秦巴山地亚高山冷杉(Abies fargesii)林对区域气候的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪全球变暖已是一个不争的事实,全球平均气温在20世纪里大约上升了0.6℃。全球尺度气候的变暖必然会对区域气候产生深刻的影响,根据秦巴地区过去50年来的气象观测数据显示,秦巴地区的气候在过去半个世纪里已经发生了明显的变化。秦巴地区过去半个世纪气候的变化可能已对这一地区的亚高山冷杉林产生了一定程度的影响,而且秦巴山地的亚高山冷杉林可能也已对该区域气候的变化做出了一定程度的响应。因此,本文采用树木年轮学技术,并结合植物群落学的方法分别从种群、群落和景观三个尺度水平上分析秦巴山地亚高山冷杉林对区域气候的响应,得出的主要结论:
     1)在秦岭地区,年轮指数与气候因子的相关分析表明,巴山冷杉的径向生长在不同海拔和不同坡向受到不同气候因子的影响。在秦岭南、北坡巴山冷杉分布的中海拔(巴山冷杉典型分布区)和低海拔(巴山冷杉林下限)地段,其生长主要受春夏季温度的影响,与降雨的关系不显著;在高海拔(巴山冷杉林上限)地段,巴山冷杉的生长主要受夏季降雨的影响,温度的限制作用不显著;但在秦岭北坡,巴山冷杉当年的生长不受上年气候条件的影响,而在秦岭南坡,其当年的生长则受到上年气候条件的显著影响。
     2)在神农架地区,年轮指数与气候因子的相关分析表明,不同海拔巴山冷杉的径向长受到不同气候因子的影响。在神农架南坡和北坡,降雨对巴山冷杉生长的限制作用随海拔的升高而减弱,而温度对巴山冷杉生长的影响则随海拔的升高而增强;在中海拔(巴山冷杉典型分布区)和低海拔(巴山冷杉林下限)地段,巴山冷杉的生长受温度和降雨因素的共同影响,而在高海拔(巴山冷杉林上限)地段,巴山冷杉的生长主要受温度的影响;在神农架南、北坡,巴山冷杉当年的生长都受到上一年气候条件的显著影响,而且都与当年春夏季温度和夏季降雨具有显著的相关性。
     3)在秦岭和神农架的南坡与北坡的亚高山冷杉林中,巴山冷杉种群的分布格局在巴山冷杉林的下限和中间海拔的典型分布区都呈随机分布;而在巴山冷杉林的上限,则呈聚集分布的特点。根据“聚集有利于个体生存”的观点,巴山冷杉沿海拔梯度的这种分布格局也是巴山冷杉对区域气候变化的一种响应方式。
     4)在秦岭和神农架的南坡与北坡,随着海拔的升高巴山冷杉种群中幼龄级和中龄级的个体数量增多,而大龄级和老龄级的个体数量减少;而且,在巴山冷杉林的下限和中间海拔的典型分布区,巴山冷杉种群表现出一定的衰退趋势,而在巴山冷杉林的上限,巴山冷杉种群的年龄结构表现为正常生长的稳定型特点。
     5)在秦岭和神农架的南坡与北坡,高海拔地带巴山冷杉林群落发展的起始时间要晚于低海拔地带巴山冷杉林群落发展的起始时间,而且,高海拔地带的巴山冷杉林群落在20世纪的70年代以前有大量的巴山冷杉个体产生,而低海拔地带巴山冷杉林群落在20世纪则没有巴山冷杉个体的形成,说明20世纪气候的变暖导致了高海拔地带亚高山林线处的群落中巴山冷杉个体数量的增加。
     6)在秦岭与神农架的南坡和北坡,巴山冷杉的年龄表现出随海拔的升高而逐渐减小的趋势,并且在高海拔地段(巴山冷杉林上限)巴山冷杉的年龄显著的小于低海拔地段(巴山冷杉林下限)巴山冷杉的年龄,说明了过去一个世纪气候的变暖导致了巴山冷杉分布范围向高海拔发生了一定程度的迁移。但群落中的共优种桦树的年龄分布在海拔梯度上没有显著的差异,说明区域气候的变化未使桦树的分布范围表现出沿海拔梯度的迁移趋势。
It is widely accepted that global warming had occurred with an increase ofapproximate 0.6℃in the global mean air temperature by the end of the 20thcentury. In the Qinba Mountains, meteorological station records show that theregional climate has obviously changed with increases in mean airtemperature and precipitation during the past fifty years. Such changes mayhave affected the regional subalpine fir (Abies fargesii) forests and, in turn,these forests have been responsive to the regional climate changes. Thus,chronological techniques, coupled with methodology of plant community, wereemployed to explore the responses of the subslpine fir forests to regionalclimatic changes from multiple-scale level, including population, communityand landscape, in the Qinba Mountains. The main results are as following:
     Correlation analyses indicate that the radial growth of Abies fargesii variesalong the elevational gradient and in different aspects in response to differentclimate variables in the Qinling Mountains. At the middle elevations (typicaldistribution zones of the fir forests) and lower limits of the subalpine fir forestson both the south and north aspects of the Qinling Mountains, the radial growthof A. fargesii is significantly affected by the spring and summer temperatures ofthe current year, while precipitation has no significant effects on A. fargesiiradial growth. As to the upper limits of the subalpine forests on both the southand north aspects of the Qinling Mountains, precipitation in current summerimposes noticeable effects on its radial growth, but temperature does not havesignificant effects. In addition, climatic variables of the previous year havesignificant effects on A. fargesii radial growth of the current year on the southaspect but not on the north aspect of the Qinling Mountains.
