甘肃省区域构造及区域成矿找矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘肃省内具有北山、祁连山和西秦岭三个古生代碰撞型造山带,是中国地质构造最为复杂的地区之一。祁连山是中国最为重要的早古生代与海相火山岩有关的块状硫化物(VHMS)铜多金属矿床成矿带,而其北邻的龙首山则为中国元古宙最主要的岩浆铜镍硫化物(铂族金属)矿床成矿带,西秦岭是中国最主要的蚀变岩型金矿成矿区。
     甘肃省的古板块构造格局是在古生代生成的。早古生代初期至晚古生代末,甘肃省分属西伯利亚板块、哈萨克斯坦板块、塔里木板块、华北板块、柴达木-祁连板块和扬子板块,其古生代地质历史实际就是板块聚敛的过程。这种聚敛过程不是固定的简单的合,而是在不断运动和运移过程中的消。古秦岭、古祁连、古北山洋壳在寒武纪由于板块运移的挤压而破裂,并相对于刚性块体俯冲,或者沿活动陆缘破裂并产生不同期次的俯沖消减,俯冲线逐渐向大洋及洋盆方向移动,洋面收缩,直至大洋及洋盆消亡;同时在活动大陆边缘形成沉积-火山物质的堆积和加积,每次俯冲运动都会相应地产生一部分新生陆壳(增生地体),使陆块逐渐向外增长,最后导致不同大陆板块的最终碰撞,形成了西秦岭、祁连山、北山古生代碰撞型造山带。因此,甘肃省自新元古代以后的构造发展主要为聚敛过程,并在晚古生代末聚合形成统一大陆。后来的各个地质时期的构造运动仅仅是在原有格局的基础上,加以改造并明显地复杂化。如在中新生代受到印度板块与欧亚块板碰撞作用的波及,产生一系列挤压运动,沿原有的一些断裂构造产生区域性的隆起和沉降,形成了现今复杂的地质景观。
     论述了甘肃省地球物理场特征和造山带的地壳结构,探讨了地球物理场与成矿的关系。以全省的1:20万水系沉积物测量成果为基础,研究省内39种(SiO_2、Al_2O_3、Fe_2O_3、CaO、MgO、K_2O、Na_2O、P、Ti、Ba、Mn、Cu、Zn、Pb、Sr、Zr、Cr、Ni、La、V、Th、Co、Nb、Y、Ag、Cd、Li、As、Sb、Hg、W、Mo、B、Be、Bi、Sn、F、Au、U)元素(其中前七种为氧化物)在各时代地层中的分布特征。对全省地球化学场进行了归并和划分,共划出地球化学省7个,地球化学域21个,地球化学带14个,讨论了各地球化学带(省、域)的特征及其与已发现矿产的对应关系。
     提出了全省共划分出5个成矿域(Ⅰ级成矿区带)、8个成矿省(Ⅱ级成矿区带)、12个成矿区带(Ⅲ级成矿区带)、22个成矿亚区带(Ⅳ级成矿区带)的新见解。论证了每个Ⅳ级成矿区带内的地质成矿背景及矿化异常特征,并划分了矿田(Ⅴ级)。同时通过对省内矿床的形成时代、成矿环境、地质成矿作用及矿床“自然组合”的研究认识,基本确定了省内成矿系列序次,重点是对成矿系列类型及成矿系列、成矿亚系列进行了划分和鉴别,提出全省有11个成矿系列类型、39个成矿系列的新认识。
     对甘肃省内主要的金属矿产金、铜、铅锌、钨矿成矿控制因素从矿质来源、空间定位、成矿元素富集动力等方面进行了研究和总结,提出了主要金属矿产成矿的控制因素及找矿方向和远景区,论证了找矿突破的可能性。
Three collision-type orogenic belts (Beishan, Qilian Mountain and West Qinling) in Palaeozoic age are present in Gansu Province, which is thus the most complicated tectonic zone in China. Studies show that Qilian Mountain is the predominant Palaeozoic massive sulfide metallogenic belt of copper polymetallic deposit associated with marine volcanics, whereas Longshoushan in the north Qilian Mountain is believed to be the most significant magmatic copper nickel sulfide (PGE) metallogenic zone. And West Qinlin is suggested to be the key area of altered gold-bearing ore.
     The palaeo-tectonic pattern in Gansu Province had been formed in Palaozoic. From the Early to Late Paleozoic, Gansu Province once belonged to Siberian plate, Kazakhstan plate, Tarim plate, Northern China plate, Chaidamu-Qilian plate and Yangzi plate, sedately. Actually its Palaozoic history represents the process of plate convergence, which is believed to be a dynamic movement of plate destruction, rather than a simple motion of getting together. In Cambrian, oceanic crust in Paleo-Qinling, Paleo-Qilian and Paleo-Beishan were fractured due to the compression caused by plate movement and then subducted beneath the rigid plate; or fractured along the active continental margins and subducted in different phases. In the later case, the subduction line moved gradually towards the ocean and oceanic basin. Therefore, the ocean shrinked and finally destructed, and sedimentary-volcanic accumulations and accretions were consequently formed in active continental margins. Each subduction could result in the formation of small piece of continental crust, leading to continental plates expanding and colliding to others eventually, and thus the development of Beishan, Qilian Mountain and West Qinling collision-type orogenic belts in Palaeozoic age. In conclusion, Gansu Province was largely in the process of plate convergence after Proterozoic Era into a mono-plate in the Late Palaeozoic. Tectonic activities in later phases had not changed, but altered the primary pattern into more complicated stages. For example, Gansu plot was compressed by the collision between Hindu and Eurasia plate in Middle Cenozoic, and regional uplifting and subsidence occurred along the original fractures, which contributed to the complex of the present geologic pattern.
     This project aims to analyze the natures of geophysical field and crustal structure of the orogenic belts in Gansu Province, and then interpret the links between geophysical field and metallization. Based on the investigated results of hydrographic deposits(scale:1:200000), we analyzed the distributions of 39 elements (SiO_2. Al_2O_3, Fe_2O_3, CaO, MgO, K_2O, Na_2O, P, Ti, Ba, Mn, Cu, Zn, Pb, Sr, Zr, Cr, Ni, La, V, Th, Co, Nb, Y, Ag, Cd, Li, As, Sb, Hg, W, Mo, B, Be, Bi, Sn, F, Au and U, the first 7 elements were measured as oxides) in strata of different ages. Thus, we divided the geochemical field of Gansu Province into 7 geochemical provinces, 21 geochemical regions and 14 geochemical zones; Then we also discussed their characteristics and the relations with the already found ore deposits.
