引流淋巴结在异体复合组织移植中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着免疫抑制药物的不断发展和联合免疫抑制方案的不断进步,临床器官移植取得了巨大的成功,含有皮肤的同种异体复合组织移植(CTA)也进行了初步的尝试,并取得良好的效果。但是,终身使用免疫抑制药物带来的各种毒副作用延缓了CTA的进一步发展。在更好的免疫抑制药物出现之前,如何降低现有免疫抑制药物的全身使用剂量成为研究的热点。而带有皮肤的CTA多位于体表,易于观察和干预,因此,有效的局部免疫抑制有望降低全身免疫抑制用药量。
     移植免疫反应是以T细胞适应性免疫应答为主。血循环中的初始T细胞在次级淋巴组织与载有抗原的抗原提呈细胞(APCs)经过反复接触、识别,初始T细胞逐渐成熟,并增殖成为效应T细胞,再次进入血液循环,到达异体移植物局部后,促使移植物发生排斥反应。CTA的发展之所以滞后于器官移植,是因为皮肤的强免疫源性,因此解决了皮肤的移植排斥反应将推动CTA的发展。而皮肤移植物的异体抗原被APCs摄取后,只能沿着淋巴引流进入引流淋巴结,很难有大量的抗原通过血液进入脾或其他部位的淋巴结。因此,如果能够有效的干预引流淋巴结,就可能显著减少效应T细胞的产生,减轻移植物的排斥反应,进而降低免疫抑制药物的全身用药量,减少毒副作用。因此,本研究拟针对引流淋巴结在CTA中的作用进行研究。
     实验一大鼠淋巴结解剖及异体移植模型的选择
     目的:通过大鼠全身淋巴结的解剖,各部位引流淋巴结的确定,对比研究各种移植模型的引流淋巴结,为淋巴结干预研究选择适当的移植模型。方法:对SD封闭群、Lewis近交系大鼠分别进行全身淋巴结解剖,记录淋巴结的全身分布位置、形态特征、数量、重量及单位重量细胞浓度,比较不同品系间、不同体重大鼠间淋巴结重量、单位重量细胞浓度的差异;大鼠备选皮瓣局部皮下注射美兰,解剖大鼠,定位染色的引流淋巴结;通过分析比较不同移植模型的解剖及引流淋巴结确定本实验移植模型。结果:2个品系大鼠淋巴结的分布基本明确,无明显变异,数量、重量恒定,SD封闭群大鼠淋巴结较Lewis大鼠略重,淋巴结重量随大鼠体重的增加而增加。经颜面部、侧胸、下腹部皮瓣引流淋巴结的确定及三种皮瓣手术难度的评估,确定以下腹部皮瓣为最佳,选定为本研究移植模型。并成功建立下腹部游离皮瓣移植模型,并通过术后淋巴结的解剖验证了下腹部游离皮瓣的引流淋巴结的部位。结论:下腹部皮瓣的引流淋巴结为对侧腹股沟淋巴结、同侧腋固有淋巴结、同侧髂内淋巴结,该皮瓣移植模型是淋巴结干预实验的最佳移植模型。
     实验二雷帕霉素腹腔注射对大鼠异体皮瓣移植的作用
     目的:通过雷帕霉素腹部注射对大鼠腹部皮瓣存活的影响研究确定雷帕霉素的最低有效免疫抑制剂量。方法:以BN大鼠为供体、Lewis大鼠为受体,进行下腹部游离皮瓣异体移植;将雷帕霉素原料药配置成1mg/mL的雷帕霉素腹腔注射剂,根据雷帕霉素使用剂量8、4、2、1、0mg/kg/day分为A、B、C、D、E 5组,用药时间-1—7天;观察各组皮瓣存活时间、存活质量、病理表现,确定雷帕霉素最低有效免疫抑制剂量。结果:总实验例数36例,有效例数29例。各组大鼠平均存活时间分别为17.3±1.7天(A组)、17.5±1.7天(B组)、14.2±1.3天(C组)、7.3±0.6天(D组)、7.3±0.5天(E组)。结论:选择2mg/kg/day雷帕霉素剂量作为最低有效免疫抑制剂量。
     实验三去除引流淋巴结对大鼠异体皮瓣存活的影响
     目的:通过去除大鼠下腹部皮瓣的引流淋巴结,确定其对皮瓣存活的影响。方法:BN大鼠为供体、Lewis大鼠为受体,将大鼠随机分为5组,A组:移植术前2周开腹假手术对照;B组:移植术前2周开腹假手术,雷帕霉素2mg/kg/day全身用药(-1 ~ 7天);C组:移植术前2周去除引流淋巴结;D组:移植术前2周去除引流淋巴结及脾;E组:移植术前2周去除引流淋巴结,雷帕霉素2mg/kg/day全身用药(-1 ~ 7天)。术后通过观察动物存活率、皮瓣平均存活时间、血清IL-2水平等指标评价去除引流淋巴结对皮瓣存活的影响。对移植前2周,移植同时、移植后3天不同时间去除引流淋巴结对皮瓣存活时间的影响也进行了研究。结果:各组的平均存活时间分别为7.3±0.5天(A组),14.4±0.3天(B组),9.5±1.0天(C组),8.8±0.8天(D组)、17.0±1.9天(E组)。B、E组血清IL-2水平明显低于A、C、D组;C、D组的IL-2水平比A组略高。术前14天、术中、术后3天不同时间去除引流淋巴结,移植后皮瓣存活天数无明显差异。结论:去除引流淋巴结可以延长皮瓣平均存活时间,结合低剂量雷帕霉素免疫抑制可以延长皮瓣存活时间。
     实验四淋巴结、淋巴引流在移植免疫中的机制研究
     目的:通过研究淋巴结对异体移植物的反应、阻断淋巴引流对移植物存活的影响,探讨淋巴结、淋巴引流在移植免疫中的机制。方法:BN为供体、Lewis为受体,下腹部异体皮瓣移植术后1、3、5、7、9天不同时间解剖淋巴结,同Lewis自体分离腹部皮瓣保留血管蒂再缝合回去作为对照,对两组大鼠不同时间摘取的引流淋巴结和非引流淋巴结进行称重、细胞计数、流式细胞分析CD4+CD25+细胞的变化,分析引流淋巴结在异体移植后的动态变化。对去除引流淋巴结的Lewis大鼠进行BN下腹部游离皮瓣移植后,获取非引流淋巴结,观察其大体变化、重量变化、细胞计数、流式细胞分析来判断非引流淋巴结是否受异体移植物的影响。建立SD→SD、BN→Lewis的隔离皮肤或不隔离皮肤的皮管移植模型,通过阻断皮肤淋巴引流观察皮管存活时间及质量。结果:移植后的引流淋巴结逐渐充血、肿大、重量增加,细胞密度增高,流式细胞分析发现CD4+CD25+细胞较非引流淋巴结增多。异体移植及单纯炎症均可导致引流淋巴结重量增加、单位重量细胞浓度增加,但移植导致淋巴结重量的增加高于炎症所致,单位重量细胞浓度无明显差别,但较两组的分引流淋巴结均有明显差别。去除引流淋巴结后移植术后,非引流淋巴结未发现明显充血及肿大。隔绝皮肤淋巴引流的SD→SD皮管移植物最长存活至32天,未隔绝供、受体皮肤接触的SD→SD及两组BN→Lewis的皮管移植均未能长期存活。结论:引流淋巴结是同种异体移植后主要反应部位,隔绝皮肤淋巴引流供、受体间在较小的MHC差异下可明显延长异体血管化皮肤的存活时间。
The emergance of new immunosuppressive drugs leads to a big success in clinical organ transplantation. In addition, the success pushes the composite tissue allotransplantation to be a reality. However, life-long dependence on the immunosuppressive drugs will increase the incidence of side effects of immunosuppression. Without better immunosuppressive drugs, we need to try the best to decrease the dose of system immunosuppression. The composite tissue allgrafts are usually superficial for investing and interfering. As a result, local immunosuppression may be a better way to decrease the system immunosuppression.
