共掺杂p型ZnO和富氮Zr-N薄膜的制备、性能及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括两大部分内容:
     第一部分针对氧化锌(ZnO)研究中存在的“p型ZnO的制备和性能”关键问题开展研究工作。目前,p型ZnO的制备仍然存在着高电阻率,低迁移率、低载流子浓度、性能不稳定等问题,本部分论文利用共掺杂提高受主杂质在ZnO中的固溶度和降低受主杂质离化能的方法制备p型ZnO。
     采用磁控溅射技术,以高纯的N_2和O_2为溅射气体,ZnO:BN(1at%)为靶材,在石英衬底上生长出B-N共掺ZnO薄膜。对其进行后热处理发现,随温度升高,薄膜的导电性从n型变成p型,最后又转变成弱p型,在中间退火温度650°C时,表现最好的p型导电性质,电阻率、载流子浓度、迁移率分别为2.3Ωcm,1.2×10~(17),11 cm~2/Vs,与相同实验条件下制备的电阻率、载流子浓度、迁移率分别为50Ωcm,3.6×10~(16),4.4 cm~2/Vs的N掺杂p型ZnO相比,p型导电性能得到提高。
     采用磁控溅射技术,讨论了在Ar和O_2溅射气氛下,氧流量比对B-N共掺ZnO薄膜电学性质的影响,测量结果表明,当氧流量比为70%时,在石英衬底上制备的B-N共掺杂ZnO薄膜具有最好的p型导电性质;研究了退火气氛对Ar/O_2溅射气氛下制备的B-N共掺ZnO薄膜性能的影响。研究结果发现,样品无论在真空还是氧气气氛下退火后都表现p型导电,但在真空气氛下退火后的p型导电性质要比在氧气气氛下退火后的p型导电性质好很多。真空气氛下退火样品的p型导电主要来自于No受主的贡献,而在氧气气氛下退火样品的p型导电主要来自于锌空位(VZn)受主的贡献。
     采用磁控溅射技术,利用高纯的Ar和N_2混合气体溅射ZnO:P_2O_5 (2wt%)靶,在石英衬底上生长出P-N共掺ZnO薄膜;经800℃真空退火,在富锌条件下,获得电阻率,载流子浓度和迁移率分别为3.98Ωcm,2.18×10~(18)cm~(-3),1.35 cm~2/Vs的P-N共掺的p型ZnO薄膜,与相同实验条件下制备的P单掺和N单掺的p型ZnO薄膜相比,p型导电性能得到提高。通过实验结果分析,我们推断在P-N共掺p型ZnO价带边上形成一个由中性钝化(PZn-3No)复合体形成的完全被占据的杂质带,导致带隙宽度变小,该复合体和额外的作为No受主的N原子能够形成一种稳定结构的P_(Zn)-4N_o复合体,p型导电主要来自于这个P_(Zn)-4N_o复合体受主的贡献。验证了理论计算的正确性。
     第二部分针对Th3P4和尖晶石结构金属氮化物新型超硬材料的制备和性能开展研究工作。富氮的Zr-N化合物在常温常压下通常都是热力学亚稳相,并且合成困难,但对其研究无论是在理论上还是实验上都有重要意义。理论计算表明Th3P4结构的Zr_3N_4(c-Zr_3N_4)薄膜是一种新型超硬半导体材料,在机械、电子、光学等领域具有重要的应用,研究出制备c-Zr_3N_4薄膜的新的方法和技术是必要的。本部分论文利用磁控溅射技术在常压下制备富氮的Zr-N薄膜。
     采用磁控溅射技术,利用高纯的Ar和N_2为溅射气体,金属Zr为溅射靶材,衬底温度为500℃,在Si衬底上制备了由岩盐结构的ZrN(γ-ZrN)相和c-Zr_3N_4相组成的富氮的Zr-N薄膜;研究了N_2/(N_2+Ar)流量比(RN_2)对Zr-N薄膜的结构、性能的影响。研究结果表明,随着RN_2的增加,γ-ZrN相的相对含量不断减少,c-Zr_3N_4相的相对含量不断增加,Zr-N薄膜经历从γ-ZrN相到c-Zr_3N_4相的转变,经历着从导体向半导体的转变。在纯氮气的溅射下,衬底温度为100℃,在玻璃衬底上,氮气气氛下400℃原位退火后制备了具有单一相c-Zr_3N_4的薄膜。首次在实验上证明c-Zr_3N_4是一种p型半导体,禁带宽度为2.8 eV。在常温常压下c-Zr_3N_4薄膜的合成主要是薄膜生长的非平衡过程和晶格失配及热失配所产生的张应力共同作用的结果。
Zinc oxide (ZnO) is a II-VI semiconductor with a wide band-gap of 3.37 eV and a hexagonal wurtzite structure. Due to its large exciton binding energy (60 meV), it can be considered as a prime candidate for ultraviolet light emitting diodes and laser. The growth temperature of ZnO is only a half value of that of GaN, which reduces the atomic diffusion between the film and substrate. This makes it a promising candidate used in many areas, such as ultraviolet laser diodes, light emitting diode. Interest of ZnO a promising material for optoelectronic devices has intensified since the first reported in 1997 on the room-temperature ultraviolet (UV) laser emission of ZnO poly-crystallite thin films. Specifically, in the recent few years, more and more attentions have been attracted on electroluminescence.
     Recently many groups have reported successfully fabricating p-type ZnO. But, the fabrication of p-type ZnO exists normally the problem of high resistivity, low carrier concentration, low mobility, low doping concentration, and unstable, etc. There is a still long way to go to make p-type ZnO practicality. The key to obtain the high quality device is producible low resistivity and stable p-type ZnO.
