MicroRNA在子痫前期胎盘组织中的表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子痫前期(Preeclampsia, PE)是人类妊娠期特有的常见病和多发病。在我国,其发生率为9.7%,在孕产妇死亡原因中占第二位,严重威胁母婴健康[1]。目前,PE的病因和发病机理仍未阐明,研究表明胎盘滋养细胞功能障碍是PE发病的病理基础。微小RNA(microRNA,miRNA)是一类长约22个核苷酸的单链非编码RNA,通过与靶mRNA完全或不完全互补配对,导致靶基因降解或抑制其翻译,从而在基因的表达调控中发挥着重要作用。最近有研究表明在人类子痫前期胎盘与正常胎盘组织中,miR-210与miR-182的表达水平存在差异[2],提示miRNA的表达失衡可能参与了PE的发病过程。但以往研究检测的miRNA数量有限,并且国内外尚无miRNA在PE胎盘组织中功能研究的报告。因此有必要深入开展miRNA在PE胎盘组织中的表达和功能研究,为深入研究PE的发病机理提供新的线索。
     目的
     1.了解miRNA在正常与PE胎盘组织中的表达差异,进一步筛选与PE发病相关的miRNA。
     2.了解miRNA的作用靶点以及对胎盘滋养细胞功能的调控作用,探讨miRNA在PE发生发展中的作用。
     方法
     1.应用Exiqon 8.1版的miRNA表达谱芯片筛选8对重度PE胎盘与正常胎盘组织中差异表达的miRNA,并采用TargetScan与PITA预测系统筛选差异miRNA的靶基因。
     2.选取10个miRNA,应用实时荧光定量RT-PCR(Real-time RT-PCR)方法加以验证,分别定量检测miRNA在15例重度子痫前期患者(sPE组)、8例轻度子痫前期患者(mPE组)及11例正常妊娠胎盘组织(对照组)中的表达水平。
     3.选择PE与正常胎盘组织中表达差异较为显著的miR-152进行靶基因验证。采用miRNA过表达技术在人滋养细胞肿瘤细胞系(JEG-3)中过表达miR-152,RT-PCR与免疫印迹(Western blot)技术验证其靶基因的表达水平,并通过荧光素酶报告系统进一步验证其作用位点。
     4.在JEG-3细胞中过表达miR-152,检测JEG-3细胞浸润能力的变化,并检测NK-92MI细胞杀伤JEG-3细胞的能力是否改变。
     结果
     1.芯片结果显示:重度子痫前期胎盘与正常胎盘组织中存在34个差异表达的miRNA,其中,11个miRNA在sPE胎盘组织中表达升高,23个miRNA表达下降。通过靶基因预测发现:在miR-30a-3p、miR-152与miR-18a的可能的作用靶点中,分别包括IGF1、HLA-G与ESR1等与PE发病相关的基因。
     2.选取10个miRNA,应用Real-time RT-PCR进行验证,其中8个miRNA与芯片结果相符:miR-210、miR-152与miR-518b在sPE胎盘中表达升高(P<0.05),miR-377、miR-411、miR-542-3p、miR-18a与miR-363在sPE胎盘中表达下降(P<0.05);miR-152在mPE胎盘组织中表达升高(P<0.05),miR-210、miR-377、miR-411在mPE中表达下降(P<0.05)。
     3.将pre-miR-152转染入JEG-3细胞,使JEG-3细胞中的miR-152表达升高,RT-PCR结果显示转染前后JEG-3细胞中HLA-G mRNA的水平无显著差异(P>0.05),但Western blot结果发现在JEG-3中过表达miR-152之后,HLA-G的蛋白表达水平明显下降(P<0.05)。采用pMIR-REPORT荧光素酶报告基因系统进行靶点验证,结果显示转染pre-miR-152与重组载体的实验组其荧光素酶活性下降约47%,表明HLA-G为miR-152的作用靶点。
     4.细胞浸润实验发现过表达miR-152前后,JEG-3细胞的浸润能力无显著改变(P>0.05)。然而,在JEG-3细胞中过表达miR-152之后,NK-92MI细胞对JEG-3细胞的杀伤能力显著提高(P<0.05)。
     结论
     1.子痫前期胎盘组织中存在一系列表达失衡的miRNA,这一异常可能参与了子痫前期的发生和病理生理过程。
     2.实验结果显示HLA-G为miR-152的作用靶点,表明miR-152可能通过调控免疫耐受因子HLA-G的表达参与了子痫前期的发生。
     3. miR-152可以通过降低靶基因HLA-G的表达,从而提高NK细胞对滋养细胞的杀伤作用,为基因治疗在子痫前期与绒毛膜癌等疾病中的应用奠定了理论与实验基础。
Preeclampsia (PE) is a pregnancy specific disorder which has a high incidence, approximately 9.7% in China[1]. It is the second cause of maternal mortality and is a major threat to maternal and fetus health. The aetiology and pathogenesis of this disease has remained unknown. Evidence showed that the disorder of trophoblast function is associated with the pathogenesis of PE. MicroRNA (miRNA) are noncoding RNAs of 21 to 24 nucleotides, which function as negative regulators of gene expression by antisense complimentarily to specific messenger RNAs and subsequent induction of translation inhibition, which can also be associated with transcript destabilization. It has been reported previously