     T lymphocytes are the principle component of adaptive alloimmune response. Na?ve T cells within the blood could enter secondary lymphoid tissues via HEV and contact with APCs, which present the alloantigens. Then na?ve T cells start to mature to effector T cells, which will get back to the blood and get to the allografts finally, and start the rejection to the allografts. The high immunogenecity of skin in CTAs is the main reason for leaving behind by organ transplantation. Therefore, conquering the rejection of skin is the key to support the development of CTA. The antigen of skin allografts digested by APCs only went through lymph to draining lymph nodes (dLNs). Therefore, the method of interrupting the dLNs efficiently will significantly decrease the effector T cells, and lower the rejection response. This will decrease the system dose of immunosuppression. The research aimed to the effect of dLNs on the compotise tissue allografts.
     Experiment 1 Anatomy of rat lymph nodes and selection of best allotransplant rat model
     Objective To locate the draining lymph nodes of various skin flap of rats by anatomy of whole lymph nodes of rats and to choose a best animal transplant model for the research of lymph nodes by the different characteristics of various draining lymph nodes. Methods SD and Lewis rats will be anatomized for the whole body lymph nodes. The location, shape, amount, weight and cell consentration of lymph nodes will be record and analysis. The difference of lymph nodes between two strains of rats or two different weights will be compared. Injection of blue ink will be performed subcutaneously in various places in rats for locating the draining lymph nodes. The best animal transplant model will be chosen based on the draining lymph nodes and easiness of accessible flaps. Results The locations of the lymph nodes of two strain rats are similar. The amount and weight of lymph nodes are stable. The lymph nodes weights of SD rat are heavier than those of Lewis rat. The heavier the rat is, the heavier the lymph nodes. Epigastric flap is selected to be the best model among three good flaps for the research. And the epigastric flap transplant model is established successfully. Conclusion The draining lymph nodes of epigastric flap are contralateral inguinal LNs, ipsilateral internal iliac LNs, and ipsilateral axillary LNs. Moreover, the epigastric flap transplant model is the best for the research of draining lymph nodes.
     Experiment 2 The effect of rapamycin intraperitoneal injection on allografts of rats
     Objective To make sure the lowest and efficient immunosuppressive dose of rapamycin on the survival of epigastric flap allografts by rapamycin intraperitoneal injection of different doses. Methods BN and Lewis rats were applied as donor and receiptor, respectively, in epigastric flap allotransplantation. The experiment was divided to five groups according to the various rapamycin doses: 8, 4, 2, 1, 0mg/kg/day. The duration of the drug application is from day 1 of pre-operation to day 7 of post-operation. The mean survival time, the quality of the allografts, pathology will be invested. Results The completely animal sample number was 36, and useful animal sample number was 29. The mean survival time of the groups are 17.3±1.7 days, 17.5±1.7 days, 14.2±1.3 days, 7.3±0.6 days, 7.3±0.5 days, respectively. Conclusion the lowest and efficient immunosuppressive dose of rapamycin on the survival of epigastric flap allografts is 2mg/kg/day.
     Experiment 3 The effect of removing draining lymph nodes on the survival of rat allografts
     Objective To study the effect of removing draining lymph nodes on the survival of allografts. Methods BN and Lewis rats were applied as donor and receiptor, respectively, in epigastric flap allotransplantation. The experiment was divided into five groups randomly. Group A: laparotomy 2 weeks before transplant control; Group B: laparotomy 2 weeks before transplant and rapamycin 2mg/kg/day for 9 days (-1~7); Group C: removal of draining lymph nodes 2 weeks before transplant; Group D: removal of draining lymph nodes and spleen 2 weeks before transplant; Group E: removal of draining lymph nodes 2 weeks before transplant and rapamycin 2mg/kg/day for 9 days (-1~7). The mean survival time, IL-2 levels of serum are investigated for the effect of removing draining lymph nodes. The effect of removing draining lymph nodes in different time is also investigated. Results The mean survival time of the five groups are 7.3±0.5 days, 14.4±0.3 days, 9.5±1.0 days, 8.8±0.8 days, 17.0±1.9 days. The IL-2 levels of Group B, E are significantly lower than those of Group A, C and D. The IL-2 levels of Group C, D are slightly higher than Group A. The mean survival time among different times of removing draining lymph nodes are similar. Conclusion Removal of draining lymph nodes could prolong the mean survival time of rat allografts and with low dose of rapamycin could prolong the MST of allgrafts.
     Experiment 4 The machnism study of lymph nodes and lymphatic drainage in transplant immunity
     Objective To study the machnism of lymph nodes and lymphatic drainage in transplant immunity by investigate the response of lymph nodes to alltransplant and the effect on allografts survival time after separate the skin contact between host and graft. Methods BN and Lewis rats were applied as donor and receiptor, respectively, in epigastric flap allotransplantation. Lymph nodes are collected 1, 3, 5, 7, 9 days respectively after transplant. The control is designed by Lewis self-epigastric flap removal without cutting off the vascular pedicle and sewing back after a while. The weight, cell concentration, CD4+CD25+ cells were investigated for dynamic analysis. The flap tube allotransplant model between SD and SD rat or BN and Lewis rat with or without connection between host and graft skin will be established. The survival time and quality of the flap tube will be judged. Results The draining lymph nodes after transplant were congestive, enlarged, and increased by weight, CD4+CD25+cells also increased compared with non-draining lymph nodes. The indicators of inflammation control are similar to the transplant group except the slower increase of LN weight. The longest survival time is 32 days in flap tube allotransplantation model without connection between host and graft skin. The other three groups all failed to prolong the survival time of allografts. Conclusion Draining lymph nodes are the principle response place after alltransplantation. Separation of skin connection between host and grafts could prolong the survival time of allografts only across a weak MHC barrier between donor and receiptor.
引文
[1]王炜.整形外科学(上册).杭州:浙江科学技术出版社. 1999: 61-3.
    [2] Kahan BD. Cosmas and Damien revisited. Transplant Proc, 1983, 15(4): 2211-6.
    [3] Black KS, Hewitt CW, Fraser LA, et al. Cosmas and Damian in the laboratory. N Engl J Med, 1982, 306(6): 368-9.