     We also proposed an original idea that Gansu Province can be divided into 5 metallogenic regions (type I), 8 metallogenic provinces (type II), 12 metallogenic belts (type III) and 22 sub-belts of metallizaion (type IV). We investigated the metallogenic background and the anomalies of each sub-belt (type IV) and further partitioned metallogenic fields (type V). According to the study of the mineralogenetic epoch, environments, geological metallogenesis and naturally grouping of ore deposits, the minerogenic series, types and sub-series in Gansu Province have been generally determined. We finally drew the conclusion that Gansu Province has 11 types of metallogenic series and 39 metallogenetic series.
     In addition, we also focused on the the main metallic ores, such as gold, copper, lead, zinc and tungsten ore deposits, in the aspect of the sources, the spatial distribution and enrichment of main metallic ores, suggested the possible controlling factors on metallic ore deposits, provide evidence in exploring prospects.
引文
① 李文渊,祁连山岩浆作用有关硫化金属矿床成矿与找矿,2004年,西北大学博士学位论文.
    ① 长安大学地调院,甘肃省地调院,1:25万天水幅区域地质调查报告,2005年
    ② 长安大学地调院,甘肃省地调院,1:25万天水幅区域地质调查报告,2005年
    ① 甘肃省地调院,1:5万红岭幅、阿勒腾闹尔梗兑乌勒幅、双沟山幅区域地质调查报告,2004
    ① 甘肃省地调院,1:25万马鬃山幅区域地质调查报告,2001
    ② 甘肃省地矿局研究所,祁连山-北山古板块构造及镁铁岩-超镁铁岩分布图说明书,1990
    ① 甘肃省地矿局研究所,祁连山-北山古板块构造及镁铁岩-超镁铁岩分布图说明书,1990。
    ① 甘肃省地矿局六队,1:5万红洼井、旋毛头幅区域地质调查报告,1987;甘肃省地矿局研究所,1:5万山丹、马莲井、红寺湖幅区域地质调查报告,1989.
    ① 甘肃省地矿局区调队,1:5万水川幅区域地质调查报告,1994
    ② 甘肃省地矿局区调队,1:5万青城幅区域地质调查报告,1996
    ③ 甘肃省地矿局研究所,1:5万张家川幅、清水幅、山门镇幅、恭门幅区域地质调查报告,1996
    ④ 甘肃省地调院,长安大学地调院,中国地质大学地调院,1:25万兰州幅区域地质调查报告,2004
    ① 长安大学地调院,甘肃省地调院,1:25万天水幅区域地质调查报告,2005
    ② 甘肃省地调院,1:25万静宁幅区域地质调查报告,2004
    ③ 甘肃省地矿局区调队,1:20万秦安幅区域地质调查报告,1984
    ④ 甘肃省地调院,1:25万静宁幅区域地质调查报告,2004
    ⑤ 甘肃省地调院,1:5万科克巴斯陶幅地质图说明书,2001
    ① 甘肃省地调院,1:5万蓝泉幅地质图说明书,2001
    ② 长安大学,甘肃南祁连党河南山北坡金铜矿产成矿规律、控矿因素研究及找矿靶区优选,2000
    ③ 甘肃省地调院,1:5万科克巴斯陶幅幅地质图说明书,2001
    ④ 长安大学地调院,甘肃省地调院,1:25万天水幅区域地质调查报告,2005
    ① 1:20万区调资料,1966-1974
    ② 1:2O万区调资料及有关专题研究报告,1966-1998
    ① 长安大学地调院,甘肃省地调院,1:25万天水幅区域地质调查报告,2005
    ① 甘肃省地矿局, 铁、铜、镍、铅锌、金等矿产资源总量预测报告、区划报告。1985-1999年
    ① 黄承熊、汤中立。甘肃省及其邻区物探地质构造和矿产预测研究成果报告,1998
    ① 贾群子等, 祁连成矿带成矿规律和找矿方向综合研究,2004
    ① 中国地质技术勘查技术院,秦岭-巴山地区物、化、遥编图和综合解释成果报告,1995
    ① 黄承熊、汤中立,甘肃省及其邻区物探地质构造和矿产预测研究成果报告,1998
    ① 贾群子等。祁连成矿带成矿规律和找矿方向综合研究,2004
    ① 甘肃省地矿局,甘肃省1:100万地球化学编图报告,2004
    ② 甘肃省地矿局,甘肃省1:100万地球化学编图报告,2004
    ① 甘肃省地矿局,甘肃省1:100万地球化学编图报告,2004
    ① 陈毓川、常印佛、汤中立等,中国成矿体系与区域成矿评价成果报告,2004年
    ① 陈毓川、常印佛、汤中立等,中国成矿体系与区域成矿评价成果报告,2004年
    ① 陈毓川、常印佛、汤中立等。中国成矿体系与区域成矿评价成果报告,2004年
    ① 甘肃省地矿局地矿处,甘肃省1:100万地球化学图说明书,2005年
    ① 陈毓川、常印佛、汤中立等,中国成矿体系与区域成矿评价成果报告,2004
    ① 陈毓川、常印佛、汤中立等,中国成矿体系与区域成矿评价成果报告,2004年
    ① 贾群子等,祁连成矿带成矿规律和找矿方向综合研究,2004
    ① 甘肃省地调院,1:5万红岭、阿勒腾闹尔梗兑乌勒、双沟山幅区域地质调查报告,2004
    ② 甘肃省地调院,1:5万红岭、阿勒腾闹尔梗兑乌勒、双沟山幅区域地质调查报告,2004
    ③ 甘肃省地矿局酒泉地调队,甘肃省肃北蒙古族自治县四顶黑山超基性岩详查报告,1991
    ① 甘肃省地矿局地调队,甘肃省肃北县黑山铜镍矿普查地质报告,1993
    ① 甘肃省地矿局第四地质矿产勘查院,甘肃省金塔县玉山钨矿地质普查报告,2004
    ② 甘肃省地矿局,甘肃省1:20万地球化学测量说明书(天仓幅),1993
    ① 甘肃省地矿局酒泉地调队,1:5万石板泉幅区域地质调查说明书,1994
    ① 甘肃省地矿局酒泉地调队,1:5万石板泉幅区域地质调查说明书,1994
    ① 李文渊,祁连山岩浆作用有关硫化金属矿床成矿与找矿,西北大学博士学位论文,2004
    ① 李文渊,祁连山岩浆作用有关硫化金属矿床成矿与找矿,西北大学博士学位论文,2004
    ① 邹治平、黄传俭,甘肃省肃北蒙古族自治县塔儿沟钨矿矿床特征,1988
    ② 西安地矿所,1:5万红坑子幅、国营鱼儿红牧场幅1:50000区域地质调查报告,2001
    ① 贾群子等,祁连成矿带成矿规律和找矿方向综合研究,2004
    ① 甘肃省地勘局第六地质队,甘肃省天祝县干沙河脑铜稀土多金属矿普查报告,1999
    ① 贾群子等,祁连成矿带成矿规律和找矿方向综合研究,2004
    ① 西北石油地质研究所,甘肃省石油天然气资源勘查开发规划,1999
    ① 贾群子等,祁连成矿带成矿规律和找矿方向综合研究,2004
    1.陈炳蔚,姚培毅,郭宪,等.青藏高原北部地体构造与演化,北京:地质出版社,1996.
