青藏高原东北缘地壳结构、组成与动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要依据穿过巴颜喀拉地块的北部、秦岭地块、祁连地块、海原弧形构造区和鄂尔多斯地块的长约1000km的玛沁-兰州-靖边人工地震剖面资料,对青藏高原东北缘的地壳结构、组成和动力学进行研究。首先,重新对该剖面进行P波和S波的联合处理,获取P波、S波的速度结构和泊松比结构。然后,对影响地震波速度的温度和压力进行分析研究,推导消除温压影响将野外观测的原位P波速度校正到实验室温压条件下的校正公式。将校正后的速度与实验室岩石测量结果进行对比,确定研究区的岩性组成。最后,根据青藏高原东北缘地壳结构和组成的研究成果,探讨地壳增厚、拆沉作用和高原隆升等方面的地球动力学问题。
     P波、S波结构和泊松比结构研究揭示了青藏高原东北缘地壳的许多重要特征。①地壳厚度从北东向南西逐渐增加。在北东的鄂尔多斯地块的地壳平均厚度为42km,而在南西的巴颜喀拉地块厚63km,共增厚21km。其间,海原断裂以南和泽库以南地壳明显变厚。②地壳速度沿剖面有较大变化。鄂尔多斯地块、海原弧形构造区、祁连地块、秦岭地块和巴颜喀拉地块的平均P波(S波)速度依次为:6.30km(3.48km/s)、6.22km(3.40km/s)、6.25km/s(3.54km/s)、6.20km/s(3.51km/s)和6.10 km/s(3.46km/s)。③剖面地壳P波平均速度低于全球地壳P波平均速度。整条剖面地壳P波平均速度为6.22km/s;若除地壳顶部10km厚的地层,平均速度为6.27km/s,与全球平均速度(6.45km/s)相比低0.18km/s。④秦岭地块和海原弧形构造区存在低速带和叠层界面。在这两个地区,低速带有低S波速度和高泊松比;康氏界面和Moho界面为叠层,表明有强烈的构造活动。⑤青藏高原东北缘地壳增厚主要发生在下地壳。研究区中地壳的强反射被认为是康氏不连续面,地壳被分成两层,即上地壳和下地壳。鄂尔多斯地块下地壳厚21km,而巴颜喀拉地块下地壳厚36km,下地壳的增厚占整个地壳增厚的71.4%,可见地壳增厚主要发生在下地壳。
     本文系统地归纳总结出一套将野外观测的P波速度,校正到实验室温压条件下波速的具体可行的方法,推导出波速校正公式。用地震波速度推测大陆深部地壳组成必须首先消除深部温度和压力对地震波速度的影响。除了物质组成影响地震速度外,温度和压力也影响地震波速度,但温度和压力对大部分岩石泊松比的影响非常小,可以忽略不计。实验室岩石波速测量显示,在低压条件下,岩石裂隙发育,此时得到的波速并不能代表岩石的本征特征,只有当压力使裂隙基本闭合后,测量到的岩石波速才会与压力的增加呈线增加的关系,此状态下即可得波速随压力变化的压力系数。温度对波速的影响与压力相反,随着温度升高,波速会降低,据此可求出温度系数。利用压力系数和温度系数,可推导出将地壳原位地震波速校正到特定温压条件下速度的校正公式。校正公式中需要使用地壳深部的温度和压力值。
     确定深部地壳压力状态相对简单,而深部温度状态的确定则较复杂。为简单实用,将岩石静载荷压力即围压作为地壳压力值,压力值是深度和密度的函数:p=gρz,其中密度ρ采用大陆平均值2.83g/cm~3,g为重力加速度取9.81m/s~2,z为深度(km)。利用各构造单元的大地热流值,通过由热传导计算得出的地温曲线,测算出研究区地壳深部的温度值。
     利用波速校正公式,本文将研究区各构造单元不同深度界面的观测波速校正到室温和600MPa压力条件下,并与实验室岩石测量波速进行对比,得出岩性剖面。结果表明,青藏高原东北缘地壳平均P波校正波速为6.43km/s,低于Rudnick和Fountain(1995)的全球大陆地壳平均值6.67km/s,与Gao et al(1998b)得出的中国大陆平均值6.44km/s几乎一样。研究区地壳整体呈长英质。巴颜喀拉地块和秦岭地块南部的下地壳底部缺失P波校正速度V_p>6.9km/s的基性岩,下地壳中酸性互层,下地壳整体呈酸性。其它地块下地壳底部有2-10km厚的V_p>6.9km/s的基性岩,下地壳整体呈中性。中央造山带基底缝合带很可能就从研究区这两个不同岩性段中间泽库附近穿过,其北为硬基底,对应的下地壳底部有基性岩层;其南为软基底,对应的下地壳底部缺失基性岩。泊松比研究表明,巴颜喀拉地块和秦岭地块南部的低波速和高泊松比并不是部分熔融的结果,很可能是由于自由水而产生的。
     根据地壳结构和组成的研究成果,本文提出青藏高原地壳增厚主要发生在下地壳;推断地质历史时期巴颜喀拉地块和秦岭南部地块,在最近的地质历史时期可能发生过下地壳拆沉的事件,地壳整体组成向长英质方向演化;推测随着青藏高原的向东北生长和地壳持续增厚,秦岭北部地块和祁连地块下地壳基性麻粒岩将来有可能相变为榴辉岩,进而拆沉。
     拆沉作用在青藏高原不均一、阶段性隆升过程中起着重要作用。青藏高原岩石圈在经历水平向挤压缩短、垂向拉伸的过程中,地表缓慢隆升。拆沉作用使软流圈顶部的荷载减轻,导致高原加速隆升,因而青藏高原的隆升历史有快慢不均的现象。
     本研究有如下创新之处:
     ①首次系统地归纳总结出一套将地震测深得到的原位P波速度,校正到实验室温压条件下波速的具体可行的方法。
     ②首次根据地震测深资料,研究得出青藏高原东北缘地壳组成。
     ③根据本文研究得到的地壳结构和组成结果,首次提出青藏高原东北缘存在下地壳拆沉作用。