    [4] Gibson T, Medawar PB: Fate of skin homografts in man. J Anat, 1942, 77(4): 299-310.
    [5] Murray JE, Merrill JP, Harrison JH. Renal homotransplantations in identical twins. Surg Forum, 1955, 6: 432-6.
    [6] Merrill JP, Murray JE, Harrison JH, et al. Successful homotransplantations of the human kidney between identical twins. JAMA, 1956, 160(4): 277-82.
    [7] Murray JE, Merrill JP, Dammin GJ, et al. Study on transplantation immunity after total body irradiation: clinical and experimental investigation. Surgery, 1960, 48: 272-84.
    [8] Cohn R, Oberhelman H Jr, Young J, et al. A successful case of homotransplantation of the kidney between identical twins. Am J Surg. 1961, 102: 344-50.
    [9] Murray JE, Merrill JP, Harrison JB, et al. Prolonged survival of human-kidney homografts by immunosuppressive drug therapy. N Engl J Med, 1963, 268: 1315-23.
    [10] Merrill JP, Murray JE, Takacs F. Successful transplantation of kidney from a human cadaver. JAMA, 1963, 185: 347-53.
    [11] Murray JE: Nobel Prize lecture: the first successful transplants in man. Available at: http://www.stanford.edu/dept/HPS/transplant/html/murray. Accessed April 3, 2010.
    [12] Peacock EE Jr. Some problems in flexor tendon healing. Surgery, 1959, 45(3): 415-23.
    [13] Peacock EE Jr. Homologous composite tissue grafts of the digital flexor mechanism in human beings. Transplant Bull, 1960, 7: 418-21.
    [14] Peacock EE Jr, Madden JW. Human composite flexor tendon allografts. Ann Surg,1967, 166(4): 624-9.
    [15] Guimberteau JC, Baudet J, Panconi B, et al: Human allotransplant of a digital flexion system vascularized on the ulnar pedicle: a preliminary report and 1-year follow-up of two cases. Plast Reconstr Surg, 1992, 89(6): 1135-47.
    [16] Guimberteau JC, Panconi B, Boileau R. Simple and composite ulnar transplants in reconstructive surgery of the hand. Ann Chir Plast Esthet, 1994, 39(3): 301-17.
    [17] Gilbert R: Transplant is successful with a cadaver forearm. Med Trib Med News 5:20, 1964.
    [18] Gilbert R: Hand transplanted from cadaver is reamputated. Med Trib Med News 5:23, 1964.
    [19] A randomized clinical trial of cyclosporine in cadaveric renal transplantation. N Engl J Med, 1983, 309(14): 809-15.
    [20] A randomized clinical trial of cyclosporine in cadaveric renal transplantation. Analysis at three years. The Canadian Multicentre Transplant StudyGroup.N Engl J Med, 1986, 314(19): 1219-25.
    [21] Danovitch GM. Choice of immunosuppressive drugs and individualization of immunosuppressive therapy for kidney transplant patients. Transplant Proc, 1999, 31(8A): 2S-6S.
    [22] Press BH, Sibley RK, Shons AR. Limb allotransplantation in the rat: extended survival and return of nerve function with continuous cyclosporin/prednisone immunosuppression. Ann Plast Surg, 1986, 16: 313-21.
    [23] Daniel RK, Egerszegi EP, Samulack DD, et al. Tissue transplants in primates for upper extremity reconstruction: a preliminary report. J Hand Surg [Am], 1986, 11: 1-8.
    [24] Hovius SE, Stevens HP, van Nierop PW, et al. Allogeneic transplantation of the radial side of the hand in the rhesus monkey: I. Technical aspects. Plast Reconstr Surg, 1992, 89: 700-9.
    [25] Stark GB, Swartz WM, Narayanan K, et al. Hand transplantation in baboons. Transplant Proc, 1987, 19: 3968-71.
    [26] Bain JR. Peripheral nerve and neuromuscular allotransplantation: current status. Microsurgery, 2000, 20: 384-8.
    [27] Mackinnon SE, Hudson AR. Clinical application of peripheral nerve transplantation. Plast Reconstr Surg, 1992, 90: 695-9.
    [28] Mackinnon SE, Doolabh VB, Novak CB, et al. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg, 2001, 107: 1419-29.
    [29] Jones TR, Humphrey PA, Brennan DC. Transplantation of vascularized allogeneic skeletal muscle for scalp reconstruction in renal transplant patient. Transplant Proc, 1998, 30: 2746-53.
    [30] Hofmann GO, Kirschner MH. Clinical experience in allogeneic vascularized bone and joint allografting. Microsurgery, 2000, 20: 375-83.
    [31] Birchall M. Human laryngeal allograft: shift of emphasis in transplantation. Lancet, 1998, 351(9102): 539-40.
    [32] Strome M, Stein J, Esclamado R, et al. Laryngeal transplantation and 40-month follow-up. N Engl J Med, 2001, 344(22): 1676-9.
    [33] Birchall MA, Lorenz RR, Berke GS, et al. Laryngeal transplantation in 2005: a review. Am J Transplant, 2006, 6(1):20-6.
    [34] Levi DM, Tzakis AG, Kato T, et al. Transplantation of the abdominal wall. Lancet,2003, 361(9376): 2173-6.
    [35] Selvaggi G, Levi DM, Cipriani R, et al. Abdominal wall transplantation: surgical and immunologic aspects. Transplant Proc, 2009, 41(2): 521-2.
    [36] Birchall M. Tongue transplantation. Lancet, 2004, 363(9422): 1663.
    [37] Fageeh W, Raffa H, Jabbad H, et al. Transplantation of the human uterus. Int J Gynaecol Obstet, 2002, 76: 245-51.
    [38] Ren X, Shirbacheh M, Ustuner E, et al. Radial forelimb osteomyocutaneous flap as a pre-clinical composite tissue allograft (CTA) model in swine. Microsurgery, 2000, 20: 143-9.
    [39] Ustuner ET, Majzoub RK, Ren X, et al. Swine composite tissue allotransplant model for preclinical hand transplant studies. Microsurgery, 2000, 20: 400-6.
    [40] Jones Jr JW, Ustuner ET, Zdichavsky M, et al. Long-term survival of an extremity composite tissue allograft with FK506-mycophenolate mofetil therapy. Surgery, 1999, 126: 384-8.
    [41] Dubernard JM, Owen E, Herzberg G, et al. Human hand allograft: report on first 6 months. Lancet, 1999, 353: 1315-20.
    [42] Jones JW, Gruber SA, Barker JH, et al. Successful hand transplantation. One-year follow-up. Louisville Hand Transplant Team. N Engl J Med, 2000, 343: 468-73.
    [43] Francois CG, Breidenbach WC, Maldonado C, et al. Hand transplantation: comparisons and observations of the first four clinical cases. Microsurgery, 2000, 20: 360-71.
    [44] Gordon CR, Siemionow M. Requirements for the development of a hand transplantation program. Ann Plast Surg, 2009, 63(3): 262-73.
    [45] Dubernard JM, Lengele B, Morelon E, et al. Outcomes 18 months after the first human partial face transplantation. N Engl J Med, 2007, 357: 2451-60.
