关于非自治无穷维动力系统一致吸引子的存在性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Existence of Uniform Attractors for Infinite Dimensional Non-autonomous Dynamical Systems
  • 作者:马闪
  • 论文级别:博士
  • 学科专业名称:基础数学
  • 学位年度:2007
  • 导师:钟承奎
  • 学科代码:070101
  • 学位授予单位:兰州大学
  • 论文提交日期:2007-04-01
摘要
在这篇博士学位论文中,我们主要考虑在更一般的非自治外力项作用下的无穷维动力系统的一致吸引子的存在性,这种更一般的非自治外力是指系统带有更一般的符号函数。
     为了考虑[57]中作者提出的问题:“对于弱耗散系统,如果符号空间不紧,一致吸引子是否可能存在?”,并希望在符号空间更一般的情况下也能得到所讨论的几类非自治系统一致吸引子的存在性,我们引进了两类在通常拓扑下非紧的函数:满足条件(C~*)的函数类L_(c*)~2(R;X)和满足正规条件(C~*)的函数类L_(nc*)~2(R;X),并讨论了所提出的两类新的函数的性质。同时给出了这两类函数与[22]中的平移紧函数和[58]中的正规函数之间的关系:证明了L_(c*)~2(R;X)是平移有界函数空间的闭子空间,且平移紧函数类是L_(c*)~2(R;X)的真子集(很容易构造例子f_0∈L_(c*)~2(R;X)但不是平移紧的);证明了满足条件(C~*)的函数类L_(c*)~2(R;X)和平移紧函数类L_c~2(R;X)以及正规函数L_n~2(R;X)都满足正规条件(C~*),即都是空间L_(nc*)~2(R;X)的子空间。进一步,我们构造例子说明存在函数f_0∈L_(nc*)~2(R;X),但f_0(?)L_n~2(R;X)。
     继而,我们用具体的例子说明了我们所研究的几类非自治系统在外力项所在的空间更一般的情况下,系统一致吸引子的存在性。首先,针对非自治弱耗散双曲方程,分别给出了带有次临界和临界非线性项的非自治双曲方程在外力项仅满足条件(C~*)的情况下其一致吸引子的存在性。从而部分地解决了[57]中作者所提出的问题,即,在符号空间不紧时,给出了弱耗散系统一致吸引子的存在性。其次,以2D Navier-Stokes方程为例证明了外力项在L_(nc*)~2(R;X)中时的一致吸引子的存在性,这也说明了正规函数类并非是强耗散系统最一般的符号空间。最后,对于非经典扩散方程,由于方程自身良好的性质,甚至在符号空间仅是平移有界函数L_b~2(R;X)(这是得到系统一致吸收集的必要条件)时,我们也证明了此类方程所对应的过程族的紧的一致吸引子的存在性。
In this doctoral dissertation, we mainly consider the existence of uniform attractors for non-autonomous infinite dimensional dynamical system when the external forces are translation non-compact.
     In order to consider the problem in [57]:" Are there uniform attractors for the weakly dissipative systems when the symbol spaces are non-compact?", we introduce two classes of functions which are translation non-compact, denoted by L_(c*)~2((?); X) and L_(nc*)~2((?); X) respectively. We discuss their properties and give their relations with translation compact and normal functions. We show that L_(c*)~2((?); X) is a closed subspace of L_b~3((?); X), and L_c~2((?); X) is a proper subspace of L_(c*)~2((?);X); L_(c*)~2((?);X), L_c~2((?);X) and L_n~2((?);X) satisfy condition (C~*) and they are indeed proper subspaces of L_(nc*)~2((?); X). Moreover, we also show that there is a function in L_(nc*)~2((?);X) and not in L_n~2((?);X).
     As applications, we show by some concrete examples that we can obtain the existence of uniform attractors for several classes of non-autonomous systems even when the symbol space is more general. More precisely, we firstly discuss that the existence of uniform attractors for non-autonomous hyperbolic equations, with subcritical and critical nonlinearity, when the external forces just satisfy the condition (C~*). This result solves partly the problem mentioned above, that is, we obtain the existence of uniform attractors for weakly dissipative system with non-compact external forces. Secondly, we obtain the existence of uniform attractors for 2-D Navier-Stokes equations with external forces only in L_(nc*)~2((?); X), which improves the previous results (e.g., [57]). Finally, using the fine properties of the equation, we prove the existence of compactly uniform attractors for the non-classical diffusion equation even for the translation bounded external force (note that the translation boundedness of external force is necessary to obtain a uniform absorbing set).
