华北克拉通东部中新生代岩石圈演化—来自火成岩与深源捕虏体(晶)证据
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对位于华北克拉通东部含有深源捕虏体(晶)中、新生代火成岩进行了详细的年代学和岩石地球化学研究,尤其是对深源捕虏体(晶)进行了矿物微区主量和痕量元素研究,讨论了不同时代火成岩的成因,尤其是岩浆源区性质及其随时间的演化。基于大量的分析测试数据,应用岩石探针技术和痕量元素与同位素地球化学示踪技术,建立了华北克拉通东部中、新生代岩石圈地幔演化模型。这对揭示华北克拉通破坏产生的时间与机制具有重要意义。
     锆石LA-ICP-MS U-Pb定年和K-Ar定年结果表明,本文研究的华北克拉通东部含有深源捕虏体(晶)的中、新生代火成岩主要形成于早白垩世、晚白垩世、古近纪(包括古新世和始新世),代表性火成岩包括早白垩世鲁西费县、方城玄武岩、铁铜沟高镁闪长岩;晚白垩世辽西阜新碱锅玄武岩、辽南曲家屯玄武岩、鲁东大西庄玄武岩;古新世辽南乱石山子玄武岩和始新世菜园子玄武岩。
     寄主岩和深源捕虏体(晶)的岩石地球化学及矿物微区成分研究表明,(1)早白垩世鲁西铁铜沟高镁闪长岩的原始岩浆起源于拆沉的加厚陆壳物质的部分熔融,并经历了与地幔橄榄岩的反应,而费县、方城玄武质岩浆主要起源于受拆沉陆壳物质强烈改造的富集型岩石圈地幔;(2)晚白垩世玄武质岩浆起源于整体上具有亏损性质的岩石圈地幔,但该期华北克拉通东部仍具有古老岩石圈地幔的残留,并经历了多期改造过程;(3)古近纪玄武质岩浆起源于有拆沉陆壳物质参与的岩石圈地幔;(4)中生代早期拆沉物质在经历了早白垩世部分熔融之后的残留体与亏损岩石圈地幔的混合构成了晚白垩世和古近纪玄武岩的岩浆源区。上述结果表明,中生代早期拆沉的陆壳物质是改造岩石圈地幔的主体,同时它也代表了华北克拉通破坏的起始时间和机制;早白垩世时期,拆沉物质的部分熔融以及相继出现的上涌和对上覆岩石圈地幔的交代是该期华北克拉通破坏机制的主体;晚白垩世和古近纪,华北克拉通东部岩石圈地幔经历了增生和拆沉残留物质与新增生岩石圈地幔的部分熔融。
The thesis takes the Early Cretaceous high-Mg diorites, Late Cretaceous and Paleogene basalts as well as their deep -seated xenoliths and xenocrysts in the eastern North China Craton as its research target. The formation times for these igneous rocks in the eastern North China Craton are determined using K-Ar and LA-ICP-MS zircon U-Pb dating methods. Based on the major-, trace-elements, and Sr–Nd–Pb isotopic data of these basalts and mineral chemical data from the deep-seated xenoliths and xenocrysts, the natures of their magma sources and the spatial-temporal variations are discussed for the Early Cretaceous high-Mg diorites,Late Cretaceous and Paleogene basalts in the eastern North China Craton (NCC). Taken together, the Mesozoic and Cenozoic evolution model of the lithospheric mantle in the eastern North China Craton is set up.
     1 Formation times of igneous rocks borne in deep-seated xenoliths and xenocrysts in the eastern North China Craton
     New dating results for the igneous rocks in the study area, together with the previous dating results, indicate that Mesozoic and Cenozoic of igneous rocks borne in deep-seated xenoliths and xenocrysts in the eastern NCC can be subdivided into four stages i.e., Early Cretaceous (119~132Ma), Late Cretaceous (73~92Ma), Paleogene (58Ma) and Eocene (36~39Ma).
     The 40Ar/39Ar plateau age of biotite and LA-ICP-MS zircon U-Pb age for pyroxene-diorite from the Tietonggou intrusion are 132.82±0.5Ma and 132Ma, respectively. The K-Ar dating results for Fangcheng and Feixian basalts are 125 Ma (Zhang et al., 2002) and 119Ma, respectively. The K-Ar ages for Fuxin basalts in western Liaoning are 85Ma and 92 Ma. The K-Ar dating result for Qujiatun basalts in southern Liaoning is 82 Ma. The 40Ar/39Ar plateau age of Daxizhuang basalts in eastern Shandong is 73 Ma (Yan et al., 2003). The K-Ar dating result of Luanshishanzi basalts in southern Liaoning is 58 Ma, i.e., Paleogene, whereas K-Ar age of Caiyuanzi basalts in southern Liaoning is 36-39 Ma, i.e., Eocene.
     2 Magma source and its nature for the Mesozoic and Cenozoic igneous rocks borne in deep-seated xenoliths and xenocrysts
     2.1 Early Cretaceous
     2.1.1 Magma source and nature of Tietonggou high-Mg diorites
     Early Cretaceous Tietonggou high-Mg diorites are characterized by high Mg (Mg~#=60~66), enrichment in Na(Na_2O/K_2O=1.3~1.9)and high SiO2 contents. Geochemically, they are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), and extremely depleted in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), and have high initial 87Sr/86Sr ratios(0.7067~0.7071)and lowεNd(t) values (-7.82~-13.30).
     The mineral chemical data and the Archean Re-depletion model ages (TRD=2.60-2.68Ga) for most peridotitic xenoliths from Tietonggou high-Mg diorites in western Shandong reveal that they could come from the ancient lithospheric mantle. However, the petrography of the xenoliths such as orthopyroxene metasomatic vein,the zoned orthopyroxene between olivine and chromite, and the existence of clinopyroxene enclosing olivine, and mineral chemical data indicate the interaction between the adakitic melt and mantle peridotite had taken place.
     Combined with the enrichments in LREEs, Pb and LILEs, as well as high ISr(0.7083~0.7214), lowεNd(t) value(-0.25~-11.61)for these dunite and harzburgite xenoliths, it is suggested that the primary magma for high-Mg diorites could be derived from partial melting of delaminated lower crust, and subsequently experienced an interaction of adakitic melt with the mantle peridotite in the Early Cretaceous.
     2.1.2 Magma source and nature of Fangcheng and Feixian basalts
     Fangcheng and Feixian basalts, chemically, are the transitional type between alkaline and subalkaline series and are enriched in LREEs , LILEs (Sr, Ba) and extremely depleted in HFSEs (Nb, Ta, Zr, Hf), as well as exceedingly high in ISr(0.709631~0.710090)and low inεNd(t)(-13.0~-14.2).
     Fangcheng and Feixian basalts contain olivine, orthopyroxene and clinopyroxene xenocrysts. Chemically, they are similar to those of the same minerals from the mantle-derived peridotite xenoliths in the Cenozoic basalts from the eastern China, implying that their primary magma could be derived from the lithospheric mantle. In addition, Fangcheng and Feixian basalts contain reversely zoned clinopyroxene xenocrysts. Their REE distribution patterns suggest that their cores are similar to those of the clinopyroxenes from the eclogitic xenoliths or pyroxenite xenoliths with cumulate textures or granulite xenoliths. There is much higher Mg~# values(Mg~# =87.0~88.9)in the mantle zones than their cores and rims(Mg~# =65.0~74.2), implying that these xenocrysts might come from the previously delaminated lower continental crust and then experienced the interaction with asthenospheric material. Taken together, these lines of evidence indicate that the primitive magma for Fangcheng and Feixian basalts could be originated from partial melting of the lithospheric mantle intensively modified by the delaminated lower continental crust. Their magma sources could be composed chiefly of garnet-bearing pyroxenite.