that miR-210 and miR-182 are expressed differentially in the human placentas of patients with PE compared with controls using real time RT-PCR analysis[2], suggesting that PE is associated with alterations in placental microRNA expression. However, neither a comprehensive list of the human miRNA nor the function study of placental microRNA has been screened in PE placentas. Thus, it is necessary to unravel the expression and function of the miRNA in PE placentas. Our study may provide a useful tool in studing the aetiology of PE.
     Objective
     1. To investigate the expression of miRNA in placentas from women with severe PE and normal pregnancy, and discuss the roles of miRNA in the pathogenesis of PE.
     2. To investigate the roles of miRNA in the regulation of target gene expression and functions of trophoblast function.
     Methods
     1. MicroRNA microarray (Exiqon, release 8.1) analysis was performed on 8 of the matched tissue pairs from the control and sPE groups. Two softwares for bioinformatics anaylsis, targetscan and PITA, were used for miRNA target prediction.
     2. Expression of ten miRNA in fifteen placentas from severe PE (sPE group), eight placentas from mild PE (mPE group) and eleven from gestational normal pregnancies (control group) were confirmed using real time RT-PCR.
     3. The differentially expressed miRNA in PE placentas, miR-152, was selected for target verification. We transfected pre-miR-152 into JEG-3 cells, and then determined the levels of HLA-G mRNA and protein in JEG-3 cells using RT-PCR and Western blot analysis, respectively. The verification of miRNA-152 target site was performed using luciferase reporter vector.
     4. After transfection of pre-miR-152 into JEG-3 cells, invasion assay and NK cell cytotoxicity assay were performed to investigate the effect of miR-152 on JEG-3 cell invasion and whether overexpression of miR-152 in JEG-3 cells could be associated with increased susceptibility to NK lysis.
     Results
     1. Thirty-four microRNA were differentially expressed in preeclamptic placentas compared with that of normal placentas. Of these, 11 were overexpressed and 23 were underexpressed in preeclamptic pregnancies. The potential targets of miR-30a-3p, miR-152 and miR-182, including IGF1, HLA-G and ESR1, respectively, were predicted using bioinformatics anaylsis.
     2. Among the ten miRNA which selected for real-time RT-PCR verification, 8 of 10 real-time RT-PCR data were concordant with the microarray data: sPE-overexpressed miR-210, miR-152, miR-518b and sPE-underexpressed miR-377, miR-411, miR-542-3p, miR-18a, miR-363 (P<0.05); mPE-overexpressed miR-152 and mPE-underexpressed miR-210, miR-377, miR-411 (P<0.05).