     Correlation analyses between ring-width index and climate variables alsoindicate that radial growth of A. fargesii in different elevations is influenced bydifferent climate factors in the Shennongjia Mountain. At the middle elevations (typical distribution zones of the fir forests) and lower limits of the subalpine firforests on both the south and north aspects, radial growth of A. fargesii issignificantly limited by a combination of temperature and precipitation; At upperlimits of both the south and north aspects, however, temperature is the mainfactor limiting its radial growth. So, the influence of precipitation on A. fargesiiradial growth decreases with the increase in elevation, while the influence oftemperature increases with the increase in elevation. Additionally, climatevariables of previous year have significant effects on A. fargesii radial growthon both the south and north aspects of the Shennongjia Mountain.
     Distribution of A. fargesii shows random patterns at lower limits andmiddle elevations, while clumped patterns at upper limits of the subalpine firforests in the Qinba Mountains. According to the viewpoint "clumpeddistribution conduces to individual survival", we believe the characteristics ofdistribution patterns of A. fargesii along elevation gradient to be one mean ofthe fir forests' responses to the regional climate changes.
     Age-class distribution along the elevation gradient shows that the numberof fir individuals on small age-class and middle age-class increases with theincrease in elevation, but the number of fir individuals on the large age-classdeclines with the increase in elevation in the Qinba Mountains. In addition, theage structure of fir population exhibits a declined trend in the middle elevationsand lower limits, and a stable trend in the upper limits of the subalpine firforests on both the north and south aspects in the Qinba Mountains.
     On both the south and north aspects in the Qinba Mountains, the standoriginated later in the higher elevations than that in the lower elevations. At thehigher elevations, especially in the upper limits of the subalpine fir forests inthe Qinba Mountains, a considerably large number of fir trees were recruitedinto the stand before the 1970s in the 20th century, while little recruitment of firtrees occurred in the lower elevations during the 20th century, demonstratingthat climatic warming in the 20th century resulted in recruitment of fir trees aswell as an increase in the amount of fir trees at the higher elevations, especially in the upper limits of the subalpine fir forests in the QinbaMountains.
     Analysis of the age structure of fir (A. fargesii) population shows that themean age of fir trees declines with the increase in elevation on both the southand north aspects in the Qinba Mountains. The fir tree age in the upper limits issignificantly smaller than that in the lower limits of the subalpine fir forests,suggesting that the distribution range of the subalpine fir forests has shiftedupward during the past century, attributable to the regional climate warming inthe Qinba Mountains. However, as a codominant species in the fir forests,birch age does not exhibit significant difference along altitude gradient,indicating no distinct shift of birch distribution range under the context ofregional climate warming in the Qinba Mountains.
引文
Abrams M.D., Copenheaver C.A., Black B.A. & van de Gevel S. (2001) Dendroecology and climatic impacts for a relict, old-growth, bog forest in the Ridge and Valley Province of central Pennsylvania, USA. Canadian Journal of Botany, 79, 58-69.
    Barber V.A., Juday G.P. & Flnney B.P. (2000) Reduced growth of Alaskan wihte spruce in the 20th century from temperature-induced drought stress. Nature, 405, 668-673.