     2.2 Magma source and nature for Late Cretaceous basalts in the eastern NCC
     Late Cretaceous basalts in Fuxin western Liaoning, Qujiatun basalts in southern Liaoning and Daxizhuang basalts in eastern Shandong belong to alkaline basalt series. They are characterized by relative enrichment in LREEs and LILEs, depletion in HREEs and the lack of Eu anomalies, similar to those of oceanic island basalt. Their IS(r0.709631~0.710090)andεNd(t) values (1.61~7.55) are similar to those of the Cenozoic basalts in eastern North China, implying that their primary magma could be derived from partial melting of a depleted lithospheric mantle.
     The spinel-bearing harzburgite, spinel-bearing lherzolite, amphibolite–bearing lherzolite and lherzolite xenoliths can be found in Fuxin basalts from western Liaoning, whereas Daxizhuang basalts in eastern Shandong chiefly contain spinel-bearing lherzolites. The olivine, orthopyroxene and clinopyroxene xenocrysts can be also found in them. The chemical compositions of minerals from these xenoliths and xenocrysts are similar to those of kindred minerals in the mantle-derived peridotite xenolihs from the Cenozoic basalts in eastern China. The above mentioned characteristics imply that their primary magma could be derived from partial melting of the lithospheric mantle. The olivine and clinopyroxene xenocrysts enclosed in Qujiatun basalts have similar chemical compositions to kindred minerals from the pyroxenite xenolihs in the Cenozoic basalt of eastern China.
     Based on REE distribution patterns, clinopyroxenes in the mantle-derived peridotite xenolihs and xenocrysts in the Late Cretaceous basalts from western Liaoningn and eastern Shandong can be subdivided into five types:
     (1) Clinopyroxenes are extremely depleted in LREEs and enriched in HREEs, which suggests that the ancient lithospheric mantle could exist and the lithospheric mantle could be modified by multi-periods partial melting events. The magma source could be free in garnet.
     (2) Clinopyroxenes are extremely depleted in LREEs and HREEs, and enriched in MREE(with convex upward REE patterns), implying that an ancient lithospheric mantle modified by multiple partial melting events could exist and that the garnet could exist in magma source.
     (3) Clinopyroxenes are enriched in LREEs and depleted in HREEs, suggesting that they might represent the characteristics of the primitive mantle.
     (4) Clinopyroxene xenocrysts are characterized by poor in LREEs and HREEs and enriched in MREE(with convex upward REE patterns)and have much higher REE abundances than the second and third clinopyroxene xenocrysts, which may represent a newly-accretionary lithospheric mantle.
     (5) Clinopyroxenes are extremely enriched in LREEs and depleted in HREEs, and have high LREE/HREE ratios, which suggests that they may represent a newly-accretionary lithospheric mantle. The decrease of isothermal plane and transformation of the asthenosphere into newly-accreted lithospheric mantle could be main reasons to result in the above-mentioned characteristics, which is also supported by high REE abundance of clinopyroxene xenocrysts.
     Taken together, it is proposed that the primary magmas for the Late Cretaceous basalts from eastern North China Craton could dominantly originate from partial melting of a newly accretionary depleted lithospheric mantle, that there are relicts of ancient lithospheric mantle, and that the late Cretaceous lithospheric mantle could experience the modifications of multiple thermal events.
     2.3 Magma source and nature of the Paleogene and Eocene basalts
     Paleogene and Eocene basalts in southern Liaoning belong to alkaline series and are characterized by relative enrichment in LREEs,depletion in HREEs and no Eu anomalies. Geochemically, they are similar to oceanic island basalt. But, Caiyuanzi basalts are relatively enriched in Sr,Ba and depleted in Zr, Hf. The Sr-Nd isotope compositions(ISr=0.70453~0.70516,εNd(t) = 0.22~3.69)for Paleogene and Eocene basalts are similar to those of the Cenozoic basalts in eastern China. Eocene basalts in Caiyuanzi have relative high ISr(0.70473~0.70516)and lowεNd(t)(0.22~2.27),which are consistent with the characteristic of relatively enriched in Ba, Sr and depleted in Zr, Hf. These characteristics imply that crust material could be involved in the magma resource.
     The Mg~# values(88~94)of olivine xenocrysts in the core from Paleogene Luanshishanzi basalt and Eocene Caiyuanzi basalt are similar to those of olivines in the mantle-derived peridotite xenolihs of the Cenozoic basalts in eastern China. Caiyuanzi basalts contain reversely zoned clinopyroxene xenocrysts. Their cores have similar chemical compositions to the clinopyroxenes from granulite xenoliths, which suggests the delaminated lower continental crust could exist in the magma sources. However, clinopyroxene xenocrysts have higher Mg~# value in the mantle zones than in the rim , indicating the existence of reaction between the delaminated lower continental crust and melt with high Mg~#. This reaction is likely to happen in asthenosphere.
     Clinopyroxene xenocrysts are characterized by depletion in LREEs and HREEs and enrichment in MREE and display a convex REE patterns. Compositional variations of clinopyroxene xenocrysts from core to rim reveal a more complicated evolution history of the lithospheric mantle.
     Taken together, it is proposed that the Paleogene basaltic magmas could be derived from partial melting of a depleted lithospheric mantle in general, similar to those of the Late Cretaceous basalts. But, from the late Cretaceous to Paleogene, the lithospheric mantle display an evolutional trend from depletion toward the primitive mantle. The magma sources of the Late Cretaceous and Paleogene basalts could be composed of the depleted mantle and the relict of delaminated lower continental crust (rutile+garnet) after the Early Cretaceous melting.
     3 Deep processes in the lithospheric mantle
     3.1 Type and nature of metasomatic events
     3.1.1 A silica-rich melt (liquid) metasomatism
     The orthopyroxene metasomatic vein can be found in peridotitic xenoliths from Tietonggou high-Mg diorites. Chemically, its composition is similar to one in dunites but lower Mg~# values. The existence of such metasomatic vein implies that metasomatic medium should be SiO2-rich melt (liquid).
     The metasomatic vein usually consists of the orthopyroxene, phlogopite and minor plagioclase in peridotitic xenoliths from Tietonggou high-Mg diorites. The existences of orthopyroxene and plagioclase also indicate that metasomatic medium should be SiO2-rich melt (liquid). Besides, the zoning orthopyroxene occurred between chromite and olivine in peridotitic xenoliths also suggests that metasomatic medium should be SiO2-rich melt (liquid).