    [46] Guo S, Han Y, Zhang X, et al. Human facial allotransplantation: a 2-year follow-up study. Lancet, 2008, 372: 631-8.
    [47] Lantieri L, Meningaud JP, Grimbert P, et al. Repair of the lower and middle parts of the face by composite tissue allotransplantation in a patient with massive plexiform neurofibroma: a 1-year follow-up study. Lancet, 2008, 372: 639-45.
    [48] Siemionow M, Papay F, Alam D, et al. First U.S. near-total human face transplantation: a paradigm shift for massive facial injuries. Lancet, 2009, 374(9685): 203-9.
    [49] Gorantla VS, Barker JH, Jones Jr JW, et al. Immunosuppressive agents in transplantation: mechanisms of action and current anti-rejection strategies. Microsurgery, 2000, 20: 420-9.
    [50] Kanitakis J, Badet L, Petruzzo P, et al. Clinicopathologic monitoring of the skin and oral mucosa of the first human face allograft: Report on the first eight months. Transplantation, 2006, 82: 1610-5.
    [51] Barry JM. Immunosuppressive drugs in renal transplantation. A review of the regimens. Drugs, 1992, 44: 554-66.
    [52] Pirsch JD, Miller J, Deierhoi MH, et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation, 1997, 63: 977-83.
    [53] Goto T, Kino T, Hatanaka H, et al. Discovery of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis. Transplant Proc, 1987, 19: 4-8.
    [54] Ghasemian SR, Light JA, Currier C, et al. Tacrolimus vs Neoral in renal and renal/pancreas transplantation. Clin Transplant, 1999, 13: 123-5.
    [55] Gold BG, Yew JY, Zeleny-Pooley M. The immunosuppressant FK506 increases GAP-43 mRNA levels in axotomized sensory neurons. Neurosci Lett, 1998, 241: 25-8.
    [56] Cottrell BL, Perez-Abadia G, Onifer SM, et al. Neuroregeneration in composite tissue allografts: effect of low-dose FK506 and mycophenolate mofetil immunotherapy. Plast Reconstr Surg, 2006, 118: 615-23 [discussion 624-15].
    [57] Gold BG. FK506 and the role of immunophilins in nerve regeneration. Mol Neurobiol, 1997, 15: 285-306.
    [58] Aoyama H, Tabata N, Tanaka M, et al. Successful treatment of resistant facial lesions of atopic dermatitis with 0.1% FK506 ointment. Br J Dermatol, 1995, 133: 494-6.
    [59] Remitz A, Reitamo S, Erkko P, et al. Tacrolimus ointment improves psoriasis in a microplaque assay. Br J Dermatol, 1999, 141: 103-7.
    [60] Sollinger HW. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation, 1995, 60: 225-32.
    [61] Ahsan N, Johnson C, Gonwa T, et al. Randomized trial of tacrolimus plus mycophenolate mofetil or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate mofetil after cadaveric kidney transplantation: results at 2 years. Transplantation 2001;72:245e50.
    [62] Mendez R, Gonwa T, Yang HC, et al. A prospective, randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 1 year. Transplantation 2005;80:303e9.
    [63] Ciancio G, Burke GW, Suzart K, et al. Daclizumab induction, tacrolimus, mycophenolate mofetil and steroids as an immunosuppression regimen for primary kidney transplant recipients. Transplantation 2002;73:1100e6.
    [64] VanrenterghemY, van Hooff JP, Squifflet JP, et al. Minimization of immunosuppressive therapy after renal transplantation: results of a randomized controlled trial. Am J Transplant 2005;5:87e95.
    [65] Lanzetta M, Ayrout C, Gal A, et al. Experimental limb transplantation, part II: excellent return of function and indefinite survival after withdrawal ofimmunosuppression. Transplant Proc, 2004, 36: 675-9.
    [66] Lee WP, Yaremchuk MJ, Pan YC, et al. Relative antigenicity ofcomponents of a vascularized limb allograft. Plast Reconstr Surg, 1991, 87: 401-11.
    [67] Matas AJ, Humar A, Payne WD, et al. Decreased acute rejection in kidney transplant recipients is associated with decreased chronic rejection. Ann Surg, 1999, 230: 493-8 [discussion 498-500].
    [68] Tufveson G, Johnsson C. Chronic allograft dysfunctione chronic rejection revisited. Transplantation, 2000, 70: 411-2.
    [69] Kasiske BL, Chakkera HA, Roel J. Explained and unexplained ischemic heart disease risk after renal transplantation. J Am Soc Nephrol, 2000, 11: 1735-43.
    [70] Radermacher J, Meiners M, Bramlage C, et al. Pronounced renal vasoconstriction and systemic hypertension in renal transplant patients treated with cyclosporin A versus FK506. Transpl Int, 1998, 11: 3-10.
    [71] Hettiaratchy S, Butler PE. Tolerance induction in composite facial allograft transplantation in the rat model. Plast Reconstr Surg, 2006, 117: 1043-4 [author reply 1044-5].
    [72] Wekerle T, Sykes M. Mixed chimerism and transplantation tolerance. Annu Rev Med, 2001, 52: 353-70.
    [73] Siemionow M, Agaoglu G. Tissue transplantation in plastic surgery. Clin Plast Surg, 2007, 34: 251. ix.
    [74] Ravindra KV, Wu S, Bozulic L, Xu H, Breidenbach WC, Ildstad ST. Composite tissue transplantation: a rapidly advancing field. Transplant Proc, 2008, 40: 1237.
    [75] Gordon CR, Nazzal J, Lozano-Calderan SA, et al. From experimental rat hindlimb to clinical face composite tissue allotransplantation: historical background and current status. Microsurgery, 2006, 26: 566.
    [76] Siemionow MZ, Izycki DM, Zielinski M. Donor-specifictolerance in fully major histocompatibility major histocompatibility complex-mismatched limb allograft transplants under an anti-alphabeta T-cell receptor monoclonal antibody and cyclosporine A protocol. Transplantation, 2003, 76: 1662.
    [77] Ozer K, Oke R, Gurunluoglu R, et al. Induction of tolerance to hind limb allografts in rats receiving cyclosporine A and antilymphocyte serum: effect of duration of the treatment. Transplantation, 2003, 75: 31.
    [78] Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med, 2008, 358: 353.
    [79] Jiang HQ, Wang Y, Hu XB, Li YS, Li JS. Composite tissue allograft transplantation of cephalocervical skin flap and two ears. Plast Reconstr Surg, 2005, 115: 31e. discussion 6e-7e.
    [80] Hofmann GO, Kirschner MH, Wagner FD, Land W, Buhren V. Allogeneic vascularized grafting of a human knee joint with postoperative immunosuppression.Arch Orthop Trauma Surg, 1997, 116: 125.
    [81] Hofmann GO, Kirschner MH, Wagner FD, Brauns L, Gonschorek O, Buhren V. Allogeneic vascularized transplantation of human femoral diaphyses and total knee joints–first clinical experiences. Transplant Proc, 1998, 30: 2754.
    [82] Bos JD, Kapsenberg ML. The skin immune system: progress in cutaneous biology. Immunol Today, 1993, 14: 75.