     3. We transfected pre-miR-152 into JEG-3 cells. RT-PCR analysis showed that the transfection was effective, while no significant changes were observed in the mRNA level of HLA-G (P>0.05). However, the decreased HLA-G protein level was observed using western blot analysis (P<0.05). We performed a pMIR-REPORT luciferase reporter assay and observed a significant decrease (≈47%) of luciferase activity in the presence of pre-miR-152 in JEG-3 cells. These results experimentally confirm that HLA-G is a direct target for miR-152 in JEG-3 cells.
     4. The results of invasion assay showed that there was no difference in invasion among the test groups (P>0.05). However, after transfection of pre-miR-152 into JEG-3 cells, the lytic activity of NK-92 cells toward JEG-3 cells was dramatically enhanced (P<0.05) versus that in the control groups.
     Conclusion
     1. The results show that different microRNA are deregulated in preeclamptic pregnancies, suggesting the involvement of these microRNA in the pathogenesis of preeclampsia.
     2. These results experimentally confirm that HLA-G is a direct target for miR-152, suggesting the potential role of miR-152 in the etiology of PE through regulating HLA-G.
     3. Our results showed that overexpression of miR-152 led to increased NK cell mediated cytolysis in JEG-3 cells through regulating HLA-G. This study may provide a useful tool in the gene treatment of PE and choriocarcinoma.
引文
[1] Rigourd V, T Chelbi S, Vaiman D. Preeclampsia. Med Sci. 2008, 24(12):1017-1019.
    [2] Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol, 2007, 196:261.e1-e6.
    [3] Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004,14(9):1741-1748.
    [4] Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 2004,14(12):2486-2494.
    [5] Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007;23:175-205.
    [6] Redman CW, Sargent IL. The pathogenesis of pre-eclampsia. Gynecol Obstet Fertil 2001;29:518-22.
    [7] Randhawa RS. The insulin-like growth factor system and fetal growth restriction. Pediatr Endocrinol Rev. 2008 Dec;6(2):235-240.
    [8] Klammt J, Pf?ffle R, Werner H, et al. IGF signaling defects as causes of growth failure and IUGR. Trends Endocrinol Metab. 2008 Aug;19(6):197-205.
    [9] Vatten LJ, Nilsen TI, Juul A,et al. Changes in circulating level of IGF-I and IGF-binding protein-1 from the first to second trimester as predictors of preeclampsia. Eur J Endocrinol. 2008 Jan;158(1):101-105
    [10] Milchev N, Batashki I, Staribratova D, et al. Trophoblast expression of EGFR (epidermal growth factor receptor) in the preeclampsia placenta.Akush Ginekol (Sofiia). 2006;45(2):21-24.
    [11] Lala PK, Chakraborty C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta. 2003 Jul;24(6):575-587.
    [12] Collino F, Bussolati B, Gerbaudo E,et al. Preeclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. Am J Physiol Renal Physiol. 2008 May;294(5):F1185- 1194.
    [13] Patil SB, Kodliwadmath MV, Kodliwadmath SM. Lipid peroxidation and antioxidant status in hypertensive pregnancies. Clin Exp Obstet Gynecol. 2008;35(4):272-274.
    [14] Catarino C, Rebelo I, Belo L,et al. Fetal lipoprotein changes in pre-eclampsia. Acta Obstet Gynecol Scand. 2008;87(6):628-634.
    [15] Sokolov DI, Kolobov AV, Pecherina LV, et al. Expression of VEGF and VEGF-R3 receptor by placental endothelial cells in health and gestosis. Bull Exp Biol Med. 2008 Mar;145(3):348-351.
    [16] Teran E, Chedraui P, Vivero S,et al. Plasma and placental nitric oxide levels in women with and without pre-eclampsia living at different altitudes. Int J Gynaecol Obstet. 2009 Feb;104(2):140-142.