     Main reactions are as follows:
     olivine (Ol)+melt I = orthopyroxene (Opx)+melt II
     olivine I (Fo=92-93)+ melt I = olivine II (Fo=85-87)+ melt II (Mg-rich)
     orthopyroxene (Opx)+ melt = olivine (Ol)+ Clinopyroxene (Cpx)
     spinel (Sp-Cr#=30-50)+ melt I = chromite (Chr-Cr#=65-80) + melt II (melt)
     3.1.2 A carbonate-rich melt (liquid) metasomatism
     Clinopyroxenes in the wehrlite xenoliths from Tietonggou high-Mg diorites are extremely enriched in LREEs, depleted in HREEs and HFSEs and relatively low Ti/Eu ratios(2177~2872), suggesting that they could be resulted from crystallization of magma. Meanwhile, it also implies that the metasomatism of an important carbonate-rich melt (liquid) might have taken place in the lithosphere mantle. The poikilitic texture(Lw9-23), metasomatic veinsof the phlogopite, dolomite, talcums and magnetites Lw8-57)in the wehrlite and dunite xenoliths further support the existence of a carbonate-rich melt (liquid) metasomatism.
     3.2 Magma underplating
     Olivine xenocrysts in the Paleogene Luanshishanzi basalts display circle cracks and deformation and reactive rim structures, different from the porphyritic crystals in them. Moreover, olivine xenocrysts is chemically not equilibrium with its host magma.
     Late Cretaceous Qujiatun basalts contain deep-seated olivine, clinopyroxene and amphibole xenocrysts. Olivine and clinopyroxene xenocrysts in Qujiatun basalts are similar to those in the Luanshishanzi basalts.
     The chemical compositions of the deep-seated xenocrysts in the Paleogene Luanshishanzi basalts and the Late Cretaceous Qujiatun basalts shows that they could come from the early mantle cumulates near the crust-mantle boundary. They represent a newly accretionary crust and imply that an important magmatic underplating event had taken place before Late Cretaceous.
     3.3 Melt—Peridotite interaction
     Most olivine and clinopyroxene (Cpx) xenocrysts in the Early Cretaceous, Late Cretaceous, Paleogene igneous rocks in the eastern North China Craton, display positive zonal structure (except for minor reversely zoned clinopyroxene xenocrysts), i.e., the Mg~# values gradually decreasing from core to rim. Mg~# values of their cores are similar to those of olivines and Cpx from the mantle peridotite xenoliths in the Paleozoic kimberlites and the Cenozoic basalt in NE China, whereas Mg~# values of their rims are similar to those of phenocrysts in the host basalt. Taken together with the occurrence of zonal opx and opx veins in the dunites, it is suggested that the melt—peridotite interaction widely exist in the lithospheric mantle in the eastern North China Craton.
     4 Evolution of the Mesozoic and Cenozoic lithospheric mantle in eastern North China Craton
     Based on the above mentioned results, the Mesozoic and Cenozoic evolution model of the lithospheric mantle in eastern North China Craton is set up.
     (1) The thickening of the Early Mesozoic (T1-T2) lower continental crust in eastern North China Craton: The subduction of the Yangzi Craton beneath the North China Craton in NW direction in the early Mesozoic (T1) resulted in the thickening of the lower continental crust in eastern North China Craton and could be a geodynamic background resulting in the destruction of the North China Craton.
     (2) The break-off of subducted slab and the delamination of the thickened continental lithosphere in the late Triassic—Early Jurassic(T3-J1):
     Eclogites were formed during the slab subduction (YC) and the thickening of lower continental crust. High density of eclogites lead to delamination, i.e., break-off of subducted slab and delamination of the thickened continental lithosphere. The formation of monzonite-syenite association with ages of 176-225Ma from Jiazishan in erstern Shandong and Tongshi in western Shangdong should result from the delamination. Taken together, it is concluded that the break-off of the subducted slab and the delamination of the thickened lithosphere could be a major mechanism to result in the destruction of the North China Craton.
     (3) The Early Cretaceous SiO2-rich melt (liquid)—peridotite interaction (K1):
     In the Early Cretaceous, the subduction of the Paleo-Pacific Plate beneath the Eurasian continent could agitate in the melting of early delaminated lower continental crust. These rising adakitic melts would react with the overlying lithospheric mantle. The early Cretaceous high-Mg diorites in western Shandong could come from the intrusion of these reacted melt. Meanwhile, an EM-II lithospheric mantle formed, i.e., magma source of Fangcheng and Feixian basalts.
     (4) The Late Cretaceous accretion of lithospheric mantle:
     In the late Cretaceous, the decrease of geothermal gradient could result in the transformation of primary asthenosphere into the lithospheric mantle, i.e., accretion of lithospheric mantle. The newly accreted lithospheric mantle and minor relicts of ancient lithospheric mantle, together with the relicts (rutile and garnet) of delaminated eclogites after the early Cretaceous melting, make up the magma source of the Late Cretaceous and Paleogene basalts.
引文
[1] Anderson D A. Large igneous provinces, delamination and fertile mantle. Elements, 2006, 1: 271~275.
    [2] Arai S., Shimizu Y., Morishita T., Ishida Y. A new type of orthopyroxenite xenolith from Takashima, Southwest Japan: silica enrichment of the mantle by evolved alkali basalt, Contributions to Mineralogy and Petrology, 2006, 152: 387~398.
    [3] Basu A R., Wang J W., Huang W K., Xie G H., Tatsumoto M . Major element, REE and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for origin from suboceanic- type mantle reservoirs. Earth Planet Sci Lett, 1991, 105: 149~169.
    [4] Blundy J & Dalton J. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contributions to Mineralogy and Petrology, 2000, 139: 356~371.
    [5] Blusztajn J & Shimizu N. The trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland. Chemical Geology, 1994, 111: 227~243.
    [6] Bodinier J L., Menzies M A., Shimizu N., Frey F A & McPherson., E.Hydrous. silicate and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt–harzburgite reaction. Journal of Petrology, 2004, 45: 299~320.
    [7] Boyd F R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett, 1989, 96: 15~26.
    [8] Boyd F R. The pyroxene geotherm. Geochim. Cosmochim. Acta, 1973, 37: 2533~2546.
    [9] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies, in: Henderson, P., (Ed.), Rare earth element geochemistry, Elsevier Science Publishing Company Inc. New York, 1984, 63~114.
    [10] Buchl A., Brugmann G.E., Batanova V G., Hofmann A W. Os mobilization during melt percolation: the evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus, Geochim. Cosmochim. Acta, 2004, 68 (16): 3397~3408.
    [11] Yaxley G M., Crawford A J. & Green G. H. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth and Planetary Science Letters, 1991, 107: 305~317.
    [12] Caress D W. Seismic imaging of hotspot-related crustal underplating beneath the Marquesas Island. Nature, 1995, 373: 600~603.
    [13] Carlson R W., Pearson D G., and James D E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys, 2005, 43: 2004RG000156.
    [14] Chen D G. Geochemistry of Cenozoic basalts from the middle-southern part of Tan-Lu faults. In: Liu RX (ed) Chronology and geochemistry of Cenozoic basalts in China (in Chinese). Seismological Press, Beijing, 1992, pp: 171~200.
    [15] Chen W J., Li D M., Li Q., Sheng S W., Liang H D., Zhou X H., Liu R X., Wang X., Liu X T., Zheng J W.Geochronology and geochemistry of basalts from Xialiaohe rift basin. In: Liu RX (ed) Chronology and geochemistry of Cenozoic basalts in China (in Chinese). Seismological Press, Beijing, 1992, pp: 44~80.
    [16] Chen B., Jahn B M., Arakawa Y., Zhai M G. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang orogen, North China Craton: elemental and Sr-Nd-Pb isotopic constraints. Contrib. Mineral. Petrol, 2004, 148 (4): 489~501.