    [83] Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature, 1953, 172: 603.
    [84] Cober SR, Randolph MA, Lee WP. Skin allograft survival following intrathymic injection of donor bone marrow. J Surg Res, 1999, 85: 204.
    [85] Bartlett AS, McCall JL, Ameratunga R, et al. Prolongation of fully allogeneic skin graft survival in the rat by combined administration of costimulatory blockade and sirolimus. Transplant Proc, 2002, 34: 1127.
    [86] Petit F, Minns AB, Nazzal JA, et al. Prolongation of skin allograft survival after neonatal injection of donor bone marrow and epidermal cells. Plast Reconstr Surg, 2004, 113: 270.
    [87] Demir Y, Ozmen S, Klimczak A, Mukherjee AL, Siemionow MZ. Strategies to develop chimerism in vascularized skin allografts across MHC barrier. Microsurgery, 2005, 25: 415.
    [88] Nasir S, Bozkurt M, Krokowicz L, Klimczak A, Siemionow M. Correlation of chimerism with graft size and revascularization in vascularized and nonvascularized skin allografts. Ann Plast Surg, 2009, 62: 430.
    [89] Horner BM, Randolph MA, Huang CA, Butler PE. Skin tolerance: in search of the Holy Grail. Transpl Int, 2008, 21: 101.
    [90] Horner BM, Ferguson KK, Randolph MA, et al. In vivo observations of cell trafficking in allotransplanted vascularized skin flaps and conventional skin grafts. J Plast Reconstr Aesthet Surg, 2010, 63(4):711-9.
    [91] Jones ND, Turvey SE, Van Maurik A, et al. Differential susceptibility of heart, skin, and islet allografts to T cell-mediated rejection. J Immunol, 2001, 166: 2824.
    [92] Horner BM, Randolph MA, Duran-Struuck R, et al. Induction of tolerance to an allogeneic skin flap transplant in a preclinical large animal model. Transplant Proc, 2009, 41: 539.
    [93] Pidwell DJ, Burns C. The immunology of composite tissue transplantation. Clin Plast Surg, 2007, 34(2): 303-17.
    [94]陈慰峰.医学免疫学.第四版.北京:人民卫生出版社. 2006: 148-9.
    [95]曹雪涛.免疫学前沿进展.北京:人民卫生出版社. 2009: 511-39.
    [96] Adams P, Oprencak E, Orosz CG. LDA of human tetanus reactive helper T lymphocytes: a rapid method for enumeration of helper lymphocytes with specificity for soluble antigen. J Immunol Methods, 1991, 142: 231–41.
    [97] Orosz CG, Adams P, Ferguson R. Frequency of human alloantigen reactive T lymphocytes: II method for LDA for alloantigen reactive helper T cells in human peripheral blood. Transplantation, 1987, 43(5): 718–24.
    [98] Rogers NJ, Lechler RI. Allorecognition. Am J Transplant 2001;1:97–102.
    [99] Liu X, Sun YK, Xi YP, et al. Contribution of direct and indirect recognition pathways to T cell alloreactivity. J Exp Med, 1993, 177: 1643–50.
    [100] Hornick P, Lechler R. Direct and indirect pathways of alloantigen recognition: relevance to acute and chronic allograft rejection. Nephrol Dial Transplant, 1997, 12: 1806–10.
    [101] Blattman J, Antia R, Sourdive D, et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 2002; 195:657-64.
    [102] Moon JJ, Chu H, Pepper M, et al. Naive CD4 T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007;27:203-13.
    [103] Aoshi A, Zinselmeyer B, Konjufca V, et al. Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity 2008;29:476-86.
    [104] Stoll S, Delon J, Brotz T, Germain R. Dynamic imaging of T-cell dendritic cell interactions in lymph nodes. Science 2002;296:1873-6.
    [105] Cyster JG. Chemokines and cell migration in secondary lymphoid organs. Science 1999;286:2098-102.
    [106] Houston EJ, Nechanitzky R, Fink P. Cutting edge: contact with secondary lymphoid organs drives postthymic T cell maturation. J Immunol 2008;181:5213-7.
    [107] Mempel T, Henrickson S, von Andrian U. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 2004;427: 154-9.
    [108] Dai Z, Lakkis FG. Cutting edge: secondary lymphoid organs are necessary for maintaining the CD4, but not CD8, naive T cell pool. J Immunol 2001;167:6711-5.
    [109] Karrer U, Althage A, Odermatt B, et al. On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11-/-) mutant mice. J Exp Med 1997;185:2157-70.
    [110] Ochsenbein AF, Klenerman P, Karrer U, et al. Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA 1999;96:2233-8.
    [111] Lakkis F. Where is the alloimmune response initiated? Am J Transplant 2003;3:241-2.
    [112] Gould DS, Auchincloss H. Direct and indirect recognition: the role of MHC antigens. Immunol Today 1999;20:77-82.
    [113] Benichou G, Valujskikh A, Heeger PS. Contributions of direct and indirect T cell alloreactivity during allograft rejection in mice. J Immunol 1999;162:352-8.
    [114] Ochando JC, Krieger NR, Bromberg JS. Direct versus indirect allorecognition:visualization of dendritic cell distribution and interactions during rejection and tolerization. Am J Transplant 2006;6:2488-96.
    [115] Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol 2001;166:973-81.
    [116] Augustine J, Siu D, Clemente M, Schulak J, Heeger P, Hricik D. Pretransplant IFN-γELISPOTs are associated with post-transplant renal function in African American renal transplant recipients. Am J Transplant 2005;5:1971-5.
    [117] Brehm M, Markees T, Daniels K, Greiner D, Rossini A, Welsh R. Direct visualization of cross-reactive effector and memory allospecific CD8 T cells generated in response to viral infection. J Immunol 2003;170:4077-86.
    [118] Burrows S, Khanna R, Burrows J, Moss D. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) crossreactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J Exp Med 1994;179:1155-61.
    [119] Groom A, Schmidt E, MacDonald I. Microcirculatory pathways and blood flow in spleen: new insights from washout kinetics, corrosion casts, and quantitative intravital videomicroscopy. Scanning Microsc 1991;5:159-74.
    [120] MacDonald I, Ragan D, Schmidt E, Groom A. Kinetics of red blood cell passage through interendothelial slits into venous sinuses in rat spleen, analyzed by in vivo microscopy. Microvas Res 1987:61-88.
    [121] Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005;5:606-16.
    [122] Nolte MA, Belien JAM, Schadee-Estermans I, et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J Exp Med 2003;198:505-12.
    [123] Ansel K, Ngo V, Hyman P, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000:309-14.
    [124] Ngo V, Korner H, Gunn M, et al. Lymphotoxin a/b and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell area of the spleen. J Exp Med 1999:403-12.
    [125] Gunn M, Kyuwa S, Tam C, et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 1999:451-60.
    [126] Hargreaves D, Hyman P, Lu T, et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med 2001;194:45-56.
    [127] Kang Y, Kim J, Bruening S, et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci U S A 2004;101:215-20.