    2.陈莉,徐军,苏犁.场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用.自然科学进展。2005,15(11):1403~1408.
    3.陈毓川.矿床的成矿系列.地学前缘,1994,3(1):90~94.
    4.陈毓川.中国主要成矿区带矿产资源远景评价.北京:地质出版社,1999.
    5.陈哲夫.天山地质构造的基本轮廓,新疆地质,1981,(3):1~14.
    6.程裕祺,陈毓川,等.初论矿床的成矿系列问题.中国地质科学院院报,1979,(1):32~58.
    7.程裕祺,陈毓川,等.再论矿床的成矿系列问题.中国地质科学院院报,1984,(6):1~64.
    8.崔汝勇.大洋中大型硫化物矿床的形成条件.海洋地质动态,2001,17(2):1~4.
    9.代双儿.甘肃北山地区包括构造演化及铜多金属成矿系列研究.兰州地学学报(自然科学版)。2001,37(6):112~119.
    10.冯益民,何世平.祁连山大地构造与造山作用.北京:地质出版社。1996.
    11.冯益民,吴汉泉.北祁连山及邻区古生代以来的大地构造演化初探.西北地质科学,1992,13(2):61~73.
    12.冯益民.西秦岭化石混杂岩及其构造意义.西安地质矿产研究所所刊,1981,(3).
    13.甘肃省地质矿产局.甘肃省区域地质志.北京:地质出版社,1989,1~520.
    14.甘肃省地质矿产局第六地质队.白家咀子硫化铜镍矿床地质.北京:地质出版社,1984,1~217.
    15.高延林,吴向农,左国朝.关于中国南北板块界线的新认识—昆仑-秦岭缝合带[A].中国地质学会构造专业委员会.国际大陆岩石圈构造演化与动力学讨论会.造山带·盆地·环太平洋构造[c].北京:地质出版社,1990,7~151
    16.葛肖虹,刘俊来.北祁连造山带的形成与背景.地学前缘,1999,6:223~230.
    17.郭召杰,张志诚,王建君.阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义.科学通报,1998,43(18):1981~1984.
    18.郭召杰,张志诚.阿尔金盆地群构造类型与演化,地质论评,1998,44(4):357~363.
    19.和政军,田树刚,许志琴,等.阿尔金山中段晚古生代放射虫的发现及意义.地质论评,1999,45(3):246.
    20.胡芳芳,范宏瑞,杨进辉,等.胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U.Pb测定.科学通报,2004,49(12):1191~1198.
    21.黄华芳,王金荣.造山型盆地构造演化与油气赋存—以酒西柴达木盆地为例.兰州:兰州大学出版社,1994.
    22.黄汲清,张正坤,张之孟,等.中国优地槽和冒地槽以及它们的的多旋回发展.北京:中国工业出版社,1965,5~41.
    23.黄汲清.中国大地构造特征的新研究.中国地质科学院院报,1984 9:5~18.
    24.霍福臣,李永军.西秦岭造山带的建造与地质演化.西安:西北大学出版社,1995,1~43.
    25.贾群子,杨钟堂,肖朝阳,等.祁连山金属矿床成矿带划分及分布规律.矿床地质,2002,21(增刊):140~144.
    26.匡耀求,张本仁,欧阳建,等.扬子克拉通北西缘碧口群的解体与地层划分.地球科学,1999,24(3):251~256
    27.李春昱,刘仰文,朱宝清,等.秦岭及祁连山构造发展史.见:国际交流地质学术论文集.1978,(1)174~185.
    28.李春昱,王荃,刘雪亚,等.亚洲大地构造图说明书.北京:地图出版社,1982.
    29.李春昱.中国板块构造的轮廓.中国地质科学院院报,1980,2(1):11~22.
    30.李文渊,汤中立,郭周平,等.阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征.岩石矿物学杂志,2004,23(2):117~126.
    31.李文渊,夏林圻,夏祖春,等.北祁连山早古生代弧后盆地火山作用与成矿——以石居里沟富铜矿床为例.地质论评,1999,45(增刊):1047~1053.
    32.李文渊,杨合群,赵东宏,等.北祁连山发现塞浦路斯型富铜工业矿床.矿床地质,1999c,(3):32.
    33.李文渊.祁连山主要成矿组合及成矿动力学分析.地球学报,2004,6(3):313~320.
    34.李文渊.中国铜镍硫化物矿床成矿系列与地球化学.西安:地图出版社, 1996,1~228.
    35.李献华,苏犁,宋彪,等.金川超镁铁侵入岩SHRIMP锆石U—Pb年龄地质意义.科学通报,2004,49(4):401~402.
    36.李向民,彭礼贵,贺庆,等.甘肃白银矿田东部矿床成矿和找矿模式.北京:地质出版社,2000,1~139.
    37.刘敦一,简平.大别山双河硬玉石英岩的超高压变质和退变质年龄—SHRIMP测年的证据.地质学报,2004,78: 211-217.
    38.刘良,本自成,王焰,等.阿尔金高压变质岩带的特征及其构造意义.岩石学报,1999,15(1):57~64.
    39.毛景文,杨建民,张招崇,等..北祁连小柳沟钨钼矿床Re-Os同位素测年及起意义.地质论评。1999b,45(4):412~417.
    40.毛景文,杨建民,张招崇,等.甘肃寒山剪切带型金矿床地质,地球化学和成因.矿床地质,1998a,17(1):1~13.
    41.毛景文,张招崇,任丰寿,等.北祁连西段金属矿床时空分布和生成演化.地质学报,1999,73(1):73~82.
    42.毛景文,张招崇,杨建民,等.北祁连西段前寒武纪地层单颗粒锆石测年及其地质意义.科学通报,1997,42(1):1414~1417.
    43.毛景文,张招崇,杨建民,等.北祁连西段铜金铁钨多金属矿床成矿系列和找矿评价.北京:地质出版社,2003,1~436.
    44.毛景文,张作衡,简平,等.北祁连西段花岗闪长岩的锆石U-Pb年龄及其动力学意义.地质论评,2000,46(6):616~620.
    45.毛景文,张作衡,杨建民,等.甘肃鹰咀山金矿床地质和成矿地球化学.矿床地质,1998b,17(4):297~305.
    46.聂风军,江思宏,白大明,等.北山地区金属矿床成矿规律及找矿方向.北京:地质出版社,2002.
    47.彭礼贵,任有祥,李智佩,等.甘肃白银厂铜多金属矿床成矿模式.北京:地质出版社,1995.