    [17] Chen B., Zhai M G. Geochemistry of late Mesozoic lamprophyre dikes from the Taihang Mountains, North Chian and implications for the subcontinental lithospheric mantle. Geol. Mag, 2003, 140(1): 87~93.
    [18] Chen L H., and Zhou X H. Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton: Geochemistry, Geophysics, Geosystems, 2005, 6: 1~20.
    [19] Coltorti M., Bonadiman C., Hinton R W., Siena F & Upton B G. Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 1999, 40: 133~165.
    [20] Dale CW., Gannoun A., Burton K W., Argles T W., Parkinson I J. Rhenium–osmium isotope and elemental behaviour during subduction of oceanic crust and the implications for mantle recycling. Earth and Planetary Science Letters, 2007, 253: 211~225.
    [21] Defant M J and Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662~665.
    [22] Delaney J S and Smith J V. Chemistry of micas from kimberlites and xenoliths -II. Primary – and secondary –textured micas from peridotite xenoliths. Geochim. Co- smochim. Acta, 1980, 44: 857~872.
    [23] Deng J F., Mo X X., Zhao H L., Wu Z X., Luo Z H., and Su S G. A new model for the dynamic evolution of Chinese lithosphere: continental roots-plume tectonics. Earth Sci. Rev, 2004, 65: 223~275.
    [24] Dungan M A., Lindstrom M M., McMiland N J., et al. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico,1, The petrology and geochemistry of the Servilleta basalt. J. Geophys. Res, 1986, 91: 5999~6028.
    [25] Fan Q & Hooper P R. The mineral chemistry of ultramafic xenoliths of eastern China: Implication for upper mantle composition and the paleogeotherms. J. Petrol, 1989, 30(5): 1117~1158.
    [26] Fan Q C., Chen W J., Hurford A J., Hunziker J G. Major and trace element geochemistry of Datong basalts. In: Liu RX (ed) Chronology and geochemistry of Cenozoic basalts in China (in Chinese). Seismological Press, Beijing, 1992, pp: 93~100.
    [27] Fan Q., Hooper P R., The Cenozoic basaltic rocks of Eastern China: petrology and chemical composition. J Petrol, 1991, 32: 765~810.
    [28] Fan W. and Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia, 1992, 16: 171~180.
    [29] Fan W M., Guo F., Wang Y J. Post-orogenic bimodal volcanism along the Sulu Orogenic belt in eastern China. Phys. Chem. Earth (A), 2001, 26(9-10): 733~746.
    [30] Fan W M., Guo F., Wang Y J., Zhang M. Late Mesozoic volcanism in the northern Huaiyang tectono- magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie Orogen? Chem. Geol, 2004, 209(1-2): 27~48.
    [31] Fan W M., Zhang H F., Baker J., Jarvis K E., Mason P R D. and Menzies M A. On and off the North China Craton: where is the Archean keel. J. Petrol, 2000, 41: 933~950.
    [32] Fisk M R. Basalt-magma interactions with harzburgite and the formation of high magnesium andesites: Geophys. Res. Lett, 1987, 13: 467~470.
    [33] Fountain D M. Growth and modification of lower continental crust in extended terrain s: The role of extension and magma underplating. In: Properties and Processes of Earth’s Lower Crust, ed. By R. F. Mereu et al., Am. Geophys Union, 1989, 287~299.
    [34] Frey F A & Prinz M H. Ultramafic inclusions from San Carlos,Arizona,petrologic and geochemical data bearing on their petrogenesis Earth Planet. Sci. Lett, 1978, 38: 139~176.
    [35] Furlong K P and Fountain D M. Continental crustal underplating: Thermal consideration and seismic- petrological consequences. J. Geophys. Res, 1986, 91: 8285~8294.
    [36] Gao S, Qiu Y, Ling W, et al. SHRIMP single zircon U-Pb dating of the Kongling high-grade metamorphic terrain: Evidence for 3.2Ga old continental crust in the Yangtze craton. Science in China (Series D) , 2001, 44: 326~335.
    [37] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature., 2004, 432: 892~897.
    [38] Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust. Earth and Planetary Science Letters, 1998, 161: 101~117.
    [39] Gao S., Rudnick R L., Xu W L., Yuan H L., Liu Y S., Puchtel I., Liu X m., Huang H., Wang X R. Recycling deep cratonic lithosphere and generation of intraplate magmatism, 2008, (in press).
    [40] Gao S., Liu X M., Yuan H L., Harttendorf B., Günther D., Hu S H. Determination of forty-two major and trace elements of USGS and NIST SRM glasses by LA-ICPMS, Geostandards Newsletter, 2002, 26: 181~196.
    [41] Gao, S., Luo, T. C., Zhang, B. R., Zhang, H. F., Han, Y. W., Hu, Y. K., and Zhao, Z.-D. Chemical composition of the continental crust as revealed by studies in East China: Geochimica et Cosmochimica Acta, 1998, 62: 1959~1975
    [42] Griffin W L., Zhang A., O’Reilly S Y., et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton . In : Flower M F J, Chung S-L, Lo C-H, et al (eds). Mantle dynamics and plate interaction in east Asia . American Geophysical Union, Geodynamics Series, 1998, 27: 107~126.
    [43] Guo F., Fan W M., Wang Y J. and Lin G. Geochemistry of late Mesozoic mafic magmatism in west Shandong province, eastern China: characterizing the losing lithospheric mantle beneath the North China Block. Geochem. J, 2003, 37: 63~77.
    [44] Hammarstrom J M., Zen E A. Aluminum in hornblende: an empirical igneous geobarometer. American M inera logist, 1986, 71: 1297~1311.
    [45] Hirschmann M. M. Mantle solidus: experimental constraints and the effect of peridotite composition. In Geochem. Geophys. Geosyst, 2000, 1: pp: Paper number 2000GC000070.
    [46] Hofmann A W., Jochum K P., Seufert M., et al. Nb and Pb in oceanic basalts: new constrains on mantle evolution. Erath Planet. Sci. Lett, 1986, 79: 33~45.
    [47] Ionov D A., O’Reilly S Y. & Griffin W L. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology,1997, 141: 153~184.
    [48] Jahn B M., Auvray B., Shen Q H., et al. Archean crustal evolution in China: the Taishan complex, and evidence for Juvenile crustal addition from long-term depleted mantle. Precambrian Research, 1988, 38: 381~403.
    [49] Jin Z M., Green H W., Zhou Y. Melt topology in partially molten mantle peridotite during ductile deformation. Nature, 1994, 372: 164~167.
    [50] Kay R W. and Kay S M. Creation and destruction of lower continental crust. Geol. Rundsch, 1991, 80: 259~278.
    [51] Kelemen P B., Dick J B., Quick J E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle: Nature, 1992, 358: 635~640.
    [52] Kelemen, P. B., Hart, S. R., Bernstein, S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett, 1998, 164: 387~406.
    [53] Kelemen P B., Joyce D M., Webster J D., Holloway J R. Reaction between ultramafic rock and fractionating basaltic magma II. Experimental investigation of reaction between olivine tholeiites and harzburgite at 1150~1050 ℃ and 5 kar: J. Petrol, 1990, 31: 99~134.
    [54] Keshav S., Gudfinnsson G H., Sen G., and Fei Y w. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth and Planetary Science Letters, 2004, 223: 365~379.