    [17] Bernardi F, Constantino L, Machado R,et al. Plasma nitric oxide, endothelin-1, arginase and superoxide dismutase in pre-eclamptic women. J Obstet Gynaecol Res. 2008 Dec;34(6):957-963.
    [18] Tihtonen KM, K??bi T, Vuolteenaho O,et al. Natriuretic peptides and hemodynamics in preeclampsia. Am J Obstet Gynecol. 2007 Apr;196(4):328.e1-e7.
    [19] Pazmany L, Mandelboim O, Vales-Gomez M, et al. Protection from natural killer cell-mediated lysis by HLA-G expression on target cells. Science. 1996,274(5288):792-795.
    [20] Moffett KA. Natural killer cells and pregnancy. Nat Rev Immunol.2002,2(9):656-663.
    [21] Moffett KA, Entrican G, Ellis S, et al. Natural killer cells and reproduction. Trends Immunol, 2002, 23(7): 332-333.
    [22] Horuzsko A, Lenfant F, Munn DH, et al. Maturation of antigen-presenting cells is compromised in HLA-G transgenic mice. Int Immunol. 2001,13(3):385-394.
    [23] Liang S, Baibakov B, Horuzsko A. HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol. 2002,32(9):2418-2426.
    [24] Hara N, Fujii T, Yamashita T, et al. Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody‘‘87G’’and anti-cytokeratin antibody‘‘CAM5.2’’. Am J Reprod Immunol.1996, 36(6): 349-358.
    [25] Goldman-Wohl DS, Ariel I, Greenfield C, et al. Lack of human leukocyte antigen-G expression in extravillous trophoblasts is associated with pre-eclampsia. Mol-Hum-Reprod.2000,6(1): 88-95.
    [26] Yie SM, Li LH, Li YM, et al. HLA-G protein concentrations in maternal serum and placental tissue are decreased in preeclampsia. Am J Obstet Gynecol. 2004,191(2):525-529.
    [27] Mellembakken J R , Aukrust P , Olafsen M K, et al . Activation of leukocytes during the uteroplacental passage in p reeclampsia. Hypertension ,2002 ,39 (1) :155– 160.
    [28] Wang Y, Gu Y, Philibert L , et al . Neutrophil activation induced by placental factors in normal and preeclamptic pregnancies in vitro . Placenta. 2001 ,22 (6) :560– 565.
    [29] Joyama S, Yoshida T, Koshikawa M,et al. C4d and C4bp deposition along the glomerular capillary walls in a patient with preeclampsia. Am J Kidney Dis. 2001 Jan;37(1):E6.
    [30] Kolarz D , Gorzelak B , Rolinski J , et al . The expression and concent rations of Fas/ APO21/ ( CD95) antigen in patients with severe preeclampsia. J Rep rod Immunol ,2001 ,49 (2) :153 -164.
    [31] Roh C R , Lee J W , Kang B H , et al . Differential expressions of Fas and Fas ligand in human placenta . J Korean Med Sci ,2002 ,17 (2) :213– 216.
    [32] Kuntz T B , Christensen R D , Stegner J , et al . Fas and Fas ligand expression in maternal blood and in umbilical cord blood in preeclampsia. Pediatr Res ,2001 ,50 (6) :743– 749.
    [33] Ishihara N , Matsuo H , Murakoshi H , et al . Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol ,2002 ,186 (1) :158– 166.
    [34] Whitecar P W , Boggess K A , McMahon M , et al . Altered expression of TCR2CD3zeta induced by sera from women with preeclampsia. Am J Obstet Gynecol , 2001 , 185 ( 4) : 812 -818.
    [35] Levy R , Smit h S D , Yusuf K, et al . Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression. Am J Obstet Gynecol ,2002 ,186 (5) :1056-1061.