Based on the data of the 1000-km-long Maqin-Lanzhou-Jingbian seismicrefraction profile, which crosses the northern Baryan Har block, the Qinling block,Qilian block, the Haiyuan arcuate tectonic region, and the stable Ordos block, thecrustal structure, composition and dynamics of the northeastern margin of Tibetanplateau are studied. At first, the structures of P-wave velocity, S-wave velocity andPoisson's ratio are got after the data of P-wave and S-wave are together reprocessedalong the profile. Then, temperature and pressure that influence velocity are analyzed,and the correction formula that minimizes the influence of temperature and pressureon V_p is deduced. The corrected velocities are compared with laboratorymeasurements of ultrasonic velocities and global models, and the crustal petrologiccomposition is determined in the study area. At last, according to crustal structure andcomposition in the northeastern margin of the Tibetan plateau, dynamic questionssuch as crustal thickening, delamination and uplift of the plateau are discussed.
     The P-wave and S-wave velocity structures and Poisson's ratios reveal manysignificant characteristics in the profile.①The crustal thickness increases graduallyfrom northeast to southwest. The average crustal thickness increases from 42km inthe Ordos block to 63km in the Baryan Hat block, and becomes obviously thick southof the Haiyuan fault and south of Zeku.②Crustal velocities have big variationsalong the profile. The average crustal P-wave (S-wave) velocities are 6.30km/s(3.48kin/s) in the Ordos block, 6.22 km/s (3.40 km/s) in the Haiyuan arcuate tectonicregion, 6.25km/s(3.54km/s) in the Qilian block, 6.20 km/s (3.51 km/s) in the Qinlingblock, and 6.10 km/s (3.46 km/s) in the Baryan Har block.③The average crustalvelocity in the profile is lower than the average global velocity. The average crustalvelocity is 6.22 km/s along the profile. If the 10-km-thick layer in the top of the crustis removed, the average crustal velocity is 6.27km/s, which is 0.18km/s lower thanthe global average velocity of 6.45km/s.④There are low velocity zones andlaminated interfaces in the Qinling block and the Haiyuan arcuate tectonic region.There are low S-wave velocities and high Poisson's ratios in the low velocity zones.Both the Conrad discontinuity and Moho in the Qinling block and in the Haiyuanarcuate tectonic region are laminated interfaces, implying intense tectonic activity.⑤Thickness increases of the lower crust is the main reason for the crustal thickening inthe NE margin of Tibetan plateau. A strong reflection in the mid-crust is thought tobe the Conrad discontinuity, so the crust is divided into two layers, the upper and thelower crust. The thickness of the lower crust increases from 21 km to 36 km as thecrustal thickness increases from 42km in the Ordos block to 63km in the Baryan Harblock south of the Kunlun fault. Therefore, the thickness increase of the lower crustaccounts for 71.4% of the crustal thickening.