    [55] Klemme S., van der Laan S R., Foley S F. & Gunther D. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle. Earth and Planetary Science Letters, 133, 439~448.
    [56] Klemperer S L. Deep seismic reflection profiling and the growth of the continental crust. Tectonophysics, 1989,161: 233~244.
    [57] Liu C Q., Xie G H., Masuda A. Geochemistry of Cenozoic basalts from eastern China. I. Major element and trace element compositions: petrogenesis and characteristics of mantle source (in Chinese). Geochemistry, 1995a,24(1): 1~19.
    [58] Liu Y S., Gao S., Lee C T., Hu S H., Liu X M. and Yuan H L. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust, Earth Planet. Sci. Lett, 2005, 234: 39~57.
    [59] Lustrino M. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth Sci. Rev, 2005, 72(1-2): 21~38.
    [60] Zheng J P., Griffin W L., Reilly S Y O,.,Yu C M., Zhang H F., Pearson N., Zhang M. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis, 2007, (in press).
    [61] Meen J K. Mantle Metasomatism and Carbonates: an Experimental Study of a Complex Relationship. Geological Society of America, Special Papers,1987, 215: 91~100.
    [62] Menzies M A, Fan W, Zhang M. Paleaozoic and Cenozoic lithoprobes and the loss of 120km of Archean lithosphere, Sino-Korean craton, China. Geological Society of London Special Publication, 1993, 76: 71~81.
    [63] Menzies M A, Xu Y. Geodynamics of the North China craton. In: Flower M F J, Chung S-L, Lo C-H, et al (eds). Mantle dynamics and plate interaction in east Asia. American Geophysical Union, Geodynamics Series 27, 1998, 100: 155~164.
    [64] Menzies M A., Xu Y., Zhang H F., Fan W M. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, (in press).
    [65] Mercier J C C. Single-pyroxene geothermometry and geobarometry. Am. Miner., 1976, 61: 603~615.
    [66] Morgan Z T., Liang Y. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth and Planetary Science Letters, 2003, 214: 59~74.
    [67] Morgan Z T., Liang Y. An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation. Contributions to Mineralogy and Petrology, 2005, 150: 369~385.
    [68] Niu Y L. Generation and evolution of basaltic magmas: Some basic concepts and a new view onthe origin of Mesozoic-Cenozoic basaltic volcanism in Eastern China. Geol. J. China Univ, 2005, 11: 9~46.
    [69] Niu Y L. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J. Petrol, 1997, 38: 1047~1074
    [70] O’Reilly S Y, Griffin W L, Djomani Y H P, et al. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today, 2001, 11(4): 4~10.
    [71] O’Hara M J. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci. Rcv, 1968, 4: 69~133.
    [72] Pearson D G. The age of continental roots. Lithos, 1999, 48: 171~194
    [73] Peng Z C., Zartman R E., Futa E., Chen D G. Pb-, Sr- and Ndisotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chem Geol, 1986, 59: 3~33.
    [74] Petford N and Atherton M P. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrol, 1996, 7: 1491~1521.
    [75] Prouteau G., Scaillet B., Pichavant M., Maury R. Evidenc for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust: Nature, 2001, 410: 197~200.
    [76] Qiu J S , Xu X S &Lo C H. Potash2rich volcanic rocks and lamprophyres in western Shandong Province: 40Ar - 39Ar dating and source tracing. Chinese Sci. Bull, 2002, 47(2) : 91~96.
    [77] Rapp R P., Shimizu N., and Norman M D. Growth of early continental crustby partial melting of eclogite. Nature, 2003, 425: 605~609.
    [78] Rapp R P., Shimizu N., Norman M D., Applegate G S. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8GPa. Chemical Geology, 1999, 160: 335~356.
    [79] Reisberg, L., Zhi, X.C., Lorand, J.P., Wagner, C., Peng, Z.C., Zimmermann, C. Re–Os and S systematics of spinel peridotite xenoliths from east central China: evidence for contrasting effects of melt percolation, Earth Planet. Sci. Lett, 2005, 239 (3–4) :286~308.
    [80] Ringwood A E. Compostion and petrology of the earth’smantle.Mc Graw-Hill, New York, 1975.
    [81] Rivalenti G.,Vannucci R., Rampone E,et. Peridotite clinopyroxene chemistry reflects mantle processes rather than continental versus oceanic settings. Earth and Planetary Science Letters, 1996, 139: 423~437.
    [82] Rudnick R L., McDonough W F., Orpin A. North Tanzanian peridotite xenoliths: A comparison with Kaapvaal peridotites and inferences on metasomatic interactions, in: H. O. A. Meyer, O. Leonardos (Eds.), Kimberlites, Related Rocks and Mantle Xenoliths, vol.1, Proc. 5th Int. Kimberlite Conf., CRPM, Brasilia, 1994, 336~353.
    [83] Rudnick R L., Barth M., Horn I., McDonough W F. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science, 2000, 287: 278~281.
    [84] Rudnick R L., Gao S., Ling W L., Liu Y S., McDonough W F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 2004, 77: 609~637.
    [85] Sato H. Nickel content of basaltic magmas: identification of primary magmas and meature of the degree of the olivine fractionation. Lithos, 1977, 10: 113~120.
    [86] Seyler M, Bonatti E. Na, AlⅣ and AlⅥ in clinopyroxenes of subcontinental and suboceanic ridge peridotites: A clue to different melting processes in the mantle? Earth and Planetary Science Letters, 1994, 122: 281~289.
    [87] Shirey S B.Walker R J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rew Earth Planet Sci, 1998, 26: 423~500.
    [88] Stalder R., Foley S F., Brey G P. & Horn I. Mineral–aqueous fluid partitioning of trace elements at 900~1200℃ and 3.0~5.7GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 1998, 62: 1781~1801.
    [89] Sun S S, Mcdonough W F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, (eds). Magmatism in the Ocean Basins. Geol Soc Spel. Pub, 1989, 313~345.
    [90] Taylor S R, McLennan S M. The continental crust: its composition and evolution. Boston: Blackwell Scientific, 1985.
    [91] Thompson R N., Gibson S A. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites, Nature, 2000, 407: 502~506.
    [92] Tsuchiya N., Suzuki S., Kimura J., Kagami H. Evidence for slab melt/mantle reaction: petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos, 2005, 79: 179~206.
    [93] Wang Y J., Fan W M., Peng T P., Zhang H F., Guo F. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, cetral China: evidence fron 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chem. Geol, 2005, 220: 165~189.
    [94] Wells P R A. Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol, 1977, 62: 129~139.
    [95] Wilde S A., Zhou X H., Nemchin A A. et al. Mesozoic crust-mantle interaction beneath the North China Craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 2001, 31: 817~820.
    [96] Wilkinson J F G and Maitre R W Le. Upper mantle amphiboles and Micas and TiO2, K2O and P2O5 abundances and 100Mg/(Mg+Fe2+) ratios of common basalts and andesites:Implications for modal mantle metasomatism and undepleted mantle compositions. J. Perol, 1987, 28: 37~73.
    [97] Wood B J and Banno S. Garnet-orthopyroxene and clinopyroxene-orthopyroxene relationships in simple and complex systems. Ibid, 1973, 46: 1~15.