    [36] Knyrim E, Muetze S, Eggermann T,et al. Genetic analysis of the angiotensinogen gene in pre-eclampsia: study of german women and review of the literature. Gynecol Obstet Invest. 2008;66(3):203-208.
    [37] De Stefano V, Rossi E, Leone G. Inherited thrombophilia, pregnancy, and oral contraceptive use: clinical implications. Semin Vasc Med. 2003 Feb;3(1):47-60.
    [38] Lowenstein L, Solt I, Peleg A,et al. Is there an association between PUPPP and preeclampsia, abruptio placentae and fetal death? Harefuah. 2004 Dec;143(12):861-2, 911.
    [39] Gu Y, Burlison SA, Wang Y. PAF levels and PAF-AH activities inplacentas from normal and preeclamptic pregnancies. Placenta. 2006 Jun-Jul;27(6-7):744-749.
    [40] Wang X, Athayde N, Trudinger B. Endothelial cell expression of adhesion molecules is induced by fetal plasma from pregnancies with umbilical placental vascular disease. BJOG. 2002 Jul;109(7):770-777.
    [41] Anton L, Brosnihan KB. Systemic and uteroplacental renin--angiotensin system in normal and pre-eclamptic pregnancies. Ther Adv Cardiovasc Dis. 2008 Oct;2(5):349-362.
    [42] Steinert JR, Wyatt AW, Jacob R,et al. Redox modulation of Ca2+ signaling in human endothelial and smooth muscle cells in pre-eclampsia. Antioxid Redox Signal. 2009 Jan 6.
    [43] Crocker IP, Cooper S, Ong SC, Baker PN. Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am J Pathol. 2003,162(2):637-643.
    [44] Hackmon R, Koifman A, Hyobo H, Glickman H, Sheiner E,et al. Reduced third-trimester levels of soluble human leukocyte antigen G protein in severe preeclampsia. Am J Obstet Gynecol. 2007, 197(3):255.e1-5.
    [45] Schiessl B, Mylonas I, Hantschmann P, et al. Expression of endothelial NO synthase, inducible NO synthase, and estrogen receptors alpha and beta in placental tissue of normal, preeclamptic, and intrauterine growth-restricted pregnancies. J Histochem Cytochem 2005;53:1441-9.
    [46] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843-854.
    [47] Reinhart BJ, Slack FJ, Basson M,et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000 Feb 24;403(6772):901-906.
    [48] Pasquinelli AE, Reinhart BJ, Slack F,et al. Conservation of the sequenceand temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000 Nov 2;408(6808):86-89.
    [49] Ross JS, Carlson JA, Brock G. miRNA: the new gene silencer. Am J Clin Pathol. 2007, 128(5):830-836.
    [50] Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008, 79(4):581-588.
    [51] Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433(7027):769-773.
    [52] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294(5543): 853-858.
    [53] Beuvink I, Kolb FA, Budach W, Garnier A, Lange J, et al. A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res. 2007;35(7):e52.
    [54] Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol. 2008;26(2):70-76.
    [55] Uziel T, Karginov FV, Xie S,et al. The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2812-2817.
    [56] Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med. 2008;40(3):197-208.
    [57] Liu X, Fortin K, Mourelatos Z. MicroRNAs: biogenesis and molecular functions. Brain Pathol. 2008, 18(1):113-121.
    [58] Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett. 2005 Oct 31;579(26):5911-5922.
    [59] Pushparaj PN, Aarthi JJ, Manikandan J,et al. siRNA, miRNA, and shRNA:in vivo applications. J Dent Res. 2008 Nov;87(11):992-1003.
    [60] Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats. Science. 2002 Sep 13;297(5588):1831.
    [61] Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002 Sep 20;297(5589):2056-2060.
    [62] Sun BK, Tsao H. Small RNAs in development and disease. J Am Acad Dermatol. 2008, 59(5):725-37.
    [63] Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004,116, 281-297.