     Aiming at the hot issues in current ZnO study field, in this section thesis, we focus on the the fabrication, structure, optical and electrical properties on B-N codoped and P-N codoped p-type ZnO. The major work and results are list as follow:
     (1) B-N codoped ZnO films were prepared on quartz substrates by r.f. magnetron sputtering method using ZnO:BN(1at%) target, using mixture of nitrogen and oxygen as sputtering gas. The effect of annealing temperature on the structure and properties of B-N codoped films was studied. Through the analysis of the experiment results, we draw this conclusion: with the increasing annealing temperature, the crystallinity is improved, the band-gap width first occur red shift and then blue shift, the conductivity of the film changed dramatically from n-type to p-type, and finally changed to weak p-type, at an intermediate annealing temperature 650°C, the B-N codoped ZnO film behaves the best p-type conductivity property, it has room-temperature resistivity of 2.3Ωcm, Hall mobility of 11 cm2/Vs and carrier concentration of 1.2×1017 cm-3, the p-type conduction comes from contribution of VZn and No acceptors. The p-type characteristics of the B-N codoped ZnO were improved remarkably as compared with N-doped ZnO fabricated under the same experiment condition. A ZnO homojunction was prepared by depositing a n-type ZnO layer on the B-N codoped p-type ZnO film and showed a rectification behavior.
     (2) Using magnetron sputtering technique, in argon and oxygen sputtering ambient, we discussed that the effect of oxygen partial pressure ratios on electrical properties of B-N codoped films. The hall measurement result indicate that when oxygen partial pressure ratio was 70%, the codoped ZnO film fabricated in quartz substrate at vacuum 600°C showed the best p-type conduction properties, which showed a restivity of 2.3Ωcm with a Hall mobility of 15 cm~2/Vs and carrier concentration of 1.8×10~(17) cm~(-3). The p-type behavior of B-N codoped ZnO films deposited in 70% of oxygen partial pressure ratio was confirmed by p-ZnO/n-Si heterojunction which showed a clear p-n diode characteristic. Meanwhile, the effect of post-annealing atmosphere on the properties of B-N codoped ZnO films fabricated in argon and oxygen sputtering ambient are studied. The results indicate that the hole concentration of the sample annealed in vacuum is about two order magnitudes higher than that of the sample annealed in oxygen. The p-conduction is attributed to No acceptors contribution for the B-N codoped p-ZnO obtained in vacuum and to VZn acceptor contribution for the B-N codoped p-ZnO obtained in oxygen ambient.