    [128] Geitjtenbeek T, BGroot P, Nolte M, et al. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 2002;100:2908-16.
    [129] Munday J, Floyd H, Crocker P. Sialic acid binding receptors (siglecs) expressed by macrophages. J Leukoc Biol 1999;66:705-11.
    [130] Jones C, Virji M, Crocker P. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 2003;49:1213-25.
    [131] Elomaa O, Kangas M, Sahlberg C, et al. Cloning of a novel bacteriabinding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 1995;80:603-9.
    [132] Sieler P, Aichele P, Odermatt B, Hengartner H, Zinkernagel R, Schwendener R. Crucial role of marginal zone macrophages and marginal zone metallophils in the clearance of lymphocytic choriomeningitis virus infection. Eur J Immunol 1997;27:2626-33.
    [133] Oehen S, Odermatt B, Karrer U, Hengartner H, Zinkernagel R, Lopez-Macias C. Marginal zone macrophages and immune responses against viruses. J Immunol 2002;169:1453-8.
    [134] Eloranta M, Alm G. Splenic marginal metallophilic macrophages and marginal zone macrophages are the major interferon-α/βproducers in mice upon intravenous challenge with herpes simplex virus. Scand J Immunol 1999;49:391-4.
    [135] Attanavanich K, Kearney JF. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J Immunol 2004;172: 803-11.
    [136] Ferguson A, Youd M, Corley R. Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells. Int Immunol 2004;16:1411-22.
    [137] Cinamon G, Zachariah M, Lam O, Foss FF, Cyster J. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 2008;9:54-62.
    [138] Alugupalli K, Leong J, Woodland R, Muramatsu M, Honjo T, Gerstein R. B1b lymphocytes confer T cell–independent long-lasting immunity. Immunity 2004;21:379-90.
    [139] Haas K, Poe J, Steeber D, Tedder T. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S.pneumoniae. Immunity 2005; 23:7-18.
    [140] Zhou W, Ohdan H, Tanaka Y, et al. NOD/SCID mice engrafted with human peripheral blood lymphocytes can be a model for investigating B cells responding to blood group A carbohydrate determinant. Transpl Immunol 2003;12:9-18.
    [141] Sumaraju V, Smith L, Smith S. Infectious complications in asplenic hosts. Infect Dis Clin North Am 2001;15:551-65.
    [142] Alexandre G, Squifflet J, De Bruyere M, et al. Present experiences in a series of 26 ABO-incompatible living donor renal allografts. Transplant Proc 1987;19:4538-42.
    [143] Locke J, Zachary A, Warren D, Simpkins C, Segev D, Montgomery R. The utility of splenectomy as rescue treatment for severe acute antibody mediated rejection. Am J Transplant 2007;7:842-6.
    [144] Randolph G, Angeli V, Swartz M. Dendritic cells trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 2005:617-28.
    [145] Gretz J, Anderson A, Shaw S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Imm Rev 1997;156:11-24.
    [146] Roozendaal R, Mempel T, Picher L, et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 2009;30:264-76.
    [147] Stamper H, Woodruff J. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high endothelial venules. J Exp Med 1976;144: 828-34.
    [148] Baekkevold E, Yamanaka T, Palframan R, et al. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med 2001;193:1105-11.
    [149] Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76: 301-14.
    [150] Debes GF, Arnold CN, Young AJ, et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 2005;6:889-94.
    [151] Gretz J, Norbury C, Anderson A, Proudfoot A, Shaw S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 2000;192:1425-40.
    [152] Bajénoff M, Egen J, Koo L, et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 2006;25:989-1001.
    [153] Hollowood K, Goodland J. Germinal centre cell kinetics. J Pathol 1998:229-33.
    [154] Itano AA, Jenkins MK. Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 2003;4:733-9.
    [155] Catron D, Itano A, Pape K, Mueller D, LJenkins M. Visualizing the first 50hr of the primary immune response to a soluble antigen. Immunity 2004;21:341-7.
    [156] Wei S, Rosen H, Matheu M, et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 2005;6:1228-35.
    [157] Schwab S, Pereira J, Matloubian M, Xu Y, Huang Y, Cyster J. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005;309:1735-9.
    [158] Junt T, Moseman E, Iannacone M, et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 2007;450:110-4.
    [159] Phan T, Grigorova I, Okada T, Cyster J. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 2007;8:992-1000.
    [160] Lee J-W, Eparduad E, Sun J, et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 2007;8:181-90.
    [161] Magnusson F, Liblau R, von Boehmer H, et al. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell–mediated intestinal autoimmunity. Gastroenterology 2008;134: 1028-37.
    [162] Ehrchen J, Roth J, Roebrock K, et al. The absence of cutaneous lymph nodes results in a Th2 response and increased susceptibility to Leishmania major infection in mice. Infect Immun 2008;76:4241-50.
    [163] Mullins D, Sheasley S, Ream R, Bullock T, Fu Y, Engelhard V. Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med 2003;198:1023-34.
    [164] Montecalvo A, Shufesky W, Stolz D, et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 2008;180:3081-90.
    [165] Diacovo T, Blasius A, Mak T, Cella M, Colonna M. Adhesive mechanisms governing interferon-producing cell recruitment into lymph nodes. J Exp Med 2005;202:687-96.
    [166] Vermi W, Riboldi E, Wittamer V, et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J Exp Med 2005;201:509-15.
    [167] Cavanagh L, Bonasio R, Mazo I, et al. Activation of bone marrow–resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 2005;6:1029-37.
    [168] Alvarez D, Vollmann E, von Andrian U. Mechanisms and consequence of dendritic cell migration. Immunity 2008;29:325-42.
    [169] Bursch L, Wang L, Igyarto B, et al. Identification of a novel population of Langerin+ dendritic cells. J Exp Med 2007;204:3147-56.
    [170] Stutte S, Jux B, Esser C, Forster I. CD24a expression levels discriminate Langerhans cells from dermal dendritic cells in murine skin and lymph nodes. J Invest Dermatol 2008;128:1470-5.
    [171] Hammad H, Lambrecht B. Lung dendritic cell migration. Adv Immunol 2007;93:265-78.
    [172] Bell E. Antigen-laden cells in thoracic duct lymph. Implications for adoptive transferexperiments. Immunology 1979;38:797-808.
    [173] Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM. Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 1990;172:1483-93.
    [174] Barker CF, Billingham RE. The role of afferent lymphatics in the rejection of skin homografts. J Exp Med 1968, 128: 197-221.
    [175] Billingham R, Ferrigan L, Silvers W. Cheek pouch of the Syrian hamster and tissue transplantation immunity. Science 1960;132: 1488-9.
    [176] Tilney N, Gowans J. The sensitization of rats by allografts transplanted to alymphatic pedicles of skin. J Exp Med 1971;133: 951-62.
    [177] Larsen CP, Morris PJ, Austyn JM. Migration of dendritic leukocytes from cardiac allografts into host spleens. J Exp Med 1990;171: 307-14.
    [178] Hume D, Egdahl R. Progressive destruction of renal homografts isolated from the regional lymphatics of the host. Surgery 1955;38: 194-214.