    [64] Kloosterman, W.P., Wienholds, E., Ketting, R.F., Plasterk, R.H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 2004, 32, 6284-6291.
    [65] Doench, J.G., Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 2004, 18, 504-511.
    [66] John B, Sander C, Marks DS. Prediction of human microRNA targets. Methods Mol Biol. 2006;342:101-103.
    [67] Griffiths-Jones S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006 Jan;34.
    [68] Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M, et al. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics. 2007 Mar 1;8:69.
    [69] Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 2006 Nov;3(11):881-886.
    [70] Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13(9): 790-795.
    [71] Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulatehematopoietic lineage differentiation. Science. 2004; 303(5654): 83-86.
    [72] Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003; 426(6968):845-849.
    [73] Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004; 432(7014): 226-230.
    [74] Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH. MicroRNA expression in zebrafish embryonic development. Science. 2005; 309(5732): 310-311.
    [75] Sullivan CS, Ganem D MicroRNAs and viral infection. Mol Cell. 2005; 20(1): 3-7.
    [76] Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature. 2005; 435(7042): 682-686.
    [77] Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science. 2005; 308(5721): 557-560.
    [78] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004; 101(9): 2999-3004.
    [79] Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12): 882-891.
    [80] Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by thelet-7 microRNA family. Cell. 2005; 120(5): 635-647.
    [81] Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004; 64(11): 3753-3756.
    [82] O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005; 435(7043): 839-843.
    [83] Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, et al. Detection and Characterization of Placental MicroRNAs in Maternal Plasma. Clin Chem. 2008; 54(3): 482-490.
    [84] ACOG. Committee on Practice Bulletins--Obstetrics. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Obstet Gynecol 2002;99:159-67.
    [85] National Institutes of Health. National Heart, Lung, and Blood Institute. National High Blood Pressure Education Program. Working group report on high blood pressure in pregnancy. NIH Publication No. 00-3029, revised July 2000.
    [86] Castoldi M, Schmidt S, Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006;12:913-20.
    [87] Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116-21.
    [88] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8.
    [89] Chaudhry MA. Real-time PCR analysis of micro-RNA expression inionizing radiation-treated cells. Cancer Biother Radiopharm. 2009 Feb;24(1):49-56.
    [90] Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33:e179.
    [91] Fasanaro P, D'Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine-kinase ligand Ephrin-A3. J Biol Chem 2008;283:15878-83.
    [92] Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol 2004;339:327-35.
    [93] Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008;132:875-86.
    [94] Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007;310:442-53.
    [95] Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn 2007;236:572-80.
    [96] Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Physiol 2002;192:245-58.
    [97] Kivinen K, Peterson H, Hiltunen L,et al. Evaluation of STOX1 as a preeclampsia candidate gene in a population-wide sample. Eur J Hum Genet. 2007 Apr;15(4):494-7.
    [98] Halhali A, Díaz L, Avila E, Ariza AC, Garabédian M, Larrea F. Decreased fractional urinary calcium excretion and serum 1,25-dihydroxyvitamin D and IGF-I levels in preeclampsia. J Steroid Biochem Mol Biol 2007;103:803-6.
    [99] Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D, Ober C (2007)Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81:829-834.
    [100] Menier C,Saez B,Horejsi V,et al. Characterization of monoclonal antibodies recognizing HLA-G or HLA-E: new tools to analyze the expression of nonclassical HLA class I molecules. Hum-Immunol.2003 , 64(3):315-326.
    [101] Solier C,Aguerre Girr M,Lenfant F,et al. Secretion of pro-apoptotic intron 4-retaining soluble HLA-G1 by human villous trophoblast. Eur-J-Immunol.2002,32(12):3576-3586.
    [102] Pr?ll J, Bensussan A, Goffin F, Foidart JM, Berrebi A, Le Bouteiller P. Tubal versus uterine placentation: similar HLA-G expressing extravillous cytotrophoblast invasion but different maternal leukocyte recruitment. Tissue Antigens. 2000 Dec;56(6):479-491.