    48.秦德余,高长珠,吉让寿.东秦岭地区古洋盆及其两个大陆边缘.现代地质学研究史文集(上).南京:南京大学出版社,1992.
    49.秦克令,何世平,宋述光.碧口地体同位素地质年代学及其意义.西北地质科学,1992,13(2):97~110.
    50.秦克章,方同辉,王书来,等.东天山板块构造分区、演化与成矿地质背景研究.新疆地质,2002,20(4):302~308.
    51.任纪舜,姜春发,张正坤,等.中国大地构造及其演化.北京:科学出版社,1980,1~124.
    52.任纪舜,姜春发.从全球看中国大地构造—中国及邻区大地构造图简要说明.北京:地质出版社,1999.
    53.任纪舜.新一代中国大地构造图——中国及邻区大地构造图(1:5000000).地球学报,2003,24(1):1~2.
    54.宋叔和.甘陕境内秦祁地轴两侧古生代断陷海相火山活动与多金属成矿的探讨.中国地质科学院矿床地质研究所所刊,1985,(2):1~12.
    55.宋叔和.中国一些主要金属矿床类型及其时空分布规律问题.矿庆地质,1991,10(1):10~18.
    56.宋志高.北祁连优地槽区块状硫化物矿床形成地质环境的实步对比研究与探讨.矿床地质,1984,3(2):1~23.
    57.宋志高.祁连山东段的元古宙陇山群.地球学报,1995,(2):204~210.
    58.孙海田,邬介人,李锦平.北祁连金属成矿省时-空格局,演化及成矿作用.地质学报,1997,71(2):170~179.
    59.孙海田,邬介人.对北祁连山火山喷溢型贱金属硫化物矿床区域成矿的探讨.矿床地质,1993,12(3):11~23.
    60.汤中立,Barnes S J.岩浆硫化物矿床成矿机制.北京:地质出版社,1998,1~60.
    61.汤中立,白云来.华北板块西南边缘大型-超大型矿床的地质构造背景.甘肃地质学报,2000,9(1):1~15.
    62.汤中立,白运来,徐章华,等.华北古陆西南缘(龙首山~祁连山)成矿系统及成矿构造动力学.北京:地质出版社,2002,1~393.
    63.汤中立,白运来.华北古大陆西南边缘构造格架与成矿系统.地学前缘,1999,6(2):271~283.
    64.汤中立,李文渊.金川超大型硫化镍矿床成矿地质背景.第五届全国矿床会议论文集.地质出版社,1993,7~9.
    65.汤中立,李文渊.金川硫化铜镍(含铂)矿床成矿模式及地质对比.北京:地质出版社,1995,1~209.
    66.汤中立,李文渊.中国与基性-超基性岩有关的Cu-Ni(Pt)矿床成矿系列类型.甘肃地质学报,1996,5(1):58.
    67.汤中立.北祁连造山带两种构造基底岩块及成矿系统.甘肃地质学报,2001,10(2):1~11.
    68.汤中立.超大型Ni-Cu(Pt)岩浆矿床的划分与找矿.地质与勘探,2002, 38(3):1~7.
    69.汤中立.金川铜镍硫化物矿床岩浆成矿作用的偏在性.甘肃地质学报,1996,5(2):73~85.
    70.汤中立.某硫化铜镍矿床成矿特征及找矿方向.地质科技,1975,(4).
    71.汤中立.中国的小岩体岩浆矿床.中国工程科学,2002,4(6):9~12.
    72.汤中立.中国镁铁-超镁铁岩浆矿床成矿系列的聚集与演化.地学前缘,2004,11(1):113~119.
    73.汤中立.中国岩浆硫化物矿床的主要成矿机制.地质学报,1996,(2):237~243.
    74.汤中立.中国岩浆硫化物矿床的主要类型.甘肃地质学报,1996,5(1).
    75.万渝生,许志琴,杨经绥,等.祁连造山带及邻区前寒武纪深变质基底的时代和组成.地球学报,2003,24(4):319~324.
    76.王荃, 刘雪亚.我国西部祁连山区的古海洋地壳及其大地构造意义.地质科学,1976,(1):42~55.
    77.王瑜,李锦轶,李文铅.东天山造山带右行剪切变形及构造演化的~(40)Ar—~(39)Ar年代学证据.新疆地质,2002,20(4):315~319.
    78.王瑜,李锦轶,李文铅.东天山造山带右行剪切变形及构造演化的~(40)Ar—~(39)Ar年代学证据.新疆地质,2002,20(4):315~319.
    79.邬介人.1994.西北海相火山岩地区块状硫化物矿床.武汉:中国地质大学出版社,1~271.
    80.吴功建.格尔木—额济纳旗地学断面综合研究.地质学报,1998,72(4):289~300.
    81.吴汉泉,冯益民,等,北祁连山中段甘肃肃南变质硬柱石片岩的发现及其意义.地质论评,1990,36(3):277~280
    82.吴汉泉,宋述光.北祁连山两种类型蓝闪片岩及其构造特征.现代地质研究文集(上).南京:南京大学出版社,1992,74~80.
    83.吴汉泉.北祁连山高压变质带的岩石矿物学.中国地质科学院西安地质矿产研究所所刊,1982,4(7):5~21.
    84.夏林圻,夏租春,任有祥,等.北祁连山构造-火山岩浆-成矿动力学.北京:中国大地出版社,2001,1~296.
    85.夏林圻,夏祖春,任有祥,等.祁连山及邻区火山作用与成矿.北京:地质出版社。1998,1~215.
    86.夏林圻,夏祖春,任有祥,等.祁连-秦岭山系海相火山岩.武汉:中国地质大学出版社,1991,1~326.
    87.夏林圻,夏祖春,徐学义.北祁连山海相火山岩岩石成因.北京:地质出版社,1996a,1~109.
    88.夏林圻,夏祖春,徐学义.北祁连山早古生代洋脊-洋岛和弧后盆地火山作用.地质学报,1998,72(4):301~312
    89.向鼎璞,戴天富.北祁连山火山成因硫化物矿床区域成持征.矿床地质,1985,4(1).
    90.徐晓春,岳书仓,刘因,等.甘肃走廊南山朱龙关群的时代及其火山岩的岩石化学特征.安徽地质,1996,6(4):1~6.
    91.许志琴,除惠芬,张建新,等.北祁连走廊南山加里东俯冲杂岩地体及动力学.地质学报,1994,69(1):1~14.
    92.严济南.祁连山白银厂黄铁矿型矿床成因探讨.矿床地质,1983,2(3):4.
    93.翟裕生,邓军,李晓波.区域成矿学.北京:地质出版社,1999,1~287.
    94.翟裕生,张湖,宋鸿林等.大型构造与超大型矿床.北京:地质出版社,1997.
