CuO/Cu复合锂离子电池负极材料的制备及其结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在综述锂离子电池研究应用概况和国内外金属过渡族氧化物CuO负极材料研究进展的基础上,针对CuO作为锂离子电池负极材料目前存在的循环稳定性差等问题,提出了通过经济简单的对CuO热还原和对Cu热氧化的方法制备CuO/Cu复合电极材料。通过在CuO材料中引入金属Cu,利用Cu良好的导电性和韧性,提高CuO电极的电导率,减低其在循环过程中的粉化以获得循环稳定性良好的高容量CuO/Cu负极材料。采用X射线衍射、场发射扫描电镜、能量分散谱仪、透射电子显微镜和高分辨透射电镜等多种现代材料测试分析手段以及恒电流充放电、循环伏安等电化学测试技术,系统研究了材料制备工艺对合成材料结构和电化学性能的影响,分析探讨了影响CuO负极材料首次不可逆容量和循环稳定性的关键因数。此外,还研究了对CuO进行高能球磨和导电剂添加量对CuO电极电化学性能的影响。
     研究结果表明,对纳米商业CuO进行高能球磨能有效减小颗粒尺寸,并在一定程度上使CuO非晶化,这都有利于提高材料的循环稳定性。粘结剂的加入量对电池的容量和稳定性有较大的影响。CuO与PVDF质量比分别为8:1.8:0.18和8:0.47的三种电极中,质量比为8:1的电极具有较高的容量和循环稳定性。
     对纳米商业CuO(ca.40-50 nm)在氢气中,80-140℃不同温度下进行部分还原,合成了CuO/Cu复合材料。随还原温度从80℃增加到100℃,复合材料中Cu的含量从0.4wt.%增加到4.5wt.%,但当温度升高到120℃时,Cu含量明显增加到38.4wt.%,而当温度进一步升高到140℃时产物全为金属Cu。经80℃还原样品的首次库伦效率与初始CuO的基本相当(57-58%),当还原温度增加到100℃,样品的首次库伦效率略有增加。经100℃还原的样品表现出最高的首次充电容量,这说明适量还原产物Cu的生成有助于Li2O分解,提高了材料的利用率。经80℃、100℃还原的CuO/Cu样品的首次可逆容量均大于初始纳米CuO但循环稳定性的改善还较有限。经120℃还原的CuO/Cu样品具有良好循环稳定性,100次循环后容量保持率仍为92.2%。非活性的具有良好韧性的Cu在循环过程中对CuO脱嵌锂而产生的体积膨胀起到很好的缓冲作用,提高了其循环稳定性。但由于活性物质量的减低,大大降低了材料的容量。
     商业纳米Cu粉(ca.40 nm)在250-500℃的不同温度下,在空气气氛中氧化4h,Cu基本被氧化为CuO,并保持了初始Cu的纳米尺寸。其中250-450℃氧化的产物中有约3-4wt.%Cu,而500℃氧化的产物中未发现有Cu。对材料的电化学性能研究表明,用该方法制备的纳米CuO/Cu材料作为锂离子电池负极材料具有良好的循环稳定性。其中经450℃氧化的材料表现出最高的循环稳定性和较高的容量特性,经约8次循环活化后,容量达到423 mAh/g,经80次循环后,容量为377 mAh/g,容量保持率接近90%。通过初始Cu粉颗粒尺寸相应合成的CuO的颗粒尺寸和氧化时间等因素对材料电化学性能影响的研究表明,减小初始铜粉颗粒尺寸和延长氧化时间都能够有效地提高循环性能和可逆容量。
On the basis of a brief summary of the investigation and application of lithium ion batteries (LIBs) and a review of the investigations and development of copper oxide (CuO), which is one of the promising anode materials for LIBs, the thesis aims to prepare CuO/Cu composites as anode materials by simple and economic methods of thermal oxidation and reduction. By means of the introduction of metallic Cu into CuO, the good electron conductivity and the excellent toughness of Cu plays effective roles in improving the electron conductivity and reducing the pulverization of the CuO anode, respectively, during cycling. Therefore, CuO/Cu anode materials with high capacity and favorable cycle stability are hopefully obtained. The effects of the fabrication technique and its parameters on the structure and electrochemical properties are investigated by XRD, SEM, EDS, TEM and HRTEM etc. and electrochemical testing of galvanostatic charge-discharge, cyclic voltammograms. The key factors that affect the cycle stability as well as the initial irreversible capacity of the composite anodes and the mechanism are also discussed. In addition, effects of high-energy ball-milling on the structure and electrochemical properties of nano-sized CuO and addition amount of PVDF binder on the electrochemical properties of nano-sized CuO are also studied.