    [103] Kilburn BA, Wang J, Duniec-Dmuchowski ZM, Leach RE, Romero R, Armant DR (2000) Extracellular matrix composition and hypoxia regulate the expression of HLA-G and integrins in a human trophoblast cell line. Biol Reprod 62:739-747.
    [104] Mouillot G, Marcou C, Zidi I, Guillard C, Sangrouber D, Carosella ED, Moreau P (2007) Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol 68:277-285.
    [105] Yie SM, Li LH, Li GM, Xiao R, Librach CL (2006) Progesterone enhances HLA-G gene expression in JEG-3 choriocarcinoma cells and human cytotrophoblasts in vitro. Hum Reprod 21:46-51.
    [106] Veit TD, Chies JA (2008) Tolerance versus immune response - MicroRNAs as important elements in the regulation of the HLA-G gene expression. Transpl Immunol Nov 25. [Epub ahead of print]
    [107] Lehmann U, Hasemeier B, Christgen M, Müller M, R?mermann D, L?nger F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17-24.
    [1] Aplin, JD. Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and in vitro. J Cell Sci 1991; 99:681-692.
    [2] Bischof P, Martelli M, Campana A, Itoh Y, Ogata Y and Nagase H.Importance of matrix metalloproteinases in human trophoblast invasion. Early Pregnancy 1995; 1:263-269.
    [3] Nagase H and Woessner J F. Matrix Metalloproteinases. J Biol Chem, 1999, 274 (31):21491-21494.
    [4] Patterson ML, Atkinson SJ, Knauper V, Murphy G. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett 2001; 503:158±162.
    [5] Wells M. The pathology of gestational trophoblastic disease: recent advances. Pathology 2007; 39:88-96.
    [6] Hu Y, Dutz JP, MacCalman CD,et al. Decidual NK cells alter in vitro first trimester extravillous cytotrophoblast migration: a role for IFN-gamma. J Immunol. 2006 Dec 15;177(12):8522-8530.
    [7] McMaster MT, Zhou Y and Fisher SJ. Abnormal placentation and the syndrome of preeclampsia. Semin Nephrol 2004; 24:540-547.
    [8] Graham CH and Lala PK. Mechanism of control of trophoblast invasion in situ. J Cell Physiol 1991; 148:228-234.
    [9] Raga F, Casa? EM, Wen Y, Huang HY, Bonilla-Musoles F and Polan ML. Independent regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-3 in human endometrial stromal cells by gonadotropin-releasing hormone: implications in early human implantation. J Clin Endocrinol Metab 1999; 84:636-642.
    [10] Han DH, Denison MS, Tachibana H and Yamada K. Relationship between estrogen receptor-binding and estrogenic activities of environmental estrogens and suppression by flavonoids. Biosci Biotechnol Biochem 2002; 66:1479-1487.
    [11] Giudice LC, Conover CA, Bale L, et al. Identification and regulation of the IGFBP-4 protease and its physiological inhibitor in human trophoblasts and endometrial stroma: evidence for paracrine regulation of IGF-II bioavailability in the placental bed during human implantation. JClin Endocrinol Metab. 2002 May;87(5):2359-2366.
    [12] Huang SJ, Schatz F, Masch R, Regulation of chemokine production in response to pro-inflammatory cytokines in first trimester decidual cells. J Reprod Immunol. 2006 Dec;72(1-2):60-73.
    [13] Wang YL, Qiu W, Feng HC, Li YX, Zhuang LZ, Wang Z, Liu Y, Zhou JQ, Zhang DH and Tsao GS. Immortalization of normal human cytotrophoblast cells by reconstitution of telomeric reverse transcriptase activity. Mol Hum Reprod 2006; 12:451-460.
    [14] Rong-Hao L, Luo S and Zhuang LZ. Establishment and characterization of a cytotrophoblast cell line from normal placenta of human origin. Hum Reprod 1996; 11:1328-1333.