     A set of feasible methods and correction formula are got, with which in situP-wave velocities observed in the field are corrected to velocities under the specialcondition of temperature and pressure in the laboratory. It is necessary to remove theinfluence of temperature and pressure on the velocity to infer the deep crustalcomposition using seismic velocity. Besides composition, the temperature and pressure affect velocity, but they have little affluence on Poisson' ratios. Laboratorymeasurements of ultrasonic velocities show that under the condition of low pressurethere are many fractures and the velocities can not represent the intrinsiccharacteristics. Only after the pressure closes basically the fractures and the measuredvelocity increases linearly with pressure, can the pressure derivative be obtained. Theinfluence of temperature on the velocity is contrary to the influence of the pressure.The velocity deceases with temperature and temperature derivative can be got. Theformula that corrects in situ velocity to the velocity under special temperature andpressure is deduced using pressure derivative and temperature derivative. Thecorrection formula needs to use the temperature and pressure values.
     It is simple to determine the pressure state of the deep crust, but it is morecomplex to determine the deep temperature. The confined pressure is practicablyconsidered to be crustal pressure and the value is the function of the depth and density:p=gρz, where densityρ=2.83g/cm~3 and g=9.81m/s~2, and z is depth(km). Surfaceheat flow data and a family of conductive geotherms in different tectonic units areused to determine the temperature of the deep crust.
     Using velocity correction formula, the observed velocities at different interfaceof all tectonic units are corrected to a standard pressure of 600 MPa and roomtemperature, the corrected values are compared with the laboratory measurements ofaltrasonic velocities and the petrology profile is got along the Maqin-Lanzhou-Jinbianseismic profile. Results show that average collected velocity in the northeasternmargin of Tibetan plateau is 6.43 km/s, lower than the global average velocity of 6.67from Rudnick and Fountain(1995) and almost equal to the average velocity of 6.44km/s in the China mainland from Gao et al(1998b). The crustal bulk composition isfelsic. In Baryan Har block and southern part of the Qinling block, there is lack ofV_p>6.9 km/s mafic rock layer in the lowest crust, felsic layer and intermediate layerare alternated in the lower crust, and the bulk composition in the lower crust is felsic.In other blocks, there is a 2-10 km thick mafic layer of V_p>6.9km/s in the lowestcrust and the bulk composition is intermediate in the lower crust. It is possible that thebasement suture zone of the Central Orogenic Belt passes between these two differentpetrologic segments at Zeku. The basement north of the basement suture zone is thehard basement, corresponding with mafic rock layer in the lowest crust and thebasement south of the basement suture zone is the soft basement, corresponding withthe lack of mafic rock layer in the lowest crust. The study of Poisson's ratios indicatethat low velocities and high Poisson's do not necessarily represent the part melting,and they possibly result from free water.
     On the basis of the crustal structure and composition, the dissertation proposesthat the crustal thickening occurred mainly in the lower crust, that delaminationpossibly occurred in the lower crust of Baryan Har block and southern Qinling blockin the recent geologic time and the crustal bulk composition evolved to felsiccomposition, and that with the northeastern growth of Tibetan plateau and continuouscrustal thickening the lowest crust will delaminate aider the mafic granulatetransforms to eclogite in the northern Qinling block and Qilian block.
     Delamination plays an important role in the course of uneven and staggered upliftof the Tibetan plateau. The surface rose slowly when the Tibetan lithosphereunderwent horizontal compression and vertical extension. However, delaminationaccelerated the uplift of the plateau because delamination reduced the load on thetopmost of asthenosphere. Therefore, there was a phenomenon of different speeds inthe uplift history of the plateau.
     The project has such innovations as follows:
     ①For the first time, a set of feasible methods are systemically summed up, withwhich in situ P-wave velocities observed by deep seismic sounding can be correctedto the velocity under the special condition of temperature and pressure in thelaboratory.
     ②For the first time, the crustal composition is got in the NE margin of theTibetan plateau based on the data of deep seismic sounding.
     ③For the first time, the delaminnation of lower crust is proposed in the NEmargin of the Tibetan plateau on the basis of the crustal structure and composition gotby the dissertation.
引文
陈九辉,刘启元,李顺成等,2005.青藏高原东北缘—鄂尔多斯地块地壳上地幔S波速度结构.地球物理学报,48(2):333~342
    程裕淇主编,1994.中国区域地质概论.北京:地质出版社.