     The results show that high-energy ball-milling reduces the particle size and results in a tendency of amorphous feature of the CuO particles, which all improve its electrochemical properties. The content of PVDF binder shows visible effect on the cycle stability and capacity of CuO anode. Among the three weight ratios of 8:1, 8:0.18 and 8:0.47 of CuO to PVDF, the first one possesses the best electrochemical properties.
     Commercial nano-CuO (ca.40-50 nm) are reduced partially in the atmosphere of H2 at the temperature ranging from 80 to 140℃, forming CuO/Cu composites. The content of Cu of the CuO/Cu composite slightly increases from 0.4 wt.% to 4.5 wt.% with the reduction temperature increasing from 80 to 100℃. Whereas the Cu content increases obviously to 38.4 wt.% when the reduction temperature is increased to 120℃and no Cu is found in the product when the reduction temperature is further increased to 120℃. The initial coulombic efficiency of the product reduced at 80℃shows correspond with the raw CuO (57-58%), and the efficiency increases slightly as the reduction temperature increases to 100℃. The initial charge capacity of the product obtained at 100℃shows the highest initial charge capacity among all the products, indicating that the suitable amount Cu favors the decomposition of Li2O and enhances the utilization efficiency of the CuO active material. The products reduced at 80 and 100℃show higher initial reversible capacity compared with the raw CuO, however, the improvement of the cycle stability is limited. The product reduced at 120℃exhibits good cycle performance, showing a capacity retention of 92% after 80 cycles. The inactive Cu with good toughness buffers the volume change of CuO caused by the lithium extraction and insertion during cycles and hence improves the cycle stability of the composite. However, as the reduction fraction of the active CuO, the capacity is unfavorably decreased.
     Commercial nano-Cu powders are mostly oxidized to CuO at the temperature rangeing from 250 to 500℃for 4 hours in air and the content of CuO was higher than 94 wt.% for each product. The nano-morphology of the raw Cu powder is preserved. About 3-4 wt.% Cu remains in the products which prepared by oxidation temperature from 250 to 450℃, whereas no Cu is found for the oxidation temperature of 500℃. The electrochemical study shows that the nano-sized products synthesized by the thermal oxidation method possess favorable cycle stability as anode materials for lithium ion battery. The product prepared at 450℃displays the best cycle stability and a favorable capacity. A capacity of 423 mAh/g is approached after an activation of 8 cycles, and the capacity after 80 cycles maintains as 377 mAh/g, showing a capacity retention of almost 90%. The study of the effect of Cu particle size and oxidation time on the electrochemical properties of oxidized products shows that either reducing Cu particle size or prolonging the oxidation time improves the cycle capability of the oxidized products effectively.
引文
[1]K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough. LixCoO2 (0< x< 1):A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980,15(6):783-789.
    [2]T. Ohzuku, and A. Ueda. Solid-state redox redox reaction of LixCoO2 for 4 volt secondary lithium cells. Journal of the Electrochemical Society,1994,141(11):2972-2977.
    [3]C. Delmas, I. Saadoune, and A. Rougier. The cycling properties of the LixNi1-yCoyO2 electrode. Journal of Power Sources,1993,44(1-3):595-602.
    [4]J. N Reimers, and J.R. Dahn. Electrochemical and insitu X-ray-diffraction studies of lithium intercalation in LixCoO2. Journal of the Electrochemical Society,1992,139(8): 2091-2097.