引文
[1] E. Aifantis, On the problem of diffusion in solid, Acta Mech., 37(1980) 265-296.
    [2] J. Arrietta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equations with critical exponents, Comm. Partial Differential Equations, 17(1992), 841-866.
    [3] L. Amerio and G. Prouse, Abstract almost periodic functions and functional equations, Van Nostrand, New York, 1971.
    [4] B. Aulbaeh, M. Rasmussen and S. Siegmund, Approximation of attractors of nonautonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 5 No. 2(2005), 215-238.
    [5] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
    [6] J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10(2004), 31-52.
    [7] J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, Nonlinear Science, 7: 475-502, 1997. Erratum, ibid 8: 233, 1998. Corrected version appears in 'Mechanics: from Theory to Computation', pages 447-474, Springer Verlag, 2000.
    [8] M. Biroli and A.Haraux, Asymptotic behavior for an almost periodic, strongly dissipative wave equation, J. Diff. Eq., 38, 3(1980), 422-440.
    [9] V. P. Bongolan-Walsh, D. Cheban and J. Duan, Recurrent motions in the nonautonomous Navier-Stokes system, Discrete Contin. Dyn. Syst. B, 3(2002) 255-262.
    [10] T. Caraballo, P. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stochastics and Dynamics, 4(2004) 405-423.
    [11] T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, TMA, 64(2006), 484-498.
    [12] T. Caraballo and J. Real, Attractors for 2D-Nauier-Stokes models with delays, J. Diff. Equations, 205(2004) 271-297.
    [13] S. Chandrasekhar, The mathematical theory of black holes, Oxford University Press, 1992.
    [14] D. N. Cheban, Global attractors of non-autonomous dissipative dynamical systems, Interdisciplinary Mathematical Sciences, Vol. 1, 2004, World scientific, New Jersey, USA.
    [15] D. N. Cheban and J. Duan, Almost periodic motions and global attractors of the non-autonomous Navier-Stokes equations, Journal of Dynamical Differential Equations, 16(2004), 1-34.
    [16] D. N. Cheban, P. E. Kloeden and B. Schmalfuβ, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2(2002), 9-28.
    [17] V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73(1994), 279-333.
    [18] V. V. Chepyzhov and M. I. Vishik, Non-autonomous evolutionary equations with translation-compact symbols and their attractors, C. R. Acad. Sci. Paris Ser. I Math., 321(1995), 153-158.
    [19] V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for evolution equations, C. R. Acad. Sei. Paris Ser. I Math., 321(1995), 1309-1314.
    [20] V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for 2D Navier-stockes systems and some generalizations, Topoi. Methods Nonlinear Anal., 8(1996), 217-243.
    [21] V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76(1997), 913-964.
    [22] V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Sot., Providence, RI, 2002.
    [23] L. Chierchia and J. You, KAM tori for 1D wave equations with periodic boundary conditions, Comm. Math. Phys., 211(2000), 497-525.
    [24] J. W. Cholewa and T. Dlotko, Global attractors in abstract parabolic problems, Cambridge University Press, 2000.
    [25] I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with nonlinear damping, J. Dyn. Differential Equations, 16(2)(2004), 469-512.
    [26] I. Chueshov and I. Lasiecka, Long-time behavior of second evolution equations with nonlinear damping, Math. Scuola Norm. Sup., 2004.
    [27] I. Chueshov and I. Lasiecka, Long time dynamics of semilinear wave equation with nonlinear interior-boundary damping and sources of critical exponents, to appear.
    [28] C. M. Dafermos, Semiflows generated by compact and uniform processes and some generalizations, Math. Systems Theory 8(1974), 142-149.
    [29] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985.
    [30] J. Diestel, Sequences and series in Banach Spaces, Springer-Verlag, GTM 92, 1984.
    [31] 董仲奇,兰州大学博士论文,2006.
    [32] C. Foias, O. Manley and R. Temam, On the interaction of small and large eddies in two-dimensional turbulent flows, Math. Model and Number Anal. M2AN22, (1988), 93-114.
    [33] E. Feireisl, Attractors for wave equations with nonlinear dissipation and critical exponents, C. R. Acad. Sc. Paris, Ser. I, 315(1992), 551-555.
    [34] E. Feireisl, Finite dimensional asymptotic behaviour of some semilinear damped hyperbolic problems, J. Dyn. Diff. Eqs., 6(1994), 23-35.