    95.翟裕生.当代矿床学研究现状和发展态势.当代矿产资源勘查评价的理论与方法(陈毓川主编).北京:地震出版社,1999.3~10.
    96.张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造.中国科学(B)辑,1995,25(9):994~1003.
    97.张建新,许志琴,徐惠芬,等.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.岩石矿物学报,1997,(1):1~15.
    98.张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985.
    99.张旗,孙晓猛,周德金,等.北祁连蛇绿岩特征形成环境及其构造意义.地球科学进展,1999,12(4):366~393.
    100.张旗,周国庆,王焰.中国蛇绿岩的分布.时代及其形成环境.岩石学报,2003,19(1):1~8.
    101.张旗,周国庆.中国蛇绿岩.北京:科学出版社,2001,34~54.
    102.张新虎,苟国朝,田培昭,等.祁连山,北山地区古板块及地体构造的划分,西北地质,1994,14(2):1~6.
    103.张新虎,苟国朝,展积宝.北祁连地区主要金属矿床的成矿系列及区域成矿作用.地球科学进展,1997.12(4):331.
    104.张新虎,刘建宏,徐家乐等.再论甘肃省的板块构造.甘肃地质学报,2005,2:1~6.
    105.张新虎,苟国朝,田培昭,等.祁连山、北山地区古板块及地体构造的划分,西北地质,1993,2:15.
    106.张新虎.甘,青,蒙祁连山,北山造山带构造地层演化史.甘肃地质学报,1993,2(1):80~86.
    107.张新虎.龙首山古裂谷带的地质构造特征.西北地质,1992,1.
    108.张招崇,毛景文,左国朝,等.北祁连熬油沟蛇绿岩岩石成因的地球化学证据.地质学报,1998,72(1):42~51.
    109.张招崇,毛景文,左国朝,等.北祁连山西段早元古代变质火山岩的地球化学特征及其构造背景.矿物岩石,1999,19(1):77~82.
    110.赵东宏,杨合群,刘玉林.甘肃桦树沟铜矿床成矿年龄讨论决定.矿床地质,2003,22(2).
    111.赵生贵.祁连造山带特征及其构造演化.甘肃地质学报,1996,5(1):16~29
    112.周廷贵,周继强,宋史刚.小柳沟铜钨矿田矿化特征及找矿方向.地质与勘探,2002,38(2):37~41.
    113.左国朝,冯永忠,刘春燕,等.甘肃北山—东疆天山元古代古陆壳特征及其早古生代地壳类型.甘肃地质学报,1992,1(1):55~67.
    114.左国朝,何国琦,等.北山板块构造及成矿规律.北京:北京大学出版社,1990.
    115.左国朝,金松桥,冯铁全.甘肃省公婆泉群发现牙形石.中国区域地质,1994,(2).
    116.左国朝,李茂松,等.甘蒙北山地区早古生代岩石圈形成与演化.甘肃:甘肃科技出版杜,1996.
    117.左国朝,梁广林,陈俊,等.东天山觉罗塔格地区夹白山一带晚古生代构造格局及演化.地质通报,2003,20(4): 302~308.
    118. 左国朝,刘寄陈.北祁连早古生代大地构造演化.地质科学,1987,(1):14~24.
    119. 左国朝,刘义科,张崇.北祁连造山带中—西段陆壳残块群的构造-地层特征.地质科学,2002,37(3):302~312.
    120. 左国朝,吴汉泉.北祁连山中段早古生代双向俯冲-碰撞造山模式剖析.地球科学进展,1997,12(4):315~323.
    121. 左国朝,吴茂炳,毛景文,等.北祁连西段中元古代早期蛇绿岩的确定.甘肃地质学报,1999,8(2):1~6.
    122. 左国朝,冯永忠,刘春燕.晚二叠世甘肃北山南带中段走滑隆升与拉分拗陷作用.贵金属地质,1993,2(4):377~283.
    123. 左国朝、何国琦等.北山板块构造及成矿规律,北京:北京大学出版社.1990.
    124. 左国朝.北祁连地区早古生代碰撞缝合作用.中国北方板块构造论文集(1),北京:地质出版社,1986.
    125. 左国朝.甘肃白银厂黄铁矿型多金属矿床火山岩系的时代.中国地质,1985,3:17~18.
    126. 左国朝.西秦岭泥盆纪构造-建造带及其演化.甘肃地质,1983,(2):99~109.
    127. 左国朝等.北山洗肠井地区寒武-中奥陶统浊积岩及其火山-沉积组合特征.沉积学报,1987,5(2).
    128. Amelin Y, Valeyev O, Naldrett A J. Nd-Pb-Sr isotope systematics of crustal assimilation in the Voisey's Bay and Mushuau intrusions, Labrador, Canada. Econ.Geol., 2000, 95(4): 815~830.
    129. Arcuri T, Ripley E M and Hauck S A. Sulfur and oxygen isotopic studies of the interaction between pelitic xenoliths and mafie magma at the Babbitt and Serpentine Cu-Ni deposits, Duluth Complex, Minnesota. Econ. Geol., 1998, 93: 1063~1075.
    130. Arndt T N, Czamanske G K, Walker R J, Chauvel C and Fedorenko V A. Geochemistryy and origin of the intrusive hosts of the Noril'sk-Talnakh Cu-Ni-PGE sulfide deposits. Econ. Geol., 2003, 98:495~515.
    131. Arndt T N. Hot heads and cold tails. Nature, 2000, 407: 458~460.
    132. Arndt N T, Naldrett A J and Pyked D R. Komatiitic and iron-rich tholeiitic lavas of Munro Township, northeast Ontario. J Petrol, 1977, 18: 319~369.
    133. Barnes S J and Tang Zhongli. Chrome Spinels from the Jinchuan Ni-Cu Sulphide Deposit, Gansu Province, Peoples' Republic of China, Economic Geology, 1999, 94, 343~356.
    134. Barnes S J and Campbell I H. Role of late magmatic flwids in Merensky-type platinum deposits: A discussion. Geology, 1988, 16: 488~491.
    135. Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 2003, 200:155~170
    136. Bleeker W, Parrish R R and Sager-Kinsman A. High precision U-Pb geochronology of the Late Archean Kidd Creek deposit and Kidd volcanic complex. Econ. Geol. Monograph, 1999, 10: 43~70.
    137. Bowje S H U et al. Mineral deposits of Europe. Northhwest Europe, the institution of mining and metallurgy and mineralogical society, Colchester and London, 1978.
    138. Brugmann G E, Naldrett A J, Asif M et al. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Traps in the Noril'sk Region, Russion. Geochim. Cosmochim. Acta, 1993, 57:2001~2018.
    139. Cameron E M, Hattori K A.rchaean gold mineralization and oxidized hydrothermal fluids.Econ.Geol., 1987, 82:1177~1191.