    邓万明,1998.青藏高原北部新生代板内火山岩.北京:地质出版社.
    Dewey J F, Shackleton R M,常承法等,1990.青藏高原的构造演化.见中.英青藏高原综合地质考察队:青藏高原地质演化.北京:科学出版社.384~415.
    丁志峰,王椿镛,杨建思等,2002.昆仑山口西8.1级地震断裂带的地震探测.中国地球物理年刊.北京:地震出版社.458.
    范景辉,杨晓松,2002.岩石波速温度和压力系数的测量方法及应用.地球物理学进展,17(3):526-531.
    范俊喜,马瑾,甘卫军,2003.鄂尔多斯地块运动的整体性与不同方向边界活动的交替性.中国科学,D辑,33(增刊):119~128.
    樊计昌,李松林,张先康等,2004.海原断裂在地壳深处的几何形态及其动力学意义.地震学报,26(增刊):42~49.
    樊祺诚,隋建立,张宏福等,2002.汉诺坝地区下地壳与壳幔过渡带岩石波速实验研究.自然科学进展,12(10):1094~1097.
    冯涛,谢静,陈亮等,2000.北秦岭造山带中的拆沉作用.西北地质科学,21(2):15~19.
    高山,Ducea M.D.,金振民等,1998.下地壳拆沉作用及大陆地壳演化.高校地质学报,4(3):241~249.
    高山,金振民,1997.拆沉作用(delamination)及其壳-幔演化动力学意义.地质科技情报,16(1) 1~9.
    高山,骆庭川,张本仁等,1999a.中国东部地壳结构和组成.中国科学(D辑),29(3),204-213.
    高山,张本仁,金振民,1999b.秦岭.大别造山带下地壳拆沉作用.中国科学(D辑),29(6):532~541.
    国家地震局地质研究所等,1990.海原活动断裂带.北京:地震出版社.
    胡圣标,何丽娟,汪集旸,2001.中国大陆地区大地热流数据汇编(第三版).地球物理学报,44(5):611~626.
    姜春发,1993.中央造山带主要地质构造特征.地学研究,(27):107~108.
    姜春发,王宗起,李锦轶,2000.中央造山带开合构造.北京:地质出版社.
    李松林,刘明军,2004.青藏高原东北缘似三联点构造区地壳结构特征,见陈运 泰、滕吉文等主编:中国大陆地震学与地球内部物理学研究进展.北京:地震出版社.168~179.
    李松林,张先康,樊计昌,2005.利用断层围陷波研究昆仑山口西8.1级地震破裂面.地震学报,27(1):42~50.
    李松林,张先康,任青芳等,2001.西吉—中卫地震测深剖面及其解释.地震地质,23(1):86~92.
    李松林,张先康,张成科等,2002.玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究.地球物理学报,45(2):210~217.
    李永华,吴庆举,安张辉等,2006.青藏高原东北缘S波速度结构与泊松比及其意义.地球物理学报,49(5):1359~1368.
    刘宝峰,李松林,张先康等,2001.玛沁—靖边剖面S波资料研究与探讨.地震学报,25(1):81-88.
    刘光鼎,2002.回顾与展望—21世纪的固体地球物理.地球物理学进展,17(2):191~197.
    刘明军,李松林,张先康等,2004.海原断裂带断层通道波观测与破碎带宽度.物探与化探,28(6):549~552.,
    刘永祥,伍旭光,1997.高温高压下岩石波速与地壳深部物质组成.地球物理学报,40(2):211~220.
    楼海,王椿镛,丁志峰等,2006.昆仑山断层围限波的分析和研究.地球物理学报,49(6):788~796.
    任纪舜,姜春发,张正坤等,1980.中国大地构造及其演化.北京:科学出版社.
    沈显杰,朱元清,石耀霖,1992.青藏热流与构造热演化模型研究.中国科学(B辑),3:311~321.
    石耀霖,1990.大陆岩石圈的热结构及其意义.地球科学进展,6:14-23.
    宋占龙,李松林,张先康等,2004.昆仑山口断裂的通道波观测.华北地震科学,22(2):14~17.
    田勤俭,丁国瑜,1998.青藏高原东北隅似三联点构造特征.中国地震,14(4):27~35.
    王成善,丁学林,1998.青藏高原隆升研究新进展综述.地球科学进展,13(6):526~532.
    汪集旸,黄少鹏,1990.中国大陆地区大地热流数据汇编(第二版).地震地质,12(4):351-366.