    Belen M., Joan O.G., Constancia L.M., Isabel C, Franciso J.S., Jose A.F., Rainer Z. & Miquel C. (2004) Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science, 306, 1762-1765.
    Beniston M. (2003) Climatic change in mountain regions: a review of possible impacts. Climatic Change, 59, 5-31.
    Biondi F. & Waikul K. (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30, 303-311.
    Block J. & Treter U. (2001) Proceedings of the limiting factors at the upper and lower forest limits in the mountain-woodland steppe of Northwest Mongolia. In: the International Conference on Tree Rings, (eds. Kaennel Dobbertin M & Braker OU), pp. 434-439.
    Briffa K.R., Jones P.D., Schweingruber F.H., Shiyatov S.G. & Cook E.R. (1995) Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature, 376, 156-159.
    Briffa K.R., Schweingruber F.H., Jones P.D., Osborn T.J., Shiyatov S.G. & Vaganov E.A. (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 391, 678-682.
    Brown D.G. (1994) Predicting vegetation at treeline using topography and biophysical disturbance variables. Journal of Vegetation Science, 5, 641-656.
    Brubaker L.B. (1986) Responses of tree populations to climatic change. Vegetatio, 67, 119-130.
    Butler D.R., Malanson G.P. & Cairns D.M. (1994) Stability of alpine treeling in Glacer Naitional Park, Montana, U.S.A. Phytocoenologia, 22, 485-500.
    Camarero J.J. & Gutierrez E. (1999) Structure and recent recruitment at alpine forest-pasture ecotones in the Spanish central Pyrenees. Ecoscience, 6, 451-464.
    Camarero J.J. & Gutierrez E. (2004) Pace and pattern of recent treeling dynamics: response of ecotones to climatci variability in the Spanish Pyrenees. Climatic Change, 95, 23-29.
    Case M.J. & Peterson D.L. (2005) Fine-scale variability in growth-climate relationships of Douglas-fir, North Cascade Range, Washington. Canadian Journal of Forest Research, 35, 2743-2755.
    Chapin F.S., Shaver G.R., Giblin A.E., Nadelhoffer K.J. & Laundre J.A. (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694-711.
    Cook E.R. (1985) A time series analysis approach to tree ring standardization. PhD. dissertation, University of Arizona, Tucson.
    Cook E.R. & Holmes R.L. (1986) User manuals for ARSTAN, Lab of tree ring research, University of Arizona, Tucson.
    Cook E.R., Shiyatov S.G. & Mazepa V. (1990) Estimation of the mean chronolgy. In: Cook,E.R., Kairiukstis, L.A. (Eds.), Methods of Dendrochronology: Application in the Environmental Sciences. Kluer Academic Publishers, Dordrecht, the Netherlands.
    Cooper C.F., Gale F., LaMarche V.C.J., Graybill D.A., Fritts H.C. & Rose M.R. (1986) Carbon dioxide enhancement of tree growth at high elevations. Science, 231, 859-860.
    Cullen L.E., Palmer J.G., Duncan R.P. & Stewart G.H. (2001a) Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests. Canadian Journal of Forest Research, 31, 1981-1991.
    Cullen L.E., Stewart G.H., Duncan R.P. & Palmer J.G. (2001b) Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics. Journal of Ecology, 89, 1061-1071.
    D'Arrigo R.D., Cook E.R., Salinger M.J., Palmer J., Krusic P.J., Buckley B.M. & Villalba R. (1998) Tree-ring records from New Zealand: long-term context for recent warming trend. Climate Dynamics, 14, 191-199.
    Dang H.S., Jiang M.X., Zhang Q.F. & Zhang Y.J. (2007) Growth responses of subalpine fir to climate variability in the Qinling Mountain. Forest Ecology and Management, 240, 143-150.
    Diaz H.F. & Bradley R.S. (1997) Temperature variations during the last century at high elevation sites. Climatic Change, 36, 253-279.
    Duncan R. & Stewart G. (1991) The temporal and spatial analysis of tree age distribution. Canadian Journal of Forest Research, 21, 1703-1710.
    Ettl G.J. & Peterson D.L. (1995) Growth response of subalpine fir (Abies lasiocarpa) to climate in the Olympic Mountains, Washington, USA. Global Change Biology, 1,213-230.
    Farge D.B., Peterson D.L. & Hessl A.E. (2003) Taking the pulse of mountains: ecosystem sesponses to climatic variability. Climatic Change, 59, 263-282.