     (3) Using magnetron sputtering technique, in argon and nitrogen sputtering ambient, P_2O_5 and N_2 are served as dopant sources, the P-N codoped ZnO film fabricated in quartz substrate annealed 30 min at vacuum 800°C showed the best p-type conduction properties, which showed a restivity of 3.98Ωcm with a Hall mobility of 3.35 cm~2/Vs and carrier concentration of 1.16×10~(18) cm~(-3). The results analysis indicate that the p-type ZnO film was fabricated under Zn-rich condition, P substitute the site of Zn, N substitute the site of O in ZnO lattice to be an effective No acceptor. According to theoretical calculations in combine with the analysis of optical properties, we conclude that a passive stoichiometric (PZn–3No) complex was formed, which forms an additional fully occupied impurity band above VBM of pure ZnO, leading to the acceptor level decreasing due to the the valence band edge upward shift. The complex and an additional N atoms form a stable structure of P_(Zn)-4N_o complex, and the p-conduction is attributed to the P_(Zn)-4N_o complex acceptors contribution for the P-N codoped p-ZnO film.
     Transition metal nitrides,such as Zirconium nitride (Zr-N), Titanium nitride (Ti-N), etc., have been attracting much attention for various applications due to high intensity, great hardness as well as good thermal and conductive property. Many experimental results demonstrate that Zr-N compounds, produced in thermodynamic equilibrium state under atmospheric pressure, are usually poor nitrogen, and the highest N to Zr ratio is 1:1. However, preparation of N-rich Zr-N is proven difficult, and the N-rich Zr-N usually is metastable. Although it is generally difficult to fabricate N-rich Zr-N, investigation on N-rich Zr-N is interesting in theory and application. C-Zr_3N_4 film is a new and important material, but it is difficult to prepare the film. It is essential to search new method and techniques to fabricate the c-Zr_3N_4 film for its investigation in theory and application. In addition, although it is predicted in theory that the c-Zr_3N_4 is semiconductor, it is not demonstrated in experiment so far. Many studies have been performed in order to establish a relationship between the processing parameters, the film structure and properties. It is of special interest to explore the effect of processing parameters on structure and properties of N-rich nitrides. In this section thesis, we focus on the the fabrication, characterization of the structure, optical and electrical properties on N-rich Zr-N film. The major work and results are list as follow:
     (1) N-rich Zr-N thin film composed of c-Zr_3N_4 andγ-ZrN was deposited on Si substrates at 500°C using radio frequency (rf) magnetron sputtering technique by sputtering Zr target, using argen and nitrogen as sputtering gas, and a single phase of c-Zr_3N_4 film was grown on a glass substrate at 100°C and then annealing at 400°C under the N_2 ambient. Hall measurement indicates that the c-Zr_3N_4 compound is a p-type semiconductor with resistivity of 2.121×10~4Ωcm, carrier concentration of 9×10~(14) cm~(-3) and Hall mobility of 0.34 cm2/Vs. Its bandgap was evaluated to be about 2.8 eV. Formation of the c-Zr_3N_4 film is suggested to be attributed to non-equilibrium process of film growth and the action of the tensile stress induced by lattice and thermal mismatches.
     (2) Effects of N_2 : (N_2+Ar) flow ratio on the structure and properties of the films are systematically studied. Studies result indicate that for the Zr-N flim grown on glass at 400°C and RN_2≤20%, it consists mainly ofγ-ZrNx. The N concenttratin and lattice constant of theγ-ZrNx increase with increasing