    140. Campbell I H and Barnes S J. A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. Can.Min, 1984,22: 151~160.
    141. Campbell I H and Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett, 1990, 99: 79~93.
    142. Campbell I H and Griffiths R W. The changing nature of mantle hotspots through time: implications for the geochemical evolution of the mantle. J Geol., 1992, 92: 497~523.
    143. Chai Gang, Naldrett A J. The Jinchuan ultramafic intrusion: Cumulate of a high-Mg Basalic magma. Journal of Petrology, 1992, 44(2): 2775~303.
    144. Chen Yuchuan and Tao Weiping. Metallic and nonmetallic minerals in China. Episodes,1996,18:17~20.
    145. Claoue-Long J C, Compston W, Roberts J, et al. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis, in Berggren W A, Kent D V, Aubry M P, Hardenbol J, eds., Geochronology, time scales and global stratigraphic correlation: SEPM Special Publication. 1995:3~31
    146. Claoue-Long J C, King R W, Kerrich R Archaean hydrothermal zircon in the Abitibi greenstone belt: Constraints on the timing of gold mineralization. Earth Planet Sci Lett, 1990, 98: 109—128
    147. Coffin M F and Eldholm O. Large igneous provincesxrustal structure, dimensions, and external consequences. Rev Geophys, 1994,32:1-36.
    148. Composton W, Williams I S, Kirschvink J L, et al. Zircon U -Pb ages of early Cambrian time-scale. Journal of Geological Socciety, 1992,149:171 — 184.
    149. Craig J R. Geochemical aspects of the origins of ore deposits, Review of research on modern problems in geochemistry. Earth sciences, 1979,16: 225-272.
    150. Davies G F and Richards M A. Mantle convection. J Geol., 1992,100:151—206.
    151. Dempster T J, Hay D C, Bluck B J.Zircon growth in slate.Geology, 2004,32:22 1-224
    152. Evans-Lamswood D M, Butt D P, Jackson R S, Lee D V and Muggridge M C. Physical controls associated with the distribution of sulfides in the Voisey's Bay Ni-Cu-Co deposit, Labrador. Econ. Geol., 2000,95: 749—770.
    153. Francheteau J and Ballard R D. The East Pacific Rise near 21°N, 13°N and 20°S: inference For alongstrike variability of axial processes of the mid-ocean ridge. Earth Planet Sci., 1983,64:93—116.
    154. Francheteau J, Needham H D, Choukroune P, et al. Massive deep-sea-sulfide ore deposits discovered on the East Pacific Rise. Nature, 1979,277: 523-528.
    155. Franklin J M, Sangster D F, Lydon J W. Volcanic-associated massive sulfide deposits. Economic Geology, (75th Anniv): 1981,485-627.
    156. Gao Rui, Wu Gongjian. Lithosphere structure and geodynamic model of Golmud-Ejin B.Geoscience Transect in North Tibet. Acta Geoscientia sinica, 1996,36—40.
    157. Gillis K M. The rootzone of an ancient hydrothermal system exposed in the Troodos Ophiolite, Cyprus. Journal of Geology, 2002,110(1): 57-74.
    158. Gorton M P and Schandl E S. From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Canadian Miineralogist, 2000,38:1065—1073.
    159. Groves D I, Goldfarb R J, Gebre-Mmariam M et al. Orogenic gold deposits : Aproposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 1998,13: 7—27.
    160. Hageman S G, Gebre-Mariam M, Groves D L. Surface-water influxin shallow-level Archaean lode-gold deposits in Western Australia. Geology, 1994,22: 1067—1070.
    161. Halbach P, Nakamura K, Washsner M et al. Probable modern analogue of Kuroko-type deposits in the Okinawa trough back arc basin. Nature, 1989,338: 496-499.
    162. Hannington M D, Scott S D. Gold mineralization in volcanogenic massive sulfide: Implications of data from active hydrothermal vents on the modern seafloor]. Econ. Geol.(Monograph), 1996,6: 491—507.
    163. Hawkesworth C J, Turner S P, McDermott F, et al. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 1997,276: 551—555.
    164. Hezig P M, Hanningtong M D. Polymetallic massive sulfides at the modern seafloor-A review. Ore Geologica Review, 1995,10:95-115.
    165. Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out. Science, 1991,252:409—412.
    166. Hoskin P W O, Schaltegger U.The composition of zircon and igneous and metamorphic petrogenesis.In:Hanchar J M, Hoskin PW O.eds: Zircon. Reviews in Mineralogy and Geochemistry. Mineral Soc Amen, 2003, 53: 27-62.
    167. Hutchinson R W. Volcanic sulfide deposits and their metallogenic significance. Econ.Geol., 1973,68:1223—1246.
    168. Keays R R, Ross J R and Woolrich P W. Precious metals in volcanic peridotite-associated nickel sulfide deposits in Western Australia. Part II: Distribution within the ores and host rocks at Kambalda. Econ. Geol., 1981, 76: 1645— 1674.
    169. Keays R R. Requirements for the formation of giant Ni-Cu-PGE sulfide deposits: The role of magma generation. Transactions of the American Geophysical Union (EOS), 1997,78: F799.
    170. Keays R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 1995,34:1 — 18.
    171. Kent R W, Kent, Stoey M and Saunders A D. Large igneous provinces: sites of plume impact or plume incubation . Geology, 1992,20:891-894.
    172. Kerrich R, King R W . Hydrothermal zircon and baddeleyite in Val-d'Or Archean mesothermal gold deposits: Characte ristics. compositions, and fluid-inclusion properties, with implications for timing of primary gold mineralization Can J Earth Sci. 1993, 30: 2334-2351
    173. Krvtsov A I. Ore-forming environment and condition of massive sulfide deposit on ancient and modern. International Geology Review, 1987,29(11-12): 1425-1437.
    174. Lambert D D and Ripley E M. Special issue, Geodynamics of giant magmatic ore systems. Lithos, 1999,47:156.
    175. Lambert D D, Frick L R, Foster J G, Li Chusi, and Naldrett A J. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution . Econ.Geol., 2000,95(4): 867-888.
    176. Large R R. Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Economic Geology, 1992,87: 741-510.
    177. Lay T, Williams Q and Garnero E J. The core-mantle boundary layer and deep Earth dynamics. Nature, 1998, 392: 461-468.
    178. Li C, Ripley E M and Naldrett A J. Compositional variations of olivine and sulfur isotopes the Noril'sk and Talnakh intrusions, Siberia: Implications for ore forming processes in dynamic magma conduits: Economic Geology, 2003,98:69-86.
    179. Li C, Ripley E M, Maier W D and Gomwe T E S. Olivine and sulfur isotopic compositions of the Uitkomst Ni-Cu sulfide ore-bearing complex, South Africa: Evidence for sulfur contamination and multiple magma emplacements: Chemical Geology, 2002,188: 149—159.