    Franklin J.F., Maeda T, Oshumi T, Matsui M., Yagia H. & Hawk G.M. (1979) Subalpine coniferous forests of central Honshu, Japan. Ecological Monographs, 49, 311-334.
    
    Fritts H.C. (1976) Tree Ring and Climate. Academic Press, London.
    Fritts H.C. (1991) Reconstructing large-scale climatic patterns from tree-ring data. University of Arizona Press, Tucson and London.
    Fritts H.C. & Shatz D.J. (1975) Selecting and characterizing tree-ring chronologies for dendroclimatic analysis. Tree-Ring Bulletin, 35, 31-46.
    Fritts H.C. & Swetnam T.W. (1989) Dendroecology: a tool for evaluting variations in past and present forest environments. Advance in Ecological Research, 19, 111-188.
    
    Gates D.M. (1990) Climate change and forest. Tree Physiology, 7,1-5. Gedalof Z. & Smith D.J. (2001) Dendroclimatic response of mountain hemlock (Tsuga mertensiana) in Pacific North America. Canadian Journal of Forest Research, 31, 322-332.
    Glassy J.M. & Running S.W. (1994) Validating diurnal climatology logic of the MTCLIM model across a climatic gradient in Oregon. Ecological Application, 4, 248-257.
    Gottfried M., Pauli H., Reiter K. & Grabherr G. (1999) A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Diversity and Distributions, 5, 241-251.
    Grabherr G, Gottfried M., Gruber A. & Pauli H. (2001) Long-term monitoring of mountain peaks in the Alps. Kluwer Academic Publishers, Dordrecht.
    Grabherr G, Gottfried M. & Pauli H. (1994) Climate effects on mountain plants. Nature, 369, 448.
    Graumlich L.J. (1991) Subalpine tree growth, climate and increasing CO_2: an assessment of recent growth trends. Ecology, 72,1-11.
    Guan B.T., Huang Z.B. & Chung N.J. (2003) Possible impacts of climate change on potential tree plant forms of a mountain region in central Taiwan. Taiwania, 48, 259-272.
    Guisan A., Theurillat J.P. & Kienast F. (1998) Predicting the potential distribution of plant species in an alpine Environment. Journal of Vegetation Science, 9, 65-74.
    Hansen J., Ruedy R. & Sato M. (1996) Global surface ari temperature in 1995: Return to prepinatubo level. Geophysical Research Letter, 23, 1665-1668.
    Harcombe P.A. (1987)Tree life table. BioScience, 37, 557-568.
    Harte J. & Shaw R. (1995) Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science, 267, 876-880.
    Heitzman E., Pregitzer K. S. & Miller R. O. (1997) Origin and early development of northern white-ceder stands in northern Michigan. Canadian Journal of Forest Research, 27, 1953-1961.
    Holmes R. L. (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-75.
    Holmes R. L. (1994) Dendrochronology program library, Version 1994. Laboratory of Tree-Ring Research. Uinversity of Arizona, Tucson.
    Holz C. A. & Veblen T. T. (2006) Tree regeneration responses to Chusquea montana bamboo die-off in a subalpine Nothofagus forest in the southern Andes. Journal of Vegetation Science, 17, 19-28.
    Houghton J. T., Jenkins G. T. & Ephraums J. J. (1990) Climate change: the IPCC scientific assessment. Cambridge Univeristy Press, Cambridge.
    Houghton J. T., Meira Filho L. G., Callander B. A., Harris N., Kattenberg A. & Maskell K. (1996) Climate change 1995: The Science of Climate Change. Cambridge University Press, Cambridge.
    Hughes L. (2000) Biological consequences of global warming: Is the signal already apparent? Trends in Ecology & Evolution, 15, 56-61.
    Hughes M. K., Wu X. D., Shao X. M. & Garfin G. M. (1994) A preliminary reconstruction of rainfall in North-Central China since A.D. 1600 from tree-ring density and width. Quaternary Research, 42, 88-99.
    Hungerford R. D., Nemani R. R., Running S. W. & Coughlan J. C. (1989) MTCLIM: a mountain microclimate simulation model, Research Paper INT-414. USGA Forest Service, Intermountaib Research Station. Ogden, Utah, USA.
    Idso S. B. (1999) The long-term response of trees to atmospheric CO_2 enrichment. Global Change Biology, 5, 493-495.