    [179] Wang L, Han R, Lee I, et al. Permanent survival of fully MHC mismatched islet allografts by targeting a single chemokine receptor pathway. J Immunol 2005;175:6311-8.
    [180] Mackay CR, Marston WL, Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 1990;171: 801-17.
    [181] Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001;291:2413-7.
    [182] Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001;410:101-5.
    [183] Wang R, Murphy KM, Loh DY, Weaver C, Russel JH. Differential activation of antigen-stimulated suicide and cytokine production pathways in CD4+ T cells is regulated by the antigen-presenting cell. J Immunol 1993;150:3832-42.
    [184] Germain RN. MHC-dependent antigen processing and peptide presentation. Providing ligands for T cell activation. Cell 1994;76: 288-99.
    [185] Liu Y, Wenger RH, Zhao M, Nielsen PJ. Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphcoytes. J Exp Med 1997;185:252-62.
    [186] Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev 1997;156:199-209.
    [187] Frazer I. Cell mediated immunity to papilloma viruses. Papillomavirus Rep 1992:53-8.
    [188] Baer G, Cleary W. A model in mice for the pathogenesis and treatment of rabies. J Infect Dis 1972:520-7.
    [189] Medawar P. The homograft reaction. Proc R Soc Lond B Biol Sci 1958;149:145-66.
    [190] Cobbold S, Waldmann H. Skin allograft rejection by L3/T4+ and Lyt-2+ T cells. Transplantation 1986;41:634-9.
    [191] Pederson N, Morris B. The role of the lymphatic system in the rejection of homografts: a study of lymph from renal transplants. J Exp Med 1970;131:936-69.
    [192] Strober S, Gowans J. The role of lymphocytes in the sensitization of rats to renal homografts. J Exp Med 1965;122:347-60.
    [193] Lakkis FG, Arakelov A, Konieczny BT, Inoue Y. Immunologic‘ignorance’of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med 2000;6:686-8.
    [194] Wang J, Dong Y, Sun J, et al. Donor lymphoid organs are a major site of alloreactive T cell priming following intestinal transplantation. Am J Transplant 2006:2563-71.
    [195] Zhou P, Hwang KW, Palucki D, et al. Secondary lymphoid organs are important but not absolutely required for allograft responses. Am J Transplant 2003;3:259-66.
    [196] Mebius R. Organogenesis of lymphoid tissues. Nat Rev Immunol 2003;3:292-303.
    [197] Shinkura R, Kitada K, Matsuda F, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kb–inducing kinase. Nat Genet 1999;22:74-7.
    [198] Miyawaki S, Nakamura Y, Suzuka H, et al. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 1994;24:429-34.
    [199] Banks TA, Rouse BT, Kerley MK, et al. Lymphotoxin-alpha–deficient mice. Effects of secondary lymphoid organ development and humoral immune responsiveness. J Immunol 1995;155: 1685-93.
    [200] Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K. The lymphotoxin b receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 1998;9:59-70.
    [201] Yamada T, Mitani T, Yorita K, et al. Abnormal immune function of hematopoietic cells from Alymphoplasia (aly) mice, a natural strain with mutant NF-kb inducing kinase. J Immunol 2000;165: 804-12.
    [202] Beilhack A, Schulz S, Baker J, et al. Prevention of acute graft-versus host disease by blocking T-cell entry to secondary lymphoid organs. Blood 2008;111:2919-28.
    [203] Gelman A, Li W, Richardson S, et al. Cutting edge: acute lung allograft rejection is independent of secondary lymphoid organs. J Immunol 2009; 182: 3969-73.
    [204] Moyron-Quiroz JE, Rangel-Moreno J, Hartson L, et al. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 2006;25:643-54.
    [205] Moyron-Quiroz J, Rangel-Moreno J, Kusser K, et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 2004;10:927-34.
    [206] Kreisel D, Krupnick AS, Gelman AE, et al. Non-hematopoeitic allograft cells directlyactivated CD8+ T cells and trigger acute rejection: an alternative mechanism of allorecognition. Nat Med 2002;8:233-9.
    [207] Ma W, Pober J. Human endothelial cells effectively costimulate cytokine production by, but not differentiation of, naive CD4+ T cells. J Immunol 1998;161:2158-67.
    [208] Epperson D, Pober J. Antigen presenting function of human endothelial cells. Direct activation of resting CD8 T cells. J Immunol 1994:5402-12.
    [209] Feuerer M, Beckhove P, Garbi N, et al. Bone marrow as a priming site for T-cell responses to blood-borne antigens. Nat Med 2003;9: 1151-7.
    [210] Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006:205-17.
    [211] Nasr IW, Reel M, Oberbarnscheidt MH, Mounzer RH, et al. Tertiary lymphoid tissues generate effector and memory T cells that lead to allograft rejection. Am J Transplant 2007;7:1071-9.
    [212] Baddoura F, Nasr I, Wrobel B, Li Q, Ruddle N, Lakkis F. Lymphoid neogenesis in murine cardiac allografts undergoing chronic rejection. Am J Transplant 2005;5:510-6.
    [213] Thaunat O, Field AC, Dai J, et al. Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc Natl Acad Sci USA 2005;102:14723-8.
    [214] Kearney ER, Pape KA, Loh DY, Jenkins MK. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1994;1:327-39.
    [215] Ohashi PS, Oehen S, Buerki K, et al. Ablation of“tolerance”and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 1991;65:305-17.
    [216] Bolinger B, Krebs P, Tian Y, et al. Immunologic ignorance of vascular endothelial cells expressing minor histocompatibility antigen. Blood 2008;111:4588-95.
    [217] Zinkernagel RM, Hengartner H. Regulation of the immune response by antigen. Science 2001;293:251-3.
    [218] Streilein JW, Wiesner J. Influence of splenectomy on first set rejection reactions of C57BL/6 females to male skin isografts. J Exp Med 1977;146:809-16.
    [219] Yamagami S, Dana MR. The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci 2001;42:1293-8.
    [220] Streilein JW, Niederkorn JY. Induction of anterior chamber–associated immune deviation requires an intact, functional spleen. J Exp Med 1981;153:1058-67.
    [221] Sonoda KH, Stein-Streilein J. CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell–dependent tolerance. Eur J Immunol 2002;32:848-57.
    [222] Ashour HM, Niederkorn JY. Peripheral tolerance via the anterior chamber of the eye: role of B cells in MHC class I and II antigen presentation. J Immunol 2006;176:5950-7.
    [223] Ochando JC, Yopp AC, Yang Y, et al. Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+ regulatory T cells. J Immunol 2005;174:6993-7005.
    [224] Ochando JC, Homma C, Yang Y, et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 2006;7:652-62.
    [225] Bai Y, Liu J, Wang Y, et al. L-Selectin–dependent lymphoid occupancy is required to induce alloantigen-specific tolerance. J Immunol 2002;168:1579-89.
    [226] Masopust D, Vezys V, Usherwood EJ, et al. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J Immunol 2004;172:4875-82.
    [227] Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B. Differential requirements for survival and proliferation of CD8 na?ve or memory T cells. Science 1997;276:2057-62.