    180. Li C and Naldrett A J. Melting reactions of gneissic inclusions with enclosing magma at Voisey's Bay, Labrador, Canada: Implications with respect to ore genesis. Econ. Geol., 2000,95: 801—814.
    181. Li C, Naldrett A J and Ripley E M. Critical factors for the formation of a nickel-copper deposit in an evolved magmatic system: Lessons from a comparison of the Pants Lake and Voisey's Bay sulfide occurrences in Labrador, Canada. Mineralium Deposita, 2001,36: 85—92.
    182. Lightfoot P C and Naldrett A J. Geological and geochemical relationships in the Voisey's Bay intrusion, Nain plutonic suite, Labrador, Canada. In: Keays R R, Lesher C M, Lightfoot P C and Farrow C F G. eds. Dynamic processes in magmatic ore deposits and their application to mineral exploration. Geological Association of Canada Short Course Notes, 1999,13:1-30.
    183. Lightfoot P C, Hawkesworth C J and Olshefsky K. Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and Nuussuaq, West Greenland with implications for the mineral potential of comagmatic intrusions. Contrib Mineral Petrol, 1997,128:139-163.
    184. Lightfoot P C, Hawkesworth C J, Hergt J, et al. Remobilization of the continental lithosphere by a mantle plume: Major- trace-element, and Sr-Nd- and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia. Contrib Mineral Petrol, 1993,171 — 188.
    185. Lu S N, Yang C L, Li H K et al. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 2002, 5(1): 123—131.
    186. Ludwig K R. Isoplot: a plotting and regression program for radiogenic isotope data. In: USGS Open-File Report, 1991, pp. 91—445
    187. Lydon J W. Ore deposit models 14, Volcanogenic massive sulfide deposits. Geoscience Canada, 1988,83(1): 43—66.
    188. Mitchell A H G and Garson M S. Mineral deposits and global tectonic settings. London: Academic Press, 1981, 1 — 405.
    189. Moller A, O'Brien P J, Kennedy A, et al.The use and abuse of Th-U ratios in the interpretation of zircon.Geophysical Research Abstracts, 2003, 5:121-130
    190. Naldrett A J. Magmatic sulfide deposits. New York, Oxford University Press, 1989,1—186.
    191. Naldrett A J, Lightfoot P C, Fedorenko V A, et al. Geology and geochemistry of intrusions and flood basalts of the Noril' sk Region,USSR, with implications for origin of the Ni-Cu ores. Econ.Geol., 1993, 87: 975—1004.
    192. NaldrettAJ. Magmatic sulfide deposit, X X VIIth IGC Abstracts, IV: 1984,219.
    193. Naldrett AJ et al. Controls on the Composition of Ni-Cu Sulfide Deposits as Illustrated by Those at Noril'sk, Siberia. Economic Geology, 1996,91,751—773.
    194. Naldrett AJ, Asif M, Schandl E, Sarcy T, Morrison C G, Binney W P and Moore C. Platinum-group elements in the Sudbury ore: Significance with respect to the origin of different ore zones and to the exploration for footwall orebodies. Econ. Geol., 1999,94: 185-210.
    195. Naldrett AJ, Keats H, Sparkes K E and Moore R. Geology of the Voisey's Bay Ni-Cu-Co deposit, Labrador, Canada. Exploration Mining and Geology, 1996,5(2): 109—129.
    196. Naldrett AJ. IGCP project no. 161 and a proposed classification of N-Cu-PGE sulfide deposits. Canadian Mineralogist, 1979,17: 143-145.
    197. Naldrett AJ. Nickel sulfide deposits-their classification and genesis with special emphasis on deposits of volcanic association. Canadian Inst. Mining Metallurgy Trans., 1973,76: 183—201.
    198. Naldrett,A.J. Key factors in the genesis of Noril'sk, Sudbury, Jinchuan, Voisey's Bay, and other world-class Ni- Cu-PGE deposits: implications for exploration. Australian Journal of Earth Sciences, 1997,44: 283—315.
    199. Nasdala L, Zhang M, Kempe U, et al. Spectroscopic methods applied to zircon. Reviews in Mineralogy and Geochemistry, 2003,53:427-267
    200. Nisbitt B E. Gold deposit continyuum:a genetic model for lode Au minralizarization in the continental crust,Geology, 1998,16:1044-1048
    201. Ohmoto H. Formation of volcanic-associated massive sulfide deposits: The Kuroko perspective. Ore Geologica Review, 1996,10: 135-177.
    202. Pearce J A and Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 1979,69: 33-47.
    203. Pearce J A and Peate D W. ectonic implications of the compositior of volcanic arc magmas: Annual Reviews. Earth and Planetary Science, 1995,23:251-285.
    204. Pearce J A, Goman B E and Birkett T C. The relationship between major element chemistry and tectonic environment of basic and intemediate volcanic rocks. Earth Planet. Sci. Lett., 1977,36:121 — 132.
    205. Peate D W and Hawkesworth C J. Lithospheric to asthenospheric transition in low-Ti flood basalts from Southern Parana, Brazil. Chem Geol, 1996,127:1—24.
    206. Pirajno Franco. Ore deposits and mantle plumes. London: Kluwer Academic Publishers, 2000,1—540.
    207. Preston R J, Dempster T J, Bell B R and Rogers G The petrology of mullite -bearing peraluminous xenoliths: implications for contamination processes in basaltic magma. Journal of Petrology, 1999,40: 549—573.
    208. Rad'ko V V. Model of dynamic differentiation of intrusive traps in the northwestern Siberian platform, Soviet. Geol. and Geophys, 1991,32(7): 70-77.
    209. Revillon S,Arndt N T, Hallot E, et al. Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province. Lithos, 1999,49:1—21.
    210. Revillon S. Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: The plumbing system of an oceanic plateau. J Petrol, 2000,41:1127—1153.
    211. Richards M A, Jones D L, Duncan R A, et al. A mantle plume initiation model for the Wrangellia flood basalt and other oceanic plateaus. Science, 1991,254: 263—267.
    212. Ringwood A E. Composition and petrology of the Earth's Mantle. New York: Mc Graw-Hill, 1975.
    213. Ripley E M and Li Chusi. Paragneiss assimilation in the genesis of magmatic Ni-Cu-Co sulfide mineralization at Voisey's Bay, Labrador: 634S, 813C, and Se/S evidence. Econ.Geol., 2002,97(6): 1307-1318.
    214. Ripley E M, Park Y R, Li Chusi and Naldrett A J. Oxygen isotopic studies of the Voisey's Bay Ni-Cu-Co deposit, Labrador, Canada. Econ.Geol., 2000,95(4): 831-844.