    [5]I. Saadoune, and C. Delmas. LiNi1-yCoyO2 positive electrode materials:relationships between the structure, physical properties and electrochemical behaviour. Journal of Materials Chemistry,1996,6(2):193-199.
    [6]P. Elumalai, H. N. Vasan, and N. Munichandraiah. Microwave synthesis and electrochemical properties of LiCo1-xMxO2 (M= Al and Mg) cathodes for Li-ion rechargeable batteries. Journal of Power Sources,2004,125(1):77-84.
    [7]G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, and B. Huang. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature,1998,392(6677):694-696.
    [8]M. Ganesan. Studies on the effect of titanium addition on LiCoO2. Ionics,2009,15(5): 609-614.
    [9]H. Maleki, G.P. Deng, A. Anani, and J. Howard. Thermal stability studies of Li-ion cells and components. Journal of the Electrochemical Society,1999,146(9):3224-3229.
    [10]H. J. Kweon, J. Park, J. Seo, G. Kim, B. Jung, and H.S. Lim. Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO2 in a Li-ion cell. Journal of Power Sources,2004,126(1-2):156-162.
    [11]Y. Oh, D. Ahn, S. Nam, C. Kim, J.G. Lee, and B. Park. The enhancement of cycle-life performance in LiCoO2 thin film by partial A12O3 coating. Electronic Materials Letters, 2008,4(3):103-105.
    [12]Y. C. Lu, A.N. Mansour, N. Yabuuchi, and Y. Shao-Horn. Probing the origin of enhanced stability of "AlPO(4)" nanoparticle coated LiCoO2 during cycling to high voltages: combined XRD and XPS studies. Chemistry of Materials,2009.21(19):4408-4424.
    [13]K. Yamada, N. Sato, T. Fujino, C.G. Lee, I. Uchida, and J.R. Selman. Preparation of LiNiO2 and LiMyNi1-yO2 (M= Co, Al) films by electrostatic spray deposition. Journal of Solid State Electrochemistry,1999,3(3):148-153.
    [14]T. Amriou, A. Sayede, B. Khelifa, C. Mathieu, and H. Aourag. Effect of Al-doping on lithium nickel oxides. Journal of Power Sources,2004,130(1-2):213-220.
    [15]K. Tatsumi, Y. Sasano, S. Muto, T. Yoshida, T. Sasaki, K. Horibuchi, Y. Takeuchi, and Y. Ukyo. Local atomic and electronic structures around Mg and Al dopants in LiNiO2 electrodes studied by XANES and ELNES and first-principles calculations. Physical Review B,2008,78(4).
    [16]J. Cho, T.J. Kim, J. Kim, M. Noh, and B. Park. Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell. Journal of the Electrochemical Society,2004.151(11):A1899-A1904.
    [17]J. Cho, H. Kim, and B. Park. Comparison of overcharge behavior of AlPO4-coated LiCoO (and LiNi)(Co)(Mn)(O)(0.8)(0.1)(0.1)(2) cathode materials in Li-ion cells. Journal of the Electrochemical Society,2004,151(10):A1707-A1711.
    [18]B. V.R.Chowdari, G.V.S. Rao, and S. Y. Chow. Cathodic performance of anatase (TiO2)-coated Li (Ni0.8Co0.2)O2. Journal of Solid State Electrochemistry,2002,6(8): 565-567.
    [19]H. J. Kweon, S. J. Kim, and D.G. Park. Modification of LixNi1-yCoyO2 by applying a surface coating of MgO. Journal of Power Sources,2000,88(2):255-261.
    [20]M. M. Thackeray. Manganese oxides for lithium batteries. Progress in Solid State Chemistry,1997,25(1-2):1-71.
    [21]Z. X. Wang, Z. J. Xing, X.H. Li, H.J. Guo, and W.J. Peng. Study on Al2O3-modified LiMn2O4 prepared by heterogeneous nucleation. Acta Physico-Chimica Sinica,2004,20(8): 790-794.
    [22]D. Arumugam, and G.P. Kalaignan. Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. Journal of Electroanalytical Chemistry,2008,624(1-2):197-204.