    IGBP (1990) The International Geosphere-Bioshpere Programme: A study of Global Change. The Initial Core Projects. Report 12: IGBP.
    IPCC (2001) Climate change 2001: Third Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge.
    Jacoby G. C., Arrigo R. D. & Tsevegyn D. (1996) Mongolian tree ring and 20th-century warming. Science, 273, 771-773.
    Johnson E. A. & Fryer G. I. (1989) Population dynamics Iodgepole pine-Engelmann spruce forests. Ecology, 70, 1335-1345.
    Johnson E. A., Miyanishi K. & Kleb H. (1994) The hazards of interpretation of static age structures as shown by stand reconstructions in a Pinus contorta-Picea engelmannii forest. Journal of Ecology, 923-931.
    Keller T., Guiot J. & Tessier L. (1997) Climatic effect of atmospheric CO2 doubling on radial tree growth in south eastern France. Journal of Biogeography, 24, 857-864.
    Kerr R. A. (2000) Global warming: Draft report affirms human influence. Science, 288, 589-590.
    Klasner F. L. & Farge D. B. (2002) Spatial changes in alpine treeling vegetation patterns along Hiking Trails in Glacier National Park, Montana. Arctic, Antarctic and Alpine Research, 34, 53-61.
    Korner C. (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459..
    Koyama T. (1984) Regeneration and coexistence of two Aibes species dominating subalpine forests in central Japan. Oecologia, 62, 156-161.
    Kramer P. J. (1981) Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience, 31, 29-33.
    Kuivinen K. C. & Lawson M. P. (1982) Dendroclimatic analysis of birch in South
    Greenland. Alpine and Arctic Research, 14, 243-250.
    Kullman L. (1991) Structural change in a subalpine birth woodland in north Sweden during the past century. Joumal of Biogeogrpahy, 18, 53-62.
    Kullman L. (1993) Tree limit dynamics of Betula pubescens ssp. tortuosa in relation to climate variability: evidence from central Sweden. Journal of Vegetation Science, 4, 765-772.
    Kullman L. (2001) 20th century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio, 30, 72-80.
    Kullman L. (2003) Recent reversal of neoglacial climate cooling trend in the Swedish Scandes as evidenced by mountain birch tree-limit rise. Global and Planetary Change, 36, 77-88.
    Kullman L. & Kjaellgren L. (2006) Holocene pine tree-line evolution in the Swedish Scandes: Recent tree-line rise and climate change in a long-term perspective. Boreas, 35, 159-168.
    LaMarche V.C. (1974) Frequency-dependent relationships between tree-ring series along an ecological gradient and smoe dendroclimatic implications. Tree-Ring Bulletin, 34, 1-20.
    LaMarche V.C, Graybill D.A., Fritts H.C. & Rose M.R. (1984) Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science, 225, 1019-1021.
    Lara A., Aravena J.C., Villalba R., Wolodarsky-Franke A. & Luckman B., Wilson, R. (2001) Dendroclimatology of high-elevation Nothofagus pumilio forests at their northern distribution limit in the central Andes of Chile. Canadian Journal of Forest Research, 31, 925-936.
    Liu H., Tang Z., Dai J., Tang Y. & Cui H. (2001) Larch timberline and its development in North China. Mountain Research and Development, 22, 359-367.
    LLoyd A.H. & Fastie C.L. (2002) Spatial and temporal variability in the growth and climate response of treeling trees in Alaska. Climatic Change, 52, 481-509.
    LLoyd A.H. & Graumlich L.J. (1997) Holocene dynamics of treeline forests in the Sierra Nevada. Ecology, 78, 1199-1210.
    Manabe S. & Wetherald R.T. (1980) On the distribution of climate change resulting from an increase in CO_2 content of the atmosphere. Journal of Atmosphere Science, 37, 99-118.
    Mori W., Rochelle S.G. & Schoettle A. (1999) Microscale patterns of tree establishment near upper treeling, Snow Range, Wyoming, USA. Arctic, Antarctic and Alpine Research, 31, 379-388.
    Motta R. & Edouard J.L. (2005) Stand structure and dynamics in a mixed and multilayered forest in the upper Susa Valley, Piedmont, Italy. Canadian Journal of Forest Research, 35, 21-36.
    Motta R. & Nola P. (2001) Growth trends and dynamics in subalpine forest stands in the Varaita Valley (Italy) and their relationships with human activities and global change. Journal of Vegetation Science, 12, 219-230.