    215. Ripley E M. Sulphur isotopic abundances of the Dunka Road CuNi deposit, Duluth Complex, Minnesota. Econ. Geol., 1981,76:619-620.
    216. Roedder E and Weiblen P W. Lunar petrology of silicate melt. Inclusions, Apollo II Rocks. Apollo II Lunar Sci. Conf., 1970,1:801-837.
    217. Rogers J J W and Santosh M.Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 2002,5(1): 5-22.
    218. Rubatto D., Gebauer D., Compagnoni R. Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 1999,167:141—158
    219. Sangster D F and Scott S D. Precambrian statabound, massive Cu-Zn-Pb sulfide deposits of North America. In: Wolf K A eds. Handbook of Strata-Bound and Stratiform Ore Deposits. Amsterdam:Elsevier,1976,129—222.
    220. Sangster D F. Quantitative characteristics of volcanogenic massive sulphide deposits. Bulletin of Canada Institute Mineral Metallurgy, 1980,73:74-81.
    221. Sawkins F J. Integrated tectonic-genetic model for volcanic-hosted massive sulfide deposits. Geology, 1990, 18: 1 061-1064.
    
    222. Sawkins F J. Massive sulfide deposits in relation to geotectonics. Geological Association of Canada, 1976, (Spec Pager14):221-240.
    223. Schandl E S and Gorton M P. Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ. Geol., 2002,97(3): 629-642.
    224. Scoates J S and Mitchell J N. The evolution of troctolitic and high-Al basaltic magmas in Proterozoic anorthosite plutonic suites and implications for the Voisey's Bay-type massive Ni-Cu sulfide deposit. Econ.Geol., 2000, 95(4): 677-702.
    225. Scott S D. Submarine hydrothermal systems and deposits. In: H L Barnes, ed. Geochemistry of hydrothermal ore deposits. 3rd ed. Wileyy and Scons, 1997, Inc: 797-876.
    226. Sharpe R and gemmell J B. The Archean Cu-Zn magnetite-rich Gossan Hill volcanic-hosted massie sulfide deposit, western Australia: genesis of a multistage hydrothermal system. Econ. Geol., 2002,97(3): 517-539.
    227. Shaw J. Coarse-grained sediment gravity flow facies in a large supraglacial lake. Sedimentology, 1988,35: 527-529.
    228. Sheth H C. Flood basalts and large igneous provinces from deep mantle plumes: fact, fiction, and fallacy. Tectonophysics, 1999, 311:1—29.
    229. Skinner B J and Barton P B. Genesis of mineral deposits: A. Rev. Earth Planet. Scie., 1973, 1:183-211.
    230. Solomon M. "Volcanic" massive sulphide deposits and their host rocks-a review and explanatio. In: Wolf K A eds. Handbook of Strata—bound and Stratiform Ore Deposits. Amsterdam:Elsevier, 1976, 21—50.
    231. Solomon M. Subduction, arc reversal,and the origin of porphyry copper-gold deposits in island arcs:Geology, 1990,18, 630-633.
    232. Stoltz A J, Large R R. Evaluation of the source control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania. Economic Geology, 1992,87:720—738.
    233. Thompson R N, Gibson S A. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 2000,407: 502—506.
    234. Tuchscherer M G and Spra J G Geology, Mineralization, and Emplacement of the Foy Offset Dike Impact Structure. Econ. Geol., 2002,97(7): 1377-1397
    235. Ulrich T, Gunther D and Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits, Nature, 1999,399:676—679.
    236. Urabe T and Kusakabe M. Barite silica chimneys from the Sumisu Rift, Izu-Bonin arc: possible analog to hematitic chert associated with Kuroko deposits. Earth Planet Sci. Lett, 1991,100:283—290.
    237. Urabe T, Marumo K. A new model for Kuroko-type deposits of Japan. Episodes, 1991,14(3): 246—251.
    238. Vida N, Alvarez M J, Klaeschen D. The structure of the Africa-Anatolia plate boundary in the eastern Mediterranean. Tectonics, 2000,19(4): 723-739.
    239. Vogel D C and Keays R R. The application of platinum group geochemistry in constraining the source of basalt magmas: Results from Newer Volcanic Province, Victoria. Australia. Chem Geol, 1997,136: 181—204.
    240. Wan Yusheng, Yang Jinsui, Xu Zhiqin and Wu Cailai. Geochemical characteristics of the Maxianshan Complex and Xinglongshan Group in the eastern segement of the Qilian Orogenic Belt. Geol. Rev., 2000,43(1): 52—68.
    241. WatsonEB, ChemiakDJ, HarrisonTM , et al. The incorporation of Pb into zircon. Chem Geol, 1997, 141: 19-31
    242. Wheat G C. Hydrothermal circulation, Juan de Fuca ridge eastern flank: Factors controlling basement water composition. Journal of Geophysical Research, 1994,99:3 067—3 080.
    243. White R S and Mckenzie D P. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res, 1989,94: 7685-7729.
    244. Whitney J A. Volatiles in Magmatic Systems. Econ Geol., 1984,1:155—175.
    245. Williams I S, Claesson S. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe Zircon U-Th-Pb. Contributions to Mineralogy Petrology, 1987,97:205—217.
    246. Wilson M., Igneous petrogenesis. London: Unwin Hyman, 1989.
    247. Windley B F. The evolving continents. New York: John Wiley, 1995,1 —526.
    248. Xia L Q, Xia Z C and Xu X Y. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains,China.Geological Societyy of America, 2003,115(12):1510—1522.
    249. Xia L Q, Xu X Y, Xia Z C, et al. Petrogenesis of Carboniferous rift-relate volcanic rocks in the Tianshan, northwestern China. Geological Societyy of America, 2004,116(3/4): 419—433.
    250. Xu Y G, Chung S L, Jahn B M, et al. Petrological and geochemical constraints on the petrogenesis of the Emeishan Permo-Triassic Emeishan flood basalts in southwestern China. Lithos, 2001,58: 145- 168.
    251. Yang K and Scott S D. Magmatic degassing of volatiles and ore metals into a hydrothennal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific: Economic Geology, 2002,97:1079- 1100.
    252. Yang K and Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 1996,383(6659): 420-423.
    253. Yang K and Scott S D. Possible contribution of metal-rich magmatic fluid to a seafloor hydrothermal system. Nature, 1996,383:420-423.
    254. Yin An. Geologic evolution of the Himalayan-Tibetan orogen in the context of Phanerozoic contiental growth of Asia. Acta Geoscientia Sinica, 2001,22(3): 193-230.
    255. Zhang Zh.M, Liou J G and Coleman R G An outline of the plate tectonic of China. Geo.Soc.Amer. Bull., 1984, 95: 295-312.
    256. Zhao D P. Seismic structure and origin of hotspots and mantle plumes. Earth Planet Sci Lett, 2001,192: 251—265
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.