,23(16):5726-5737.
    65 Wild s,Roglic G,Green A,et al. Global prevalence of diabetes:estimates for the year 2000 and projections for 2030.Diabetes Care,2004,27(5):1047-1053
    66 Colagiuri S, Borch-Johnsen K, Glümer C, Vistisen D,et al,2005,There really is an epidemic of type 2 diabetes ,Diabetologia,48(8):1459-1463
    67 Kaio E , Tanaka S , Kitadai Y, et al . Clinical significance of angiogenic factor expression at the deepest invasive site of advanced colorectal carcinoma .Oncology.2003;64(1):61-73.
    68 Furudoi A , Tanaka S , Haruma K, et al . Clinical significance of vascular endothelial growth factor C expression and angiogenesis at the deepest invasive site of advanced colorectal carcinoma .Oncology.2002; 62 (2)∶157-166
    69 Lang I , Hoffmann C , Olip H , et al . Differential mitogenic responses of human microvascular and microvascular endothelial cells to cytokines underline their phenotypic heterogeneity. Cell Proliferation . 2001; 34(3) :143-155.
    70 Trivier E , Kurz DJ , Hong Y, et al , Differential regulation of telomerase in endothelial cells by fibroblast growth factor-2 and vascular endothelial growth factor-a : association with replicative life span. Ann N Y Acad Sci..2004;1019:111-115.
    71 Matthew J. Callaghan, Edward I. Chang,Natalie Seiser,et al. Pulsed Electromagnetic Fields Accelerate Normal and Diabetic Wound Healing by Increasing Endogenous FGF-2 Release .Plast Reconstr Surg. 2008;121(1):130-141.
    72 Brighton CT, Wang W, Seldes R, et al. Signal transduction in electricallystimulated bone cells[J]. J Bone Joint Surg Am, 2001,83(10):1514-1523.
    73 Nie K, Henderson A.MAP kinase activation in cells exposed to a 60 Hz electromagnetic field.J Cell Biochem,2003,90(6):1197-1206.
    74 Tanaka K, Abe M, Soto Y. Roles of extracellular signal-related kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res, 1999 , 90(6): 647- 654.
    75 Miyamoto T, Leconte I, Swain JL , et al. Autocrine FGF signaling is required for vascular smooth muscle cell survival in vitro. J Cell Physiol ,1998 , 177(1):58-67.
    76 Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma. Curr Opin Oncol.,2008,20(2):183-189
    77 Lawrence MC, Jivan A, Shao C, et al. The roles of MAPKs in disease. Cell Res,2008,18(4):436-442
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.