    [228] Zhai Y, Meng L, Gao F, Busuttil R, Kupiec-Weglinski J. Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol 2002;169:4667-73.
    [229] Ochsenbein AF, Pinschewer DD, Sierro S, Horvath E, Hengartner H, Zinkernagel RM. Protective long-term antibody memory by antigendriven and T help–dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. Proc Natl Acad Sci USA 2000;97:13263-8.
    [230] Adams A, Williams A, Jones T, et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 2003;111:1887-95.
    [231] Heeger PS, Greenspan NS, Kuhlenschmidt S, et al. Pretransplant frequency of donor-specific, IFN-γ-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J Immunol 1999;163: 2267-75.
    [232] Obhrai J, Oberbarnscheidt M, Hand T, Diggs L, Chalasani G, Lakkis F. Effector T cell differentiation and memory T cell maintenance outside secondary lymphoid organs. J Immunol 2006; 176:4051-8.
    [233] Chalasani G, Dai Z, Konieczny BT, Baddoura FK, Lakkis FG. Recall and propagation of allospecific memory T cells independent of secondary lymphoid organs. Proc Natl Acad Sci USA 2002; 99: 6175-80.
    [234] Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401:708-12.
    [235] Wherry E, Teichgraber V, Becker T, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003; 4:225-34.
    [236] Oberbarnscheidt MH, Ng Y, Chalasani G. The roles of CD8 central and effector memory T-cell subsets in allograft rejection. Am J Transplant 2008;8:1809-18.
    [237] Mulgaonkar S, Tedesco H, Oppenheimer F, et al. FTY720/cyclosporine regimens in de novo renal transplantation: a 1-year dose-finding study. Am J Transplant 2006;6:1848-57.
    [238] Zhang Q, Chen Y, Fairchild RL, et al. Lymphoid sequestration of alloreactive memory CD4 T cells promotes cardiac allograft survival. J Immunol 2006;176:770-7.
    [239] Pleyer U, Schlickeiser S. The taming of the shrew? The immunology of corneal transplantation. Acta Ophthalmol, 2009, 87(5): 488-97.
    [240] Williams KA, Coster DJ. The immunobiology of corneal transplantation. Transplantation, 2007, 84(7): 806-13.
    [241] Niederkorn JY. The immune privilege of corneal allografts. Transplantation, 1999, 67(12): 1503-8.
    [242] Niederkorn JY. Immune mechanisms of corneal allograft rejection. Curr Eye Re s, 2007, 32(12): 1005-16.
    [243] Klebe S, Coster DJ, Williams KA. Rejection and acceptance of corneal allografts. Curr Opin Organ Transplant, 2009, 14(1): 4-9.
    [244] Wolvers DAW, Coenen–de Roo CJJ, Mebius RE, et al. Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39. J Immunol, 1999, 162: 1994–8.
    [245] Yamagami S, Dana MR. The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci, 2001, 42: 1293-8.
    [246] Yamagami S, Dana MR, Tsuru T. Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea, 2002, 21: 405-9.
    [247] Kuffova L, Lumsden L, Vesela V, et al. Kinetics of leukocyte and myeloid cell traffic in the murine corneal allograft response. Transplantation, 2001, 72: 1292-8.
    [248] Kagaya F, Hori J, Kamiya K, et al. Inhibition of murine corneal allograft rejection by treatment with antibodies to CD80 and CD86. Exp Eye Res, 2002, 74: 131-9.
    [249] Hoffmann F, Zhang EP, Mueller A,et al. Contribution of lymphatic drainage system in corneal allograft rejection in mice. Graefes Arch Clin Exp Ophthalmol, 2001, 239: 850-8.
    [250] Plskova J, Duncan L, Holan V, et al. The immune response to corneal allograft requires a site-specific draining lymph node. Transplantation, 2002, 73: 210-5.
    [251] PlskováJ, Holán V, Filipec M, et al. Lymph node removal enhances corneal graft survival in mice at high risk of rejection. BMC Ophthalmol, 2004, 23(4): 3.
    [252]王启明,胡燕华,徐惠民,等.角膜移植后局部淋巴结内树突状细胞数量及趋化因子CCL19含量的变化.眼视光学杂志, 2005, 7(2): 80-3.
    [253]陈晓敏,张明昌,胡燕华.大鼠角膜移植后颌下淋巴结中可诱导共刺激分子的表达.眼科新进展, 2008, 28(8): 569-77.
    [254]凌士奇,胡燕华,王智.同侧颈淋巴结切除抑制鼠角膜移植免疫排斥反应.眼视光学杂志, 2003, 5(4): 234-6.
    [255] Ling S, Hu Y. Ipsilateral lymphadenectomy to inhibit corneal allograft rejection in rats. J Huazhong Univ Sci Technolog Med Sci, 2005, 25(1): 88-90.
    [256]肖诗艺,凌士奇,胡燕华.颈浅淋巴结在大鼠角膜移植免疫中的作用.眼科新进展, 2006, 26(9): 667-70.
    [257]凌士奇,项道满,肖诗艺,等.颈淋巴结切除术抑制碱烧伤后角膜移植免疫排斥反应的实验研究(英文).国际眼科杂志, 2007, 7(2): 287-90.
    [258]凌士奇,张慧,林浩添,等.高危角膜移植后免疫排斥反应与颈淋巴结切除(英文).中国组织工程研究与临床康复, 2008, 12(5): 996-1000.
    [259] Ochiai T, Gunji Y, Nagata M, et al. Effects of Rapamycin in experimental organ allografting. Transplantation, 1993, 56: 15-9.
    [260] Cendales LC, Kanitakis J, Schneeberger S, et al. The Banff 2007 working classification of skin-containing composite tissue allograft pathology. Am J Transplant, 2008, 8(7): 1396-400.
    [261] Taylor AL, Watson CJ, Bradley JA. Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol, 2005, 56(1): 23-46.
    [262] Stepkowski SM, Kahan BD. Rapamycin and cyclosporin synergistically prolong heart and kidney allograft survival. Transplant Proc, 1991, 23: 3262-4.
    [263] Stepkowski SM, Chen H, Daloze P, et al. Rapamycin, a potent immunosuppressive drug for vascularized heart, kidney and small bowel transplantation in the rat. Transplantation 51:22, 1991
    [264] Vu MD, Qi S, Xu D, et al. Synergistic effects of Mycophenolate mofetil and Sirolimus in prevention of acute heart, pancreas and kidney allograft rejection and in reversal of ongoing heart allograft rejection in the rat. Transplantation, 1998, 66: 1575-80.
    [265] Flechner SM. Sirolimus in kidney transplantation indications and practical guidelines: de novo sirolimus-based therapy without calcineurin inhibitors. Transplantation, 2009, 87(8 Suppl): S1-6.
    [266] Billingham RE, Brent L, Medawar PB. Quantitative studies on tissue transplantation immunity II. The origin, strength and duration of actively and adoptively acquired immunity. Proc R Soc Lon B Biol Sci, 1954, 143(910): 58-80.
    [267] Cakala M, Olszewski WL. The reaction of the regional lymph nodes on the skin bacterial and allogeneic antigens. Ann Transplant, 2004, 9(4): 59-62.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.