    [35] E. Feireisl, Global attractors for damped wave equations with supercritical exponent, J. Diff. Eqs., 116(1995), 431-447.
    [36] E. Feireisl and E. Zuazua, Global attractors for semilinear wave equation with locally distributed nonlinear damping and critical exponent, Commun. in Partial Diff. Eqs., 18(1993), 1538-1555.
    [37] Gallouet, T., Cas limites dans les injections de Sobolev et aplicati au comportement e l'infini pour des etuations des ondes semi-lineaire, Portugaliae Matematica.
    [38] J. M. Ghidagla and A. Marzoechi, Longtime behaviour of strongly damped wave equations, global attractors and their dimension, SIAM J. Math. Anal., 22(1991), 879-895.
    [39] J. K. Hale, Asymptotic behavior of dissipative systems, Amer. Math. Soc., Providence, RJ, 1988.
    [40] A. Haraux, Two remarks on dissipative hyperbolic problems, dans "Nonlinear partial differential equations and their applications, College de France Seminar", vol. 7 (H. Brezis & J. L. Lions editors), Research Notes in Math., Pitman, 122(1984), 161-179.
    [41] A. Haraux, Recent results on semilinear wave equations with dissipation, Pitman Research Notes in Math., 141(1986), 150-157.
    [42] A. Haraux, Nonlinear evolution equations-global behavior of solution, springer, Lecture Notes in Math., No. 841(1981).
    [43] A. Haraux, Dissipativity in the sense of Levinson for a class of second-order nonlinear evolution equations, Nonlinear Analysis, T. M. A. 6(11)(1982),1207-1220.
    [44] A. Haraux, Some new results on nonlinear wave equations in a bounded domain, in Nonlinear partial differential equations and their applications, College de France Seminarm, volume IV, Pitman, Research Notes in math 84 (1982), 137-147.
    [45] A. Haraux, Attractors of asymptotically compact process and applications to nonlinear partial differential equations, Comm. Part. Diff. Eq., 13(11), 1988, 1383-1414.
    [46] A. Haraux, Systemes dynamiques dissipatifs et applications, Paris, Masson, 1991.
    [47] A. A. Ilyin, A. Miranville and E. S. Titi, Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math. Sci. 2(2004), no. 3, 403-426.
    [48] A. Kh. Khanmamedov, Global attractors for yon Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318(2006), 92-101.
    [49] K. Kuratowski, Sur les espaces complets, Fund. Math., 15(1930), 301-309.
    [50] O. A. Ladyzhenskaya, Attractors for semigroups and evolution equations, Leizioni Lincei, Cambridge Univ. Press, Cambridge, New York, 1991.
    [51] P. S. Landalal, O. H. Soerensen and P. L. Christiansen, Soliton excitations in Josephson tunnel junctions, Phys. Rev. B, 25(1982) 5737-5748.
    [52] J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for nonautonomous dynamical systems given by partial differential equations, Stoch. Dyn., 3(2004), 385-404.
    [53] D. S. Li, Z. X. Wang & Z. L. Wang, Global existence, uniqueness and long-time behavior for a class of nonclassical diffusion equations, Acta Math. Appl. Sinica, Vol 21, No.2, 1998(In Chinese).
    [54] Y. C. Liu and F. Wang, A class of multidimensional nonlinear Sobolev-Galpern equation, Acta Math. Appl. Sinica, 17(1994) 569-577(In Chinese).
    [55] J. L. Lions, Quelques methodes de resolution des problemes aux limites nlineaires, Dunod, Paris, 1969.
    [56] G. Lukaszewicz and W. Sadowski, Uniform attractor for 2D magnetomicropolar fluid flow in some unbounded domains, Z. Angew. Math. Phys., 55(2004), 1-11.
    [57] 卢松松,兰洲大学博士论文,2005.
    [58] S. S. Lu, H. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D NavierStokes equations with normal external forces, Discr. Cont. Dyn. Sys., 13(2005), 701-719.
    [59] B. Levitan and V. Zhikov, Almost periodic functions and functional equations, Moscow Univ. Press, 1978; English transl., Cambridge Univ. Press, Cambridge, 1982.
    [60] A. Majda, Introduction to PDEs and waves for the atmosphere and oceans, American Math. Soc., Providence, RI, 2003.
    [61] Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Math. J., Vol. 51, No. 6(2002), 1541-1557.