    汪洋,邓晋福,汪集旸等,2001a.中国大地热流分布特征及热.构造分区.中国科学院研究生院学报,18(2):51~58.
    汪洋,汪集旸,邓晋福,2001b.中国大陆地壳和岩石圈化学成分可信吗?—来自大地热流值的检验.地球化学,30(2):186~193.
    汪一鹏,1998.青藏高原活动构造基本特征.见:《活动断裂研究》编委会,活动断裂研究.理论与应用,6:135~144.北京:地震出版社.
    王椿镛,张先康,陈步云,等,1997.大别造山带的地壳结构研究.中国科学(D辑),27(3):221~226.
    王有学,姜枚,熊盛青等,2006.西昆仑岩石圈的拆沉作用及其深部构造含义.中国地质,33(2):299~308.
    吴功建,高锐,余钦范等,1991.青藏高原“亚东-格尔木地学断面”综合地球物理调查与研究.地球物理学报,34(5):552~562.
    吴宗絮,郭才华,1991.冀东陆壳结构的岩石学模型.地震地质,13(4):369-376.
    许志琴,杨经绥,姜枚.2001.青藏高原北部的碰撞造山及深部动力学.地球学报,22(1):5~10.
    许志琴,杨经绥,李海兵等,2006.青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质,33(2):221~238.
    许忠淮,汪素云,裴顺平,2003.青藏高原东北缘地区Pn波速度的横向变化.地震学报,25(1):24~31.
    徐锡伟,程国良,马杏垣等,1994.华北及其邻区块地转动和动力来源.地球科学—中国地质大学学报,19(2):129~138.
    殷鸿福,张克信,1998.中央造山带的演化及其特点.地球科学,23(5):437~442.
    臧绍先、宁杰远,1993.地球内部物质组成及其性质的研究.地球物理学进展,8(2):1~12.
    张国伟,柳小明,1998.关于“中央造山系”几个问题的思考.地球科学—中国地质大学学报,23(5):443~448.
    张国伟,张本仁,袁学城等,2001.秦岭造山带与大陆动力学.北京:科学出版社.
    张流,刘国栋,马宝林等,1993.多学科(GGE)研究地壳结构和震源区的方法探讨.地球物理学进展,8(4):81~24.
    张友南,李彪,1993.山西裂谷带地壳岩石波速研究.地球物理学进展,8(4):214-224.
    张先康,李松林,王夫运等,2003.青藏高原东北缘、鄂尔多斯和华北唐山震区地壳结构差异—深地震测深的结果.地震地质,25(1):53~60.
    赵国泽,汤吉,詹艳等,2004.青藏高原东北缘地壳电性结构和地块变形关系的 研究.中国科学D辑,30(1):908~918.
    赵金仁,李松林,张先康等,2005.青藏高原东北缘莫霍界面的三维空间构造特征.地球物理学报,48(1):78-85.
    钟大赉,丁林,1996.青藏高原的隆起过程及其机制探讨.中国科学(D辑),26(4):289~295.
    Argand E., 1924. La Tectonique de L' Asie. Proc. 13th Int. Geol. Congress, 7:171~372.
    Airy, G. B., 1855. On the computation of the effect of the attraction of mountain-masses as disturbing the apparent agronomical latitude of stations of geodetic surveys. Philos. Trans. R. Soc. London, 145: 101~104.
    Besse, J. V., Courtillot, J. P., Pozzi, M., et al. 1984. Paleomagnetic estimates of crustal shortening in the Himalyayan thrusts and Zangbu suture. Nature, 311:621~626.
    Birch, F., 1960. The velocity of compressional waves in rocks to 10 kilobars, 1, J. Geophys. Res., 65, 1083~1102.
    Birch, F., 1961. The velocity of compressional waves in rocks to 10 kilobars, 2, J. Geophys. Res., 66, 2199~2224.
    Bird, P., 1978. Initiation of intercontinental subduction in the Himalaya. J. Geophys. Res., 83:4795~4987.
    Bird, P., 1979. Continental delamination and Colorado Plateau. J. Geophys. Res., 84:7561~7571.
    Bird, P., 1991. Lateral extrusion of lower crust from under high topography, in the isostatic limit. J. Geophys. Res., 96:10 275-10 286
    Burke, K. C. A., Weyer, J. F. and Kidd, W. S. F., 1974. The Tibetan Plateau, its significance for tectonics and petrology. Geol. Soc. Amer. Abstr. Programs, 6: 1027~1028.