    [23]T. Fukutsuka, K. Sakamoto, Y. Matsuo, Y. Sugie, T. Abe, and Z. Ogumi. Preparation of LiMn2O4 thin-film electrode by the oxygen plasma-assisted sol-gel method. Electrochemical and Solid State Letters,2004,7(12):A481-A483.
    [24]A. K. Padhi, K. S. Nanjundaswamy, and J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [25]Kwon, S.J., C. W. Kim, W.T. Jeong, and K.S. Lee, Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying. Journal of Power Sources,2004.137(1):93-99.
    [26]K. Konstantinov, S. Bewlay, G. X. Wang, M. Lindsay, J. Z. Wang, H. K. Liu, S. X. Dou, and J. H. Ahn. New approach for synthesis of carbon-mixed LiFePO4 cathode materials. Electrochimica Acta,2004,50(2-3):421-426.
    [27]A. Y. Shenouda, and H. K. Liu. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. Journal of Alloys and Compounds,2009. 477(1-2):498-503.
    [28]S. H. Wu, M. S. Chen, C. J. Chien, and Y. P. Fu. Preparation and characterization of Ti4+-doped LiFePO4 cathode materials for lithium-ion batteries. Journal of Power Sources, 2009,189(1):440-444.
    [29]T. Takamura. Carbon materials and the surface modification in view of electrochemical Li insertion/extraction. Bulletin of the Chemical Society of Japan,2002,75(1):21-44.
    [30]H. S. Lee, X. Sun, X. Q. Yang, and J. McBreen. Synthesis and study of new cyclic boronate additives for lithium battery electrolytes. Journal of the Electrochemical Society,2002, 149(11):A1460-A1465.
    [31]A. Tressaud, T. Shirasaki, G. Nanse, and E. Papirer. Fluorinated carbon blacks:influence of the morphology of the starting material on the fluorination mechanism. Carbon,2002.40(2): 217-220.
    [32]R. Tossici, M. Berrettoni, M. Rosolen, R. Marassi, and B. Scrosati. Electrochemistry of KC8 in lithium-containing electrolytes and its use in lithium-ion cells. Journal of the Electrochemical Society,1997,144(1):186-192.
    [33]C. Natarajan, H. Fujimoto, A. Mabuchi, K. Tokumitsu, and T. Kasuh. Effect of mechanical milling of graphite powder on lithium intercalation properties. Journal of Power Sources, 2001,92(1-2):187-192.
    [34]L. J. Ning, Y.P. Wu, S.B. Fang, E. Rahm, and R. Holze. Materials prepared for lithium ion batteries by mechanochemical methods. Journal of Power Sources,2004,133(2):229-242.
    [35]J.Yang, Y. Takeda, N. Imanishi, and O. Yamamoto. Tin-containing anode materials in combination with Li2.6Coo.4N for irreversibility compensation. Journal of the Electrochemical Society,2000,147(5):1671-1676.
    [36]P. P. Prosini, and F. Cardellini. Electrochemical lithium extraction from beta-lithium nitride. Electrochemistry Communications,2002,4(11):853-856.
    [37]K. S. Park, Y.J. Park, M.K. Kim, J.T. Son, H.G. Kim, and S.J. Kim. Characteristics of tin nitride thin-film negative electrode for thin-film microbattery. Journal of Power Sources, 2001,103(1):67-71.
    [38]吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002.
    [39]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka. Tin-based amorphous oxide:A high-capacity lithium-ion-storage material. Science,1997,276(5317):1395-1397.
    [40]S. C. Nam, C. H. Paik, W. I. Cho, B. W. Cho, H. S. Chun, and K. S. Yun. Electrochemical characterization of various tin-based oxides as negative electrodes for rechargeable lithium batteries. Journal of Power Sources,1999,84(1):24-31.
    [41]K. Amezawa, N. Yamamoto, Y. Tomii, and Y. Ito. Single-electrode Peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt. Journal of the Electrochemical Society,1998, 145(6):1986-1993.