    [15] Zhao MR, Qiu W, Li YX, et al. Dual effect of transforming growth factor beta1 on cell adhesion and invasion in human placenta trophoblast cells. Reproduction. 2006 Aug;132(2):333-341.
    [16] Kim TD, Song KS, Li G, Choi H, Park HD, Lim K, Hwang BD and Yoon WH. Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer. BMC Cancer 2006; 6:211.
    [17] Fukushima K, Nakamura A, Ueda H, Yuasa K, Yoshida K, Takeda S and Ikeda S. Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet Disord 2007; 8:54.
    [18] Bj?rn SF, Hastrup N, Lund LR, Dan? K, Larsen JF and Pyke C. Co-ordinated expression of MMP-2 and its putative activator, MT1-MMP, in human placentation. Mol Hum Reprod 1997; 3:713-723.
    [19] Chou CS, Tai CJ, MacCalman CD and Leung PC. Dose-dependent effects of gonadotropin releasing hormone on matrix metalloproteinase (MMP)-2, and MMP-9 and tissue specific inhibitor of metalloproteinases-1 messenger ribonucleic acid levels in human decidual Stromal cells in vitro.J Clin Endocrinol Metab 2003; 88:680-688.
    [20] Isaka K, Usuda S, Ito H, Sagawa Y, Nakamura H, Nishi H, Suzuki Y, Li YF and Takayama M. Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta 2003; 24:53-64.
    [21] Staun-Ram E, Goldman S, Gabarin D and Shalev E. Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reprod Biol Endocrinol 2004; 2:59.
    [22] Tabibzadeh S and Babaknia A. The signals and molecular pathways involved in implantation, a symbiotic interaction between blastocyst and endometrium involving adhesion and tissue invasion. Hum Reprod 1995; 10:1579-1602.
    [23] Paria BC, Reese J, Das SK and Dey SK. Deciphering the cross-talk of implantation: advances and challenges. Science 2002; 296:2185-2188.
    [24] Braundmeier AG and Nowak RA. Cytokines regulate matrix metalloproteinases in human uterine endometrial fibroblast cells through a mechanism that does not involve increases in extracellular matrix metalloproteinase inducer. Am J Reprod Immunol 2006; 56:201-214.
    [25] Ancelin M, Buteau-Lozano H, Meduri G, Osborne-Pellegrin M, Sordello S, Plou?t J and Perrot-Applanat M. A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus. Proc Natl Acad Sci USA 2002; 99:6023-6028.
    [26] Karmakar S and Das C. Regulation of trophoblast invasion by IL-1beta and TGF-beta1. Am J Reprod Immunol 2002; 48(4):210-219.
    [27] Hills FA, Elder MG, Chard T and Sullivan MH. Regulation of human villous trophoblast by insulin-like growth factors and insulin-like growth factor-binding protein-1. J Endocrinol 2004; 183:487-496.
    [28] Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD, Koopman LA and Strominger JL. TGFbeta promotes conversion ofCD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA 2007; 104:3378-3383.
    [29] Lin HY, Yang Q, Wang HM, et al. Involvement of SMAD4, but not of SMAD2, in transforming growth factor-beta1-induced trophoblast expression of matrix metalloproteinase-2. Front Biosci. 2006 Jan 1;11:637-646.
    [30] Bischof P. Endocrine, paracrine and autocrine regulation of trophoblastic metalloproteinases. Early Pregnancy. 2001 Jan;5(1):30-31.
    [31] Ulug U, Goldman S, Ben-Shlomo I, et al. Matrix metalloproteinase (MMP)-2 and MMP-9 and their inhibitor, TIMP-1, in human term decidua and fetal membranes: the effect of prostaglandin F(2alpha) and indomethacin. Mol Hum Reprod. 2001 Dec;7(12):1187-1193.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.