    Nakashizuka T. (1991) Population dynamics of coniferous and broad-leaved trees in a Japanese temperate mixed forest. Journal of Vegetation Science, 2,413-418.
    Nicolussi K., Bortenschlager S. & Korner C. (1995) Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO_2-related. Trees: Structure Function, 9, 181-189.
    North M., Chen J.Q., Oakley B., Song B., Rudnicki M., Gray A. & Innes J. (2004) Forest stand structure and pattern of old-growth western Hemlock/Douglass-fir and mixed-conifer forests. Forest Science, 50, 299-311.
    Norton D.A., Palmer J.G. & Ogden J. (1987) Dendroecological studies in New Zealand: an evaluation of tree age estimates based on increment cores. New Zealand Journal of Botany, 25, 373-383.
    Oliver C. D. & Larson B. C. (1996) Forest stand dynamics, 2nd ed. John Wiley & Sons, Inc., New York.
    Parish R., Antos J. A. & Fortin M. -J. (1999) Stand development in an old-growth subalpine forest in southern interior British Columbia. Canadian Journal of Forest Research, 29, 1347-1356.
    Parish R. & Funnell D. C. (1999) Climate change in mountain regions: some possible consequences in the Moroccan High Alps. Global Environmental Change, 9, 45-48.
    Pauli H., Gottfried M. & Grabherr G. (1996) Effects of climate change on mountain ecosystems—upward shifting of alpine plants. World Resource Review, 8, 382-390.
    Pauli H., Gottfried M. & Grabherr G. (2003) Effects of climate change of the alpine and nival vegetation of the Alps. Journal of Mountain Ecology, 7, 9-12.
    Payette S. & Lavoie C. (1994) Recent fluctuations of the lichen-spruce forest limit in the subarctic Quebec. Journal of Ecology, 82,725-734.
    Peters R. L. (1990) Effects of global warming on forest. Forest Ecology and Management, 35, 13-33.
    Peterson D. W., Peterson D. L. & Ettl G. J. (2002) Growth response of subalpine fir to climatic variability in the Pacific Northwest. Canadian Journal of Forest Research, 32, 1503-1517.
    Rochefort R. M., Little R. L., Woodward A. & Peterson D.L. (1994) Changes in subalpine tree distribution in Western North America: a review of climatic and other causal factors. Holocene, 4, 89-100.
    Rogers A. & Humphries S. (2000) A mechanistic evaluation of photosynthetic acclimation at elevated CO_2. Global Change Biology, 6, 1005-1011.
    Rolland C., Petitcolas V. & Michalet R. (1998) Changes in radial tree-growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees: Structure Function, 13, 40-53.
    Rosenzweig C. & Parry M.L. (1994) Potential impact of climate change on world food supply. Nature, 367, 133-138.
    Running S.W., Nemani R.R. & Hungerford R.D. (1987) Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evaporation and photosynthesis. Canadian Journal of Forest Research, 17, 472-483.
    Shao G.F., Shugart H.H. & Smith T.M. (1995) A role-type model and its application in assessing climate change impacts on forest landscapes. Vegetatio, 121,135-146.
    Song M.H., Zhou C.P. & Ouyang H. (2004) Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mountain Research and Development, 24, 166-173.
    Splechtna B.E., Dobry J. & Klinka K. (2000) Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Annual of Forest Science, 57, 89-100.
    Stewart G.H. (1986) Population dynamics of a montane conifer forest, western Cascade Range, Oregon, USA. Ecology, 67, 534-544.
    Suarez F., Binkley D., Kaye M.W. & Stottlemyer R. (1999) Expansion of forest stands into tundra in the Noatak National Preserve, Northwest Alaska. Ecoscience, 6, 465-470.
    Sveinbjornsson B. (2000) North America and European treelines: external factors and internal processes controlling position. Ambio, 29, 388-395.
    Svensson J.S. & Jeglum J.K. (2001) Structure and dynamics of an undisturbed old-growth Norway sprue forest on the rising Bothnian coastline. Forest Ecology and Management, 151, 67-79.
    Szeicz J.M. & MacDonald G.M. (1995) Recent white spruce dynamics at the subarctic alpine treeline of north-western. Canadian Journal of Ecology, 83, 873-885.