    [42]H. Li, X. J. Huang, L. Q. Chen, Z.G. Wu, and Y. Liang. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid State Letters, 1999,2(11):547-549.
    [43]J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochemical and Solid State Letters,2004, 7(10):A306-A309.
    [44]W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, and N. L. Wu. Effect of electrode structure on performance of Si anode in Li-ion batteries:Si particle size and conductive additive. Journal of Power Sources,2005,140(1):139-144.
    [45]H. S. Kim, K. Y. Chung, W. I. Cho, and B. W. Cho. Electrochemical characteristics of carbon-coated Si/Cu/graphite composite anode. Bulletin of the Korean Chemical Society, 2009,30(7):1607-1610.
    [46]C. H. Doh, H. M. Shin, D. H. Kim, Y. D. Chung, S. I. Moon, B.S. Jin, H. S. Kim, K. W. Kim, D. H. Oh, and A. Veluchamy. Effect of silicon content over Fe-Cu-Si/C based composite anode for lithium ion battery. Bulletin of the Korean Chemical Society,2008, 29(2):309-312.
    [47]L. F. Cui, Y. Yang, C.M. Hsu, and Y. Cui. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Letters,2009.9(9):3370-3374.
    [48]H. P. Liu, W.M. Qiao, L. Zhan, and L. C. Ling. In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage. New Carbon Materials,2009,24(2): 124-130.
    [49]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000,407(6803):496-499.
    [50]M. Wagemaker, A. P. M. Kentgens, and F. M. Mulder. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature,2002,418(6896): 397-399.
    [51]A. Guerfi, S. Sevigny, M. Lagace, P. Hovington, K. Kinoshita, and K.Zaghib. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. Journal of Power Sources,2003,119:88-94.
    [52]A. Guerfi, P. Charest, K. Kinoshita, M. Perrier, and K. Zaghib. Nano electronically conductive titanium-spinel as lithium ion storage negative electrode. Journal of Power Sources,2004,126(1-2):163-168.
    [53]P. Zhang, Z. P. Guo, and H. K. Liu. Submicron-sized cube-like alpha-Fe2O3 agglomerates as an anode material for Li-ion batteries. Electrochimica Acta,2010,55(28):8521-8526.
    [54]X. W. Guo, X. Lu, X.P. Fang, Y. Mao, Z.X. Wang, L.Q. Chen, X.X. Xu, H. Yang, and Y.N. Liu. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochemistry Communications,2010.12(6):847-850.
    [55]X. J. Zhang, D. G. Zhang, X. M. Ni, J. M. Song, and H. G. Zheng. Synthesis and electrochemical properties of different sizes of the CuO particles. Journal of Nanoparticle Research,2008,10(5):839-844.
    [56]X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. Journal of Physical Chemistry B,2004, 108(18):5547-5551.
    [57]Y. M. Kang, K. T. Kim, J. H. Kim, H. S. Kim, P. S. Lee, J. Y. Lee, H. K. Liu, and S. X. Dou. Electrochemical properties of CO3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries. Journal of Power Sources,2004,133(2): 252-259.
    [58]Y. M. Kang, M. S. Song, J. H. Kim, H. S. Kim, M. S. Park, J. Y. Lee, H. K. Liu, and S. X. Dou. A study on the charge-discharge mechanism of CO3O4 as an anode for the Li ion secondary battery. Electrochimica Acta,2005,50(18):3667-3673.
    [59]S. F. Zheng, J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan, and Y.G. Guo. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chemistry of Materials,2008,20(11):3617-3622.
    [60]J. Y. Xiang, J. P. Tu, Y. F. Yuan, X. L. Wang, X. H. Huang, and Z. Y. Zeng. Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries. Electrochimica Acta,2009,54(4):1160-1165.
    [61]J. Y. Xiang, J.P. Tu, J. Zhang, J. Zhong, D. Zhang, and J.P. Cheng. Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochemistry Communications,2010,12(8):1103-1107.