    [98] Wu F Y., Lin J Q., Wilde S A, et al. Early Cretaceous giant igneous event in eastern China:Evidence from Liaodong Peninsula in NE China. Earth and Planetary Science Letters, 2005, 233(1-2): 103~119.
    [99] Wu F Y., Walker R J., Ren X. W., et al. Osimium isotopic constraints on the the age of lithospheric mantle beneath northeastern China. Chem. Geol, 2003, 196: 107~129.
    [100] Wu F Y., Walker R J., Yang Y H., et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim. Cosmochim. Acta, 2006, 70: 5013~5034.
    [101] Wu F Y., Yang J H., Wilde S A. and Zhang X O. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem. Geol, 2005, 221: 127~156.
    [102] Wu F Y., Zhao G C., Wilde SA. and Sun D Y. Nd isotopic constraints on the crustal formation of the North China Craton. J. Asian Earth Sci, 2005, 24: 523~545
    [103] Xiong X. L., Adam T. J., and Green T. H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol, 2005, 218: 339~359.
    [104] Xu X S., O’Reilly S Y., Griffin W L., Zhou X M. The nature of the Cenozoic lithosphere beneath Nushan, east central China. In: Fliwer M E J,Chung S L,Lon C H, et al. Amer. Geophysical Union Geodynamics series, 27, Mantle Dynamics and Plate Interactions in East Asia, 1998, 167~196.
    [105] Xu Y G. Thermo-tectonic destruction of the Archaean lithosphence, keel beneath the Sino-Korean Crton in China: evidence, timing and mechanism. Physics and Chemistry of the Earth, 2001, 26A: 747~757.
    [106] Xu W L., Gao S., Wang Q H., Wang D Y., Liu Y S. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721~724.
    [107] Xu W L., Wang D Y., Liu X C., et al. Discovery of eclogite inclusions and its geological significance in early Jurassic intrusive complex in Xuzhou-northern Anhui, eastern China Chinese Science Bulletin, 2002, 47 (14): 1212~1216.
    [108] Xu W L., Wang Q H., Liu X C., Wang D Y., Guo J H. Chronology and sources of Mesozoic intrusive complex in Xu-Huai region, central China: Constraints from SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 2004, 78: 96~106.
    [109] Xu W L., Wang Q H., Wang D Y., Guo J H., Pei F P. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: evidence for partial melting of delaminated lower continental crust. J. Asian Earth Sci, 2006, 27: 230~240.
    [110] Xu W., Liu X., Wang Q., Lin J., Wang D. Garnet exsolution in garnet clinopyroxenite andclinopyroxenite xenoliths in early Cretaceous intrusions from the Xuzhou region, eastern China. Mineralogical Magazine, 2004, 68(3): 455~465.
    [111] Xu Y G., Chung S L., Ma J., Shi L. Contrasting Cenozoic lithospheric evolution and architecture in western and eastern Sino-Korean Craton: constraints from geochemistry of basalts and mantle xenoliths. J. Geol, 2004, 112: 593~605.
    [112] Xu, Y. G., Huang, X. L., Ma, J. L., et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China craton: constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib. Mineral. Petrol, 2004,147: 750~767.
    [113] Xu Y G., Menzies M A., Thirlwall M F., et al. “Reactive” harzburgites from Huinan, NE China: products of lithosphere-asthenosphere interaction during lithospheric thinning? Geochim. Cosmochim. Acta, 2003, 67: 487~505
    [114] Yang J H., Wu F Y., Wilde S A. Geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geol. Rev, 2003, 23: 125~152.
    [115] Yang C H., Xu W L., Yang D B., Liu C C., Liu X M., Hu Z C. Petrogenesis of Mesozoic high-Mg diorites in western Shandong: Evidence from chronology and petro-geochemistry. Journal of China University of Geosciences, 2005, 16: 297~308.
    [116] Yang J H., Wu F Y., and Wilde S A. Geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geol. Rev, 2003, 23: 125~152.
    [117] Yasuda A., Fujii T., and Kurita K. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20GPa: implications for the behaviour of subducted oceanic crust in the mantle. J. Geophys. Res, 1994, 99: 9401~9414.
    [118] Yaxley G M. & Green D H. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt, 1998, 78: 243~255.
    [119] Yaxley G M. Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib. Mineral. Petrol, 2000, 139, 326~338.
    [120] Yaxley G M., Green D H. & Kamenetsky V. Carbonatite metasomatism in the southeastern Australia lithosphere. Journal of Petrology, 1998, 39: 1917~1930.
    [121] Ying J F., Zhang H F., Kita N., Morishita Y., Shimoda G. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong province, China. Earth Planet. Sci. Lett, 2006, 244: 622~638.
    [122] Zack T., Kronz A., Foley S F., and Rivers T. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol, 2002, 184: 97~122.
    [123] Zang H F., Ying J F., Xu P., et al. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton: Implication for replacement process of lithospheric mantle. Chinese Sci. Bull, 2004, 49(9): 961~966.
    [124] Zangana N A., Downes H., Thirlwall M F., Marriner G. F. & Bea F. Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): implications for the composition of the shallow lithospheric mantle. Chemical Geology, 1999, 153: 11~35.
    [125] Zhang H F., Sun M., Zhou X H., et al. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotopie studies of Fangcheng basalts [J]. Contrib. Mineral. Petrol, 2002, 144: 241~253.
    [126] Zhang H F, Ying J F, Xu P, et al. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton: Implication for replacement process of lithospheric mantle. Chinese Sci. Bull, 2004, 49(9): 961~966.
    [127] Zhang H F., et al. Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton: Evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths.Lithos, 2007, 96: 67~89.
    [128] Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth Planet. Sci. Lett, 2005, 237: 768~780.
    [129] Zhang H F., Sun M., Zhou M F., Fan W M., Zhou X H. and Zhai M G. Highly heterogeneous late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geol. Mag, 2004, 141: 55~62.
    [130] Zhang H F., Sun M., Zhou X H., Zhou M F., Fan W M., Zheng J P. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalt and high-Mg andesites. Geochem. Cosmochim. Acta, 2003, 67: 4373~4387.
    [131] Zheng J P., Griffin W L., Reilly S Y O’., Yu C M., Zhang H F., Pearson N., Zhang M. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis, 2007, (in press).
    [132] Zheng J P., Griffin W L., O’Reilly S Y., Liou J G., Zhang R Y., Lu F X. Late Mesozoic-Eocene mantle replacement beneath the eastern North China Craton: evidence from the Paleaozoic and Cenozoic peridotite xenoliths. Inter. Geol. Rev, 2005, 47: 457~472.
    [133] Zheng J P., O'Reilly S Y., Griffin W., Lu F X., Zhang M., Pearson N. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos, 2001, 57: 43~66.
    [134] Zheng J P., Sun M., Zhou M F., Robinson P. Trace element and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim. Cosmochim. Acta, 2005, 69: 3401~3418
    [135] Zheng Y F., Zhao Z F., Wu Y B., Zhang S B., Liu X M., Wu F Y. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem. Geol, 2006, 231, 135~158.
    [136] Zhi X., Song Y., Frey F A., Feng J., Zhai M . Geochemistry of Hannouba basalts, eastern China: constraints on the origin of continental alkalic and tholeiitic basalt. Chem Geol, 1990, 88: 1~33.