    Burchfiel B.C., Molnar P. Zhao Z. et al., 1989. Geology of the Ulugh Muztagh area, northern Tibet. Earth Planet. Sci. Lett., 94: 57~70.
    Catchings, R. D., and Lee, W. H. K., 1996. Shallow velocity structure and Poisson's ratios across earthquake source zone from Memphis, Tennessee, to St. Louis, Missouri, Bull. Seismol. Soc. Am., 86, 1704~1713.
    Chapman, D. S., Furlong, K. P., 1992. Thermal state of the continental lower crust, In Fountain D. M., Arculus R., Key R., eds. Continental lower crust. Amsterdam: Elsevier. 179~200.
    Chen, Y., Cogne, J. P, Courtillot, V., et al., 1990. Paleomagnetic study of Mesozoic continental sediments along the Northern Tianshan (China) and heterogenous strain in central Asia. J. Geophys. Res., 96:4065~4082.
    Cerveny, V., and Psencik, I.. (Eds.), 1984. SEI83-numerical modeling of seismic wavefield in 2-D laterally varying layered structures by the ray method, in Documentation of Earthquake Algorithms, edited by E. R. Engdahl, Rep. SE-35, 36~40, World Data Cent. for Solid Earth Geophys., Boulder, Colo.
    Cerveny, V., Molotkov, I. A. and Psencik, I., 1977. Ray Method in Seismology, 57~158, Univ. Karlova, Prague.
    Christensen, N. I., 1979. Compressional wave velocities in rocks at high temperature and pressure, critical thermal gradients, and crustal low velocity zones. J. Geophys. Res., 84:6849~6857.
    Christensen, N. I. and Fountain, D. M., 1975. Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Geol. Soc. Am. Bull., 86:227~236.
    Christensen, N. I. and Mooney, W. D., 1995. Seismic vdocity structure and composition of the continental crust: A global view, J. Geophys. Res., 101, 9761~9788.
    Christensen, N. I., 1996. Poisson's ratio and crustal seismology, J. Geophys. Res., 101, 3139~3156.
    Chung, S. L., Chu, M. F., Zhang, Y. Q., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68: 173~196
    Clark, M. K. and Royden, L. H., 2000. Topographic ooze: Building the eastern margin of Tibet By Lower crustal flow, Geology, 28, 703~706.
    Condie, K. C., 1993. Chemical composition and evolution of upper continental crust: Constrasting results from surface samples and shale. Chem. Geol., 104:1~37.
    Cui, Z., Li, Q., Wu, C. et al., 1995. The crustal and deep structures in Golmud-Ejin Qi GGT, Acta Geophys. Sin., 38, Suppl. Ⅱ, 15~28.
    Dewey, J. F. and Bird, J. M., 1970. Mountain belts and the new global tectonics. J Geophys. Res. 75: 2625~2647.
    Dewey, J. F. and Burke, K. C., 1973. Tibetan, Variscan and Precambrian basement reactivation: products of continental collision. J Geol. 81: 683~692.
    Dewey, J. F., Shackleton, R. M., Chang, C. et al., 1988. The tectonic evolution of the Tibetan plateau, Philosphical Transactions of the Royal Siciety, London, A 327: 379~413.
    England, P. C. and Houseman, G., 1988. Mechanism of the Tibetan plateau. Philosphical Transactions of the Loyal Society, London, A316:301~319.
    Galve, A., Hirm, A., Jiang, M. et al., 2002. Modes of raising northeastern Tibet Probed by explosion seismology, Earth. Planet. Sci. Lett., S0012-821X(02)00863-4.
    Gao, S., Luo, T. C., Zhang, B. R., et al., 1998a. Chemical composition of continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta. 62(11): 1959~1975.
    Gao, S., Rudnick, R. L., Yuan, H. L., 2004. Reycling lower continental crust in the North China craton. Nature, 432: 892~897.
    Gao, S., Zhang, B. R., Jin, Z. M. et al, 1998b. How mafic is the lower continental crust? Earth and Planetary Science Letters, 161, 101~117.
    Giese, P., Prodehi, C., and Stein, A., 1976. Explosion Seismology in Central Europe, 146~161, Springer-Verlag, New York.
    Herquel, G.., Wittlinger, G.. and Guilbert, J., 1995. Anisotropy and crustal thickness of Northern Tibet. New constraints for tectonic modeling, Geophys. Res. Lett., 22, 1925~1928.