    [62]J. Morales, L. Sanchez, F. Martin, J. R. Ramos-Barrado, and M. Sanchez. Nanostructured CuO thin film electrodes prepared by spray pyrolysis:a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochimica Acta,2004,49(26): 4589-4597.
    [63]S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, and J.M. Tarascon. Particle size effects on the electrochemical performance of copper oxides toward lithium. 2001, ECS. A285-A292.
    [64]A. Debart, L. Dupont, P. Poizot, J. B. Leriche, and J. M. Tarascon. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. 2001, ECS. A1266-A1274.
    [65]S. Q. Wang, J. Y. Zhang, and C. H. Chen. Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scripta Materialia,2007,57(4):337-340.
    [66]J. C. Park, J. Kim, H. Kwon, and H. Song. Gram-Scale Synthesis of CU2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Advanced Materials,2009,21(7):803.
    [67]J. Morales, L. Sanchez, F. Martin, J. Ramos-Barrado, and M. Sanchez. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films,2005,474(1-2):133-140.
    [68]Q. Pan, H. Jin, H. Wang, and G. Yin. Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance. Electrochimica Acta,2007,53(2):951-956.
    [69]J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X.L. Wang, and S.J. Shi. Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. Journal of Power Sources,2010.195(1):313-319.
    [70]H. B Wang, Q. M. Pan, J. W. Zhao, and W.T. Chen. Fabrication of CuO/C films with sisal-like hierarchical microstructures and its application in lithium ion batteries. Journal of Alloys and Compounds,2009,476(1-2):408-413.
    [71]X. C. Jiang, T. Herricks, and Y. N. Xia. CuO nanowires can be synthesized by heating copper substrates in air. Nano Letters,2002,2(12):1333-1338.
    [72]J. Y. Xiang, J. P. Tu., Y.F. Yuan, X. H. Huang, Y. Zhou, L. Zhang. Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method. Electrochemistry Communications, (2009):262-265.
    [73]D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. Journal of Power Sources, 1997,68(1):91-98.
    [74]Y. Y. Hu, X. T. Huang, K. Wang, J. P. Liu, J. Jiang, R. M. Ding, X. X. Ji, and X. Li. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. Journal of Solid State Chemistry,2010,183(3):662-667.
    [75]F. S. Ke, L. Huang, G. Z. Wei, L. J. Xue, J. T. Li, B. Zhang, S. R. Chen, X. Y. Fan, and S. G. Sun. One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochimica Acta,2009,54(24):5825-5829.
    [76]张大伟,陈静娟,杨永清等.CuO的可控合成及其作为锂离子电池负极材料的性能.安徽工业大学学报(自然版),2010,27(3):284-288.
    [77]杨军,解晶莹,王久林.化学电源测试原理与技术.2006,化学工业出版社:北京.
    [78]J. Y. Xiang, J. P. Tu, X. H. Huang, and Y. Z. Yang. A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. Journal of Solid State Electrochemistry,2008,12(7-8):941-945.
    [79]J. Zhang, S. Xie, X. Wei, Y.J. Xiang, and C.H. Chen. Lithium insertion in naturally surface-oxidized copper. Journal of Power Sources,2004,137(1):88-92.
    [80]P. Novak. CuO cathode in lithium cells 2. reduction-mechanism of CuO. Electrochimica Acta,1985,30(12):1687-1692.
    [81]M. Hasan, T. Chowdhury, and J.F. Rohan. Nanotubes of core/shell Cu/Cu2O as anode materials for Li-ion rechargeable batteries. Journal of the Electrochemical Society,2010. 157(6):A682-A688.
    [82]G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, and W. Z. Li. Lithium insertion into CuO/carbon nanotubes. Journal of Power Sources,1998,75(1):175-179.
    [83]Y. Yu, C. H. Chen, J. L. Shui, and S. Xie. Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angewandte Chemie-International Edition,2005,44(43):7085-7089.
    [84]P. C. Wang, H. P. Ding, T. Bark, and C. H. Chen. Nanosized alpha-Fe2O3 and Li-Fe composite oxide electrodes for lithium-ion batteries. Electrochimica Acta,2007,52(24): 6650-6655.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.