    Tardif J. & Bergeron Y. (1997) Comparative dendroclimatological analysis of two blank ash and two white cedar populaiton from contrasting sites in the lake Duparqyet region, northwest Quebec. Canadian Journal of Forest Research, 27, 108-116.
    Taylor A. H., Jiang S. W., Zhao L. J., Liang C. P., Miao C. J. & Huang J. Y. (2006) Regeneration patterns and tree species coexistence in old-growth Abies-Picea forests in southwestern China. Forest Ecology and Management, 223, 303-317.
    Taylor A. H. & Qin Z. S. (1988) Regeneration patterns in old-growth Abies-Betula forests in the Wolong Natural Reserve, Sichuan, China. Journal of Ecology, 76, 1204-1218.
    Taylor A. H. & Qin Z. S. (1992) Tree regeneration after bamboo die-back in Chinese Abies-Betula forests. Journal of Vegetation Science, 3, 253-260.
    Taylor A. H., Qin Z. S. & Liu J. (1996) Structure and dynamics of subalpie forests in the Wanglang Natural Reserve, Sichuan, China. Vegetatio, 124, 25-38.
    Theurillat J. P. & Guisan A. (2001) Potential impact of climate change on vegetation in the European Alps a review. Climatic Change, 50, 77-109.
    Thornton P. E., Running S. W. & White M. A. (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology, 190, 214-251.
    Tranquillini W. (1979) Physiological Ecology of the Alpine timberline., Springer Verlag, Berlin.
    Urban D. L., Harmon M. E. & Halpern C. B. (1993) Potential response of Pacific Northwestern forests to climate change: effects of stand age and initial composition. Climatic Change, 23, 247-266.
    Villalba R. & Veblen T. T. (1997) Improving estimates of total tree ages based on increment cores samples. EcoSceince, 4, 535-542.
    Villalba R., Veblen T. T. & Ogden J. (1994) Climatic influences on the growth of subalpine trees in the Colorado Front Range. Ecology, 75, 1450-1462. Vitousek P.M. (1994) Beyond global warming: ecology and global change. Ecology, 75, 1861-1876.
    Walther G.R., Beibner S. & Burga C.A. (2005) Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16, 541-548.
    Walther G.R., Post E., Convey P., Menzel A., Parmesan C, Beebee T.J.C., Fromentin J.M., Hoegh-Guldberg O. & Bairlein F. (2002) Ecological responses to recent climate change. Nature, 416, 389-395.
    Wang T., Liang Y., Ren H.B., Yu D., Ni J. & Ma K.P. (2004) Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Forest Ecology and Management, 196, 267-274.
    Wang T., Zhang Q.B. & Ma K.P. (2006) Treeling dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Global Ecology and Biogeography, 15,406-415.
    Waring H.H. & Franklin J.F. (1979) Evergreen coniferous forests of the Pacific Northwest. Science, 204, 1380-1386.
    Whipple S.A. & Dix R.L. (1979) Age structure and successional dynamics of a Colorado subalpine forest. American Midland Naturalist, 101,142-158.
    WMO & ICSU (1975) The Physical Basis of Climate and Climate Modelling. GARP Publications Series 16.
    Wood F.B. (1988) The need for systems research on global climate change. Systems Research and Behavioral Science, 5, 225-240.
    Woodward A., Schreiner E.G. & Silsbee D.G. (1995) Climate, geography, and tree establishment in subalpine meadows of the Olympic mountains, Washington. Arctic and Alpine Research, 27, 217-225.
    Yoo S.J. & Wright B.D. (2000) Persistence of growth variation in tree-ring chronologies. Forest Science, 46, 507-520.
    Zhang Q.B. & Hebda R.J. (2004) Variation in radial growth patterns of Pseudotsuga menziesii on the central coast of British Columbia, Canada. Canadian Journal of Forest Research, 34, 1946-1954.
    陈明荣(1983)秦岭的气候和农业.西安人民出版社,西安.
    戴君虎,潘螈,崔海亭,唐志尧,刘鸿雁 & 曹燕丽(2005)五台山高山带植被对气候变化的响应.第四纪研究,25,216-223.
    戴君虎,邵雪梅,崔海亭,葛全胜,刘鸿雁 & 唐志尧(2003)太白山树木年轮资料对过去生态气候要素的重建.第四纪研究,23,428-435.
    邓惠平,吴正方 & 周道玮(2000)全球气候变化对小兴安岭阔叶红松林影响的动态模拟研究.应用生态学报,11,43-46.