    Holbrook, W. S., Mooney, W. D., and Christensen, N. I. 1992. The seismic velocity structure of the deep continental crust. In: Continental Lower Crust, edited by D. M. Fountain, R. Arculus, and R. W. Kay, 1~43, Elsevier Sci., New York.
    Houseman, G. A., Mckenzie, D.P., Molnar, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res., 86: 6115~6132.
    Johnson, M.R.W., 2002. Shortening budgets and the role of continental subhducion during the India-Asia collision. Earth-Science Reviews, 59:101~123.
    Kay, R. W., Mahlburg Kay, S., 1993. Delamination and delamination magmatism. Tectonophysics, 1993.219:177~189.
    Kern, H., 1978. Effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics, 44: 185~203.
    Kern, H., 1990. Laboratory seismic measurements: an aid in the interpretation of seismic field data. Terra Nova, 2(6):617~628.
    Kern, H., Gao, S., Jin, Z., et. al., 1999. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China: implications for the composition and delamination of the lower crust, Tectonophysics, 301, 191~215.
    Kern, H., Gao, S., Liu, Q. S., 1996. Seismic properties and densities of middle and lower crustal rocks exposed along the North China Geoscience Transect, Earth Planet. Sci. Lett. 139:439~455.
    Kern, H., Schenk. V., 1985. Elastic wave velocities in rocks from a lower crustal section in southern Calabria (Italy). Phys. Earth Planet Int., 40: 147~160.
    Kern, H., Schenk, V., 1988. A model of velocity structure beneath Calabria, southern Italy, based on laboratory data, Earth Planet. Sci. Lett., 87:325~337.
    Kind, R., Yuan, X., Saui, J., et al., 2002. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science, 298: 1219~1221.
    Kuusisto, M., Kukkonen, I. T., Heikkinen, P., et al., 2006. Lithological interpretation of crustal composition in the Fennoscandian Shield with seismic velocity data. Tectonophysics, 420:283-299.
    Le Bas M. J., Streckeisen A. L., 1991. IUGS systematics of igneous rocks. J. Geol. Soc. London, 148:825~833.
    Le Pichon, X., Fournier, M. Jolivet, J., 1992. Kinematics, topography, shortening and extrusion in the India-Asia collision. Tectonics, 11:1085~1098.
    Li, S. L. and Mooney, W. D., 1998. Crustal structure of China from deep seismic sounding profiles, Tectonophyics, 288, 105~113.
    Li, S. L., Mooney, W. D., Fan J. C., 2006. Crustal structure of mainland China from deep seismic data, Tectonophyics, 420:239~252.
    Liang, C., Song, X. and Huang, J. 2004. Tomographic inversion of Pn travel-times in China, J. Geophys. Res., 109, doi:10.1029/2003JB002789.
    Liu, M. J., Mooney, W. D., Li, S. L., et al. 2006. Crustal Structure of the Northeastern Margin of the Tibetan Plateau from the Songpan-Ganzi Terrane to the Ordos basin. Tectonophysics, 420(1-2): 253~266.
    McNamara, D. E., Owens, T. J., Silver, P. G. et al., 1994. Shear wave anisotropy beneath the Tibetan Plateau, J. Geophys. Res., 99: 13655~13665.
    Mechie, J., Fuchs, K., Altherr R., 1994. The relationship between seismic velocity, mineral composition, and temperature and pressure in the upper mantle---with an application to the Kenya Rift and its eastern flank. Tectonophysics, 236:453~464.
    Meissner, R., Mooney, W., 1998. Weakness of the lower continental crust: a condition for delamination, uplift, and escape. Tectonophysics, 296: 47~60.
    Meyer, B., Tapponnier. P., Bourjot, L., et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int. 135: 1~47.
    Molnar, P., 1988. A review of geophysical constraints on the deep structure of the Tibetan plateau, the Himalaya, and the Karakoram, and their implications. Philosophical Transactions of the Royal Society, London, A 326:33~88.
    Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibet Plateau, and the Indian mosoon. Review of Geophysics, 31:357~396.
    Molnar, P., and Tapponnier, P., 1975. Cenozoic teconics of Asia: Effects of a continental collision, Science, 189, 419-426.
    Musacchio, G., Mooney, W. D., Luetgert, J. H. et al., 1997. Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from V_p/V_s, J. Geophys. Res., 102, 15,225~15,241.