    [137] Zhou X H., Armstrong R L. Cenozoic volcanic rocks of eastern China – secular and geographic trends in chemistry and strontium isotopic composition. Earth Planet Sci Lett, 1982, 59: 301~329.
    [138] Zhou X H., Sun M., Zhang G H., Chen S H. Continetal crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean Craton. Lithos, 2002, 62: 111~124.
    [139] Zhu R X., Hoffman K A., Nomade S., Renne P R., Shi R P., Pan Y X., Shi G H. Geomagnetic paleointensity and direct age determination of the ISEA (M0r) chron. Earth Planet. Sci. Lett, 2004, 217: 285~295.
    [140] 陈道公, 彭子成. 苏皖若干新生代火山岩的钾氩年龄和铅锶同位素特征. 岩石学报[J], 1988, 2: 3~17.
    [141] 陈立辉, 周新华. 鲁西中生代闪长岩中的深源超镁铁质岩捕虏体及其富硅交代特征.中国科学, D 辑, 2003, 33 (8): 734~744.
    [142] 陈立辉. 山东莱芜中生代高镁侵入岩及其超镁铁质捕虏体的成因研究.中国科学院博士学位论文,2001.
    [143] 陈绍海, 张国辉, 周新华等. 汉诺坝玄武岩中麻粒岩类捕虏体的岩石学特征[J].岩石学报, 1998, 14 (3): 366~380.
    [144] 陈义贤, 陈文寄. 辽西及邻区中生代火山岩—年代学、地球化学和构造背景. 北京: 地震出版社, 1997, 1~279.
    [145] 池际尚, 路凤香. 华北地台金伯利岩及古生代岩石圈地幔. 北京: 科学出版社, 1996.
    [146] 池际尚主编. 中国东部新生代玄武岩及上地幔研究. 武汉: 中国地质大学出版社, 1988.
    [147] 迟效国, 谭东娟, 许文良. 鲁西中生代二辉闪长岩系列的成因演化. 见: 谭东娟, 林景仟主编. 华北地台中部中生代钾质岩浆区. 北京: 地震出版社, 1994, 59~65.
    [148] 邓晋福, 莫宣学, 赵海玲, 等. 中国东部岩石圈根/去根作用与大陆 “活化”. 现代地质, 1994, 8: 349~356.
    [149] 邓晋福, 赵海玲, 莫宣学. 中国大陆根-柱构造-大陆动力学的钥匙. 北京: 地质出版社, 1996, 1~97.
    [150] 邓晋福, 鄂莫岚, 路凤香. 中国东北地区上地幔组成、结构及热状态. 岩石矿物学杂志, 1987, 6(1): 1-10.
    [151] 鄂莫岚, 赵大升主编. 中国东部新生代玄武岩及深源岩石包体. 北京: 科学出版社. 1987.
    [152] 樊祺诚,刘若新,李惠民,等. 汉诺坝捕虏体麻粒岩锆石年代学与稀土元素地球化学. 科学通报,1998,43(2):133~137.
    [153] 韩宗珠. 鲁苏榴辉岩的地球化学.青岛海洋大学学报,1994, 24(1):102~111.
    [154] 河北省地质矿产局. 河北省 北京市 天津市区域地质志. 北京:地质出版社, 1989.
    [155] 黄小龙, 徐义刚, 王汝成, 等. 安徽女山麻粒岩包体:矿物学特征、下地壳地温曲线及其成因意义[J]. 岩石学报, 2002, 18(3): 383~391.
    [156] 江来利,刘贻灿,吴维平,苏文. 大别山超高压变质岩的变形历史及折返过程.地质科学,1999, 34(4):432~441.
    [157] 金隆裕. 郯庐断裂带中段新生代火山岩的岩石学和地球化学特征.岩石学报[J], 1989, 4: 45~57.
    [158] 金振民,姚玉鹏. 超越板块构造-我国构造地质学要做些什么?地球科学, 2004, 29(6): 644~650.
    [159] 李昌年. 火成岩微量元素岩石学[M] .武汉:中国地质大学出版社, 1992,1~87.
    [160] 李思田,路凤香主编. 中国东部及邻区中新生代盆地演化及地球动力学背景. 武汉: 中国地质大学出版社, 1997.
    [161] 辽宁省地质矿产局. 辽宁省区域地质志. 北京:地质出版社, 1989.
    [162] 林景仟,谭东娟,等. 鲁西地区中生代火成活动的 40Ar/39Ar 年龄. 岩石矿物学杂志, 1996, 15(3):213~220.
    [163] 林景仟,谭东娟,许文良,等著. 鲁西归来庄金矿成因. 山东科学技术出版社, 1997.
    [164] 林景仟、谭东娟等. 华北陆块南缘带早侏罗世徐州班井侵入杂岩体.长春科技大学学报,2000, 30(3):209~214.
    [165] 刘若新, 陈文寄, 孙建中, 李大明. 中国新生代火山岩的 K-Ar 年代与构造环境. 见刘若新主编. 中国东部新生代火山岩年代学与地球化学. 北京: 地震出版社, 1992, 1~43.
    [166] 刘若新,杨美蛾,胥怀济,等. 华北地区新生代碱性玄武岩中超镁铁质捕虏体的初步研究. 地震地质,1981, 3(4): 39~47.
    [167] 路凤香, 韩柱国,郑建平, 任迎新. 辽宁复县地区古生代岩石圈地幔特征. 地质科技情报, 1991, 10(增刊).
    [168] 路凤香, 郑建平, 李伍平,等. 中国东部显生宙地幔演化的主要样式: “蘑茹云”模型. 地学前缘, 2000, 7 (1): 97~107.
    [169] 路凤香, 郑建平, 邵济安, 张瑞生,陈美华, 余淳梅. 华北东部中生代晚期-新生代软流圈上涌与岩石圈减薄. 地学前缘, 2006, 13: 86~92.
    [170] 路凤香, 郑建平, 张瑞生,陈美华. 华北克拉通东部显生宙地幔演化. 地学前缘, 2005, 12: 61~67.
    [171] 路孝平, 吴福元, 赵成弼, 张艳斌. 通化地区印支期花岗岩锆石 U-Pb 年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系[J]. 科学通报, 2003, 48(8): 843~849.
    [172] 罗振宽, 苗来成, 编著. 胶东招莱地区花岗岩和金矿床. 北京: 冶金工业出版社, 2002, 20~57.
    [173] 穆克敏,林景仟,等. 华北地台区花岗岩石的成因.吉林科技出版社,1989.
    [174] 裴福萍, 许文良, 王清海,等. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学—对岩石圈地幔性质的制约. 高校地质学报, 2004, 10(1): 88~97.
    [175] 裴福萍, 许文良, 杨德彬, 纪伟强, 于洋. 松辽盆地南部中生代火山岩:锆石 U-Pb 年代学及其对基底性质的制约[J]. 地球科学-中国地质大学学报, 2008, ( in press).
    [176] 裴福萍, 许文良, 杨德彬, 纪伟强, 于洋. 松辽盆地南部中生代火山岩:锆石 U-Pb 年代学及其对基底性质的制约[J]. 地球科学-中国地质大学学报, 2008, ( in press).
    [177] 山东地质矿产局. 山东省区域地质志. 北京:地质出版社, 1991.
    [178] 山东省地矿局地质综合研究队. 山东省岩浆岩研究报告(内部材料), 1985.