    丁一汇,任国玉,石广玉,宫鹏 & 郑循华(2006)气候变化国家评估报告(1):中国气候变化的历史和未来趋势.气候变化研究进展,2,3-8.
    高琼,喻梅,张新时 & 关烽(1997)中国东北样带对全球变化响应的动态模拟——一个遥感信息驱动的区域植被模型.植物学报,39,800-810.
    勾晓华,陈发虎,杨梅学,彭剑峰,强维亚 & 陈拓(2004)祁连山中部地区树轮宽度年表特征随海拔高度的变化.生态学报,24,172-176.
    郝占庆,代力民,贺红士 & 邵国凡(2001)气候变化对长白山主要树种的潜在影响.应用生态学报,12,653-658.
    侯爱敏,周国逸 & 彭少麟(2003)鼎湖山马尾松径向生长动态与气候因子的关系.应用生态学报,14,637-639.
    金义兴,张全发 & 阎耀川(1993)亚热带区域神农架太阳坪森林生态系统研究初报.长江流域资源与环境,2,75-80.
    李峰,周广胜 & 曹铭昌(2006)兴安落叶松地理分布对气候变化响应的模拟.应用生态学报,17,2255-2260.
    李海涛(1995)植物种群分布格局研究概况.植物学通报,12,19-26.
    刘国华 & 傅伯杰(2001)全球变化对森林生态系统的影响.自然资源学报,16,71-78.
    刘洪滨 & 邵雪梅(2003a)利用树轮重建秦岭地区历史时期初春温度变化.地理学报,58,879-884.
    刘洪滨 & 邵雪梅(2003b)秦岭南坡佛坪1789年以来1-4月平均温度重建.应 用气象学报,14,188-196.
    彭剑峰,勾晓华,陈发虎,刘普幸,张永香,张永 & 田沁花(2006)阿尼玛卿山不同海拔祁连圆柏树轮宽度年表特征对比分析.冰川冻土,28,713-721.
    钱君龙,邓自旺 & 屠其璞(2001)天目山柳杉80年序列及其气候意义.中国科学(D辑),31,372-376.
    任毅(1998)秦岭大熊猫栖息地植物,陕西科学技术出版社,西安.
    唐国利 & 任国玉(2005)近百年中国地表气温变化趋势的在分析.气候与环境研究,14,281-288.
    王娟 & 倪健(2006)植物种分布的模拟研究进展.植物生态学报,30,1040-1053.
    王晓春(2004)中国东北亚高山林线对全球气候变化的响应.东北林业大学,博士论文.
    王亚军,陈发虎,勾晓华 & 杜淑英(2001)祁连山中部树木年轮宽度与气候因子响应关系及气候重建.中国沙漠,21,135-140.
    卫林,王辉民,王其冬,刘允芬 & 宋从和(1995)气候变化对我国红松林的影响.地理研究,14,17-26.
    吴普,王丽丽 & 黄磊(2006)五个中国特有针叶树种树轮宽度对气候变化的敏感性.地理研究,25,43-52.
    吴祥定 & 邵雪梅(1993)中国树木年轮气候学研究动态与展望.地球科学进展,8,31-35.
    吴祥定 & 邵雪梅(1994)中国秦岭地区树木年轮密度对气候响应的初步分析.应用气象学报,5,253-256.
    吴祥定(1990)树木年轮气候学,气象出版社,北京.
    肖玲,王开运 & 杨万勤(2004)升高CO2浓度和温度对针叶林的影响以及在川西亚高山针叶林研究中的展望.世界科技研究进展,26,55-63.
    叶芳 & 彭世揆(1997)种群空间分布理论的发展历史及其现状.林业资源管理,10,55-58.
    于大炮,王顺忠,唐立娜,代力民,王庆礼 & 王绍先(2005)长白山北坡落叶松年轮年表及其与气候变化的关系.应用生态学报,16,14-20.
    张金屯(1995)植被数量生态学方法.中国科学技术出版社.
    周广胜,王玉辉 & 蒋延玲(2002)全球变化与中国东北样带.地学前缘,9,198-216.
    周晓峰,王晓春,韩士杰 & 邹春静(2002)长白山岳桦-苔原过渡带动态与气候变化.地学前缘,9,227-231.
    朱海峰,王丽丽,邵雪梅 & 方修琦(2004)雪岭云杉树轮宽度对气候变化的响应.地理学报,59,863-870.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.