    Musacchio, G., White D. J., Asudah, I., et al., 2004. Lithospheric structure and composition of the Archean west Superior provinces from seismic refraction/wide-angle reflection and gravity modeling. J. Geophys. Res. 109, B03304.
    Nelson, K. D., 1992. Are crustal thickness variations in old mountain belts like Appalachians a consequence of lithospheric delamination? Geology, 20:498~502.
    Owens, T. J. and Zandt, G., 1997. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature 387, 37~43.
    Pares, J. M., Van der Voo, R. R., Downs, W. K. et al., 2003. Northeastward growth and uplift of the Tibetan Plateau: Magnetostratigrphic insights from the Guide Basin, J. Geophys. Res., 108(B1), 2017, doi:10.1029/2001JB001349.
    Patriat, P. and Achache, J., 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311:615~621.
    Powell, C. M. and Conaghan, P. G., 1973. Plate tectonics and the Himalayas. Earth Planet. Sci. Lett. 20:1~20.
    Powell, C. M. and Conaghan, P. G., 1975. Tectonic models of the Tibetan Plateau. Geology, 3:727~731.
    Rowley D. B., 1996. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci. Lett., 145:1~13.
    Royden, L. H., Burchfiel B. C., King, R. W. et al., 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276:788~790.
    Rudnick, R. L., 1995. Making continental crust, Nature, 378, 571~578.
    Rudnick, R. L., Fountain, D. M., 1995. Nature and composition of the continental crust: A lower crustal perspective, Rev. Geophys. 33:267~309.
    Seber, D., Barazangi, M., Ibenbrahim, A., et al., 1996. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rift-Betic mountains. Nature, 379: 785~790.
    Shaw, D. M., Cramer, J. J., Higgins, M. D., et al., 1986. Composition of Canadian Precambran shied and the continental crust of the earth. In: Dawson J. B., et al., eds. The Nature of the Lower Continental Crust. Geo Soc Spec Publ, 24:275~282.
    Swenson, J. L., Beck, S. L. and Zandt, G., 2000. Crustal structure of the Altiplano from broadband regional waveform modeling: Implications for the composition of thick continental crust, J. Geophys. Res., 105, 607~621.
    Tapponnier, P., Meyer, B., Avouac, J. P., 1990. Active thrusting and folding in the Qilian Shan, and decoupling between uppercrust and mantle in northeastern Tibet. Earth Planet Sci. Lett., 97:382~403.
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671~1677.
    Teng Jiwen, Wei Siyu, Sun Kezhong, et al. 1987. Characteristics of the seismic activity in the Qinghai-Xizang (Tibet) plateau of China. Tectonophysics, 134:129~144.
    Vergne, J., Wittlinger, G., Hui, Q., et al., 2002. Seismic evidence for stepwise thickening of the crust across the NE Tibetan Plateau, Earth Planet. Sci. Lett., 203:25~53.
    Wang, Y., 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation. Physics of the Earth and Planetary Interiors, 126:121~146.
    Wang, Y. X., Mooney, W. D., Yuan, X., et al., 2003. The crustal structure from the Altai Mountains to the Altyn Tagh fault, northwest China, J. Geophys. Res, 108(B6), 2322,doi: 10.1029/2001 JB000552.
    Watanabe, T., 1993. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophys. Res. Lett., 20: 2933~2936.
    Willett, S. D., Beaument, C., 1994. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature, 369, 642~645.
    Yin, A., and Harrison, T. M., 2000. Geologic evolution of the Himalayan-Tibetan orogen, Annu. Rev. Earth Sci., 28:211~280.
    Yin, C. Y., 2002. The thickness of seismogenic layer under the areas surrounding the Ordos block, Northern China, Pure and Applied Geophysics, 159, 1613~2628.
    Zandt, G, and Ammon, C. J., 1995. Continental crust composition constrained by measurements of crustal Poisson's ratio, Nature, 374, 152~154.
    Zhang, P. Z., Burchfiel, B. C., Molnar, P. et al., 1991. Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous region, China. Tectonics, 10(6): 1111~1129.
    Zhao, W.L., and Morgan, W.J., 1985. Uplift of the Tibetan Plateau.Tectonics, 4: 359~369.
    Zhao, W. J., and Morgan, W. J., 1987. Injection of Indian crust into Tibetan lower crust: a two-dimentional finite element model study. Tectonics, 6:489~504.
    Zhu, L., and Helmberger, D. V., 1998. Moho offset across the northern margin of Tibetan Plateau, Science, 281, 1170~1172.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.