    [179] 石超,张泽明. 超高压变质过程中的元素地球化学行为—CCSD 主孔榴辉岩的矿物化学研究.岩石学报,2007, 23(12): 3180~3200.
    [180] 索书田,钟曾球,游振东. 大别-苏鲁超高压-高压变质带伸展构造格架及其动力学意义.地质学报,2001, 75(1):14~24.
    [181] 王冬艳, 许文良, 冯宏,等. 辽西中生代晚期岩石圈地幔的性质:来自玄武岩和地幔捕虏体的证据. 吉林大学学报(地球科学版), 2002, 32 (4): 319~324.
    [182] 王冬艳. 鲁西—辽西中生代火成岩中镁铁质—超镁铁质岩石包体的岩石学与地球化学特征:中生代岩石圈地幔性质探针. 吉林大学博士学位论文,2002.
    [183] 王惠芬, 朱炳泉, 张前锋, 等. 山东临朐地区新生代玄武岩同位素钾-氩年龄研究[J].地球化学,1981, 4: 321~328.
    [184] 王清晨, 林伟. 大别山碰撞造山带的地球动力学[J ].地学前缘, 2002 , 9 (4) : 257~265.
    [185] 王清海. 徐淮地区中生代侵入杂岩及深源捕虏体的岩石学和地球化学:对华北地块东部中生代岩石圈演化的制约. 吉林大学博士学位论文,2003.
    [186] 王微, 许文良, 纪伟强, 杨德彬, 裴福萍. 辽东中生代晚期和古近纪玄武岩及深源捕虏晶-对岩石圈地幔性质的制约[J]. 高校地质学报, 2006, 12(1): 30~40.
    [187] 王微, 许文良, 王冬艳, 纪伟强, 杨德彬, 裴福萍. 辽东菜园子古近纪玄武岩和深源捕虏晶: 对新生代岩石圈地幔性质及深部作用过程的制约[J]. 矿物岩石, 2007, 27(1): 63~ 70.
    [188] 吴福元, 葛文春, 孙德有. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 2003, (3): 51~60.
    [189] 吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄. 长春科技大学学报, 1999, 29 (4): 313~318.
    [190] 徐义刚. 适用于幔源包体的地质温度计. 岩石学报,1993, 9(2):167~180.
    [191] 徐义刚. 岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄. 矿物岩石地球化学通报, 1999, 18: 1~5.
    [192] 许文良, 王冬艳, 高山, 等. 鲁西纯橄岩捕虏体中富硅质熔(流)体的交代作用: 对中生代岩石圈地幔减薄的意义. 地质学报, 2004, 78 (1): 72~80.
    [193] 许文良, 王冬艳, 高山,等. 鲁西中生代金岭闪长岩中纯橄岩和辉石岩包体的发现及其意义. 科学通报, 2003, 48 (8): 863~868.
    [194] 许文良, 王冬艳, 林景仟, 等. 鲁西中生代闪长岩中两类幔源捕虏体的岩石学和地球化学. 岩石学报, 2003, 19(4): 623~636.
    [195] 许文良, 王冬艳, 王清海, 等. 华北克拉通中东部中生代侵入杂岩中角闪石和黑云母的40Ar/39Ar 定年: 对岩石圈减薄时间的制约. 地球化学, 2004 a, 33 (3): 221~231.
    [196] 许文良, 王冬艳, 王嗣敏. 中国东部中新生代火山作用的 PTtC 模型与岩石圈演化. 长春科技大学学报, 2000, 30 (4): 329~335.
    [197] 许文良, 王冬艳, 郑常青,等. 辽西阜新中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义. 地质论评, 1999, 45(增刊): 444~449.
    [198] 许文良, 王清海, 王冬艳,等. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据. 地学前缘, 2004, 11(3):309~317.
    [199] 许文良, 杨承海, 杨德彬, 裴福萍, 王清海, 纪伟强. 华北克拉通东部中生代高 Mg 闪长岩——对岩石圈减薄机制的制约. 地学前缘,2006,13(2): 120~129.
    [200] 许文良,迟效国,袁朝,等. 华北地台中部中生代闪长质岩石及深源岩石包体. 北京:地质出版社, 1993.
    [201] 闫峻, 陈江峰, 谢智,等. 鲁东晚白垩世玄武岩中的幔源包体:对中国东部岩石圈减薄时间制约的新证据. 科学通报, 2003, 48(14): 1570~1574.
    [202] 闫峻, 张巽, 陈江峰,等.济南辉长岩的锶、钕同位素特征. 矿物岩石地球化学通报,2001, 20(4): 302~305.
    [203] 闫峻,陈江峰, 等. 鲁东晚白垩世玄武岩及其中幔源包体的岩石学和地球化学研究, 2005, 21(1): 99~112.
    [204] 杨承海,许文良,杨德彬,等. 鲁西中生代高 Mg 闪长岩的成因—年代学与岩石地球化学证据.地球科学, 2006, 31(1): 81~92.
    [205] 杨进辉, 吴福元, 柳小明, 谢烈文, 杨岳衡. 辽东半岛小黑山岩体成因及其地质意义:锆石U-Pb 年龄和铪同位素证据[J]. 矿物岩石地球化学通报, 2007, 26(1): 29~43.
    [206] 翟明国,樊祺诚, 张宏福,隋建立. 华北东部岩石圈减薄中的下地壳过程: 岩浆底侵、置换与拆沉作用. 岩石学报, 2005, 21: 1509~1526.
    [207] 翟明国,朱日详,刘建明,等. 华北东部中生代构造体制转折的关键时限. 中国科学(D 辑), 2003, 33(10): 913~920.
    [208] 张宏福. 橄榄岩-熔体的相互作用: 岩石圈地幔组成转变得重要方式. 地学前缘, 2006, 13: 65~75.
    [209] 张增奇,刘明渭. 山东省岩石地层. 武汉:中国地质大学出版社, 1996, 202~239.
    [210] 郑常青,许文良,王冬艳. 辽西阜新中生代玄武岩中深源捕虏体的岩石学和矿物化学研究. 岩石学报,1999,15(4): 616~622.
    [211] 郑建平, 路凤香, Griffin W L. 等. 华北东部橄榄岩与地幔置换作用与岩石圈减薄中的地幔伸展和侵蚀置换作用. 地学前缘, 2006, 13: 76~85.
    [212] 郑建平, 路凤香, O’Reilly S Y. 等. 华北东部地幔改造作用和置换作用: 单斜辉石激光探针研究. 中国科学(D 辑), 2003, 30: 373~382.
    [213] 郑建平. 中国东部地幔置换作用与中新生代岩石圈减薄. 北京:中国地质大学出版社, 1999. 1~126.
    [214] 周新华, 杨进辉, 张连昌. 胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程. 中国科学(D 辑), 2002, 32(增刊): 11~20.
    [215] 周新华, 张国辉, 杨进辉, 等. 华北克拉通北缘中生代火山岩 Sr-Nd-Pb 同位素填图及其构造意义. 地球化学, 2001, 30(1):10~23.
    [216] 周新华, 张宏福. 中生代华北岩石圈地幔高度化学不均一性与大陆岩石圈转型. 地球科学, 2006, 31: 49~56.
    [217] 周新民,于津海,徐夕生. 女山玄武岩中麻粒岩捕虏体的发现与意义. 科学通报,1992,(3):1198~1201.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.