    [62] Shan Ma and Chengkui Zhong, The attractors for weakly damped nonautonomous hyperbolic equations with a new class of external forces, Discrete and Continuous Dynamical Systems, Vol 18, No.1, May 2007.
    [63] R. K. Miller, Almost periodic differential equations as dynamical systems with applications to the existence of almost periodic solutions, J. Differential equations, 1(1965), 337-345.
    [64] I. Moise, R. Rosa and X. Wang, Attractors for noncompact nonautonomous systems via energy equations, Discr. Cont. Dyn. Sys., 10(2004), 473-496.
    [65] I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroup via energy equations, Nonlinearity, 11 (1998), 1369-1393.
    [66] R. K. Miller and G. R. Sell, Topological dynamics and its relation to integral and non-autonomous system, Intern. Symposium, I, Acad. Press, New york, 1976, 223-248.
    [67] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, 2nd edition, 1987.
    [68] G. Rangel, Global attractors in partial differential equations, In Handbook of dynamical systems, Vol. 2, pages 885-982. North-Holland, Amsterdam, 2002.
    [69] J. C. Robinson, Infinite-dimensional dynamical systems, An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge University Press 2001.
    [70] R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Anal. 32(1998), 71-85.
    [71] G. R. Sell, Non-autonomous differential equations and topological dynamics, Ⅰ, Ⅱ, Trans. Amer. Math. Soc., 127(1967), 241-262, 263-283.
    [72] G. R. Sell and Y. You, Dynamics of evolutionary equations, Springer, New York, 2002.
    [73] R. Showalter, Monotone operators in Banach spaces and nonlinear partial differential equations, Amer. Math. Soc., Providence, QI, 1997.
    [74] Chunyou Sun, Daomin Cao and Jinqiao Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity 19(2006) 2645-2665.
    [75] 孙春友,兰州大学博士论文,2005.
    [76] C. Y. Sun, S. Y. Wang & C. K. Zhong, Global attractors for a nonclassical diffusion equation, Acta Mathematica Sinica, English Series, in press.
    [77] C. Y. Sun, M. H. Yang and C. K. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equations, 227(2) (2006)427-443.
    [78] C. Y. Sun, M. H. Yang and C. K. Zhong, Global attractors for hyperbolic equations with critical exponent in locally uniform spaces, J. Differential Equations, in press.
    [79] R. Temam, Navier-Stokes equations and nonlinear functional Analysis, 2nd edn, SIAM, Philadelphia 1995.
    [80] R. Temam, Infinite dimensional dynamical systems in mechanics and physics, 2rid edn, Berlin, Springer, 1997.
    [81] R. Temam, Some developments on Navier-Stokes equations in the second half of the 20th century, in the Development of mathematics 1950-2000, ed. J. P. Pier(2000), 1049-1106.
    [82] R. Temam, Namer-Stokes equations, theory and numerical analysis, reprinted, AMS, Providence, RI, 2001.
    [83] T. W. Ting, Certain non-steady flows of second order fluids, Arch. Rational Mech. Anal., 14(1963) 1-26.
    [84] 王素云,兰州大学博士论文,2004.
    [85] 王希营,兰州大学博士论文,2004.
    [86] 吴红卿,兰州大学博士论文,2003.
    [87] 杨美华,兰州大学博士论文,2006.
    [88] Suyun Wan, Desheng Li and Chengkui Zhong, On the dynaimcs of a class of nonclassical parabolic equations, J. Math. Anal. Appl. 317 (2006) 565-582.
    [89] Y. L. Xiao, Attractors for a nonclassical diffusion equation, Acta Mathematicae Applicatae Sinica, English Series, 18(2002) 273-276.
    [90] K. Yosida, Functional Analysis, 6th Ed., Springer-Verlag, Berlin, 1980.
    [91] S. V. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst., 7(2001) 593-641.
    [92] S. V. Zelik, Attractors for reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math. Vol. LVI(2003) 584-637.
    [93] S. V. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critial growth exponent, Comm. Pure Appl. Anal., 4(2004) 921-934.
    [94] C. Zhong, X. Fan and W. Chen, An introduction to nonlinear functional analysis (in Chinese), Lanzhou Univ. Press, 1998.
    [95] C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and its application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223(2006), 367-399.
    [96] S. F. Zhou and L. S. Wang, Kernel sections for damped non-autonomous wave equations with critical exponent, Discrete Contin. Dyn. Syst., 9(2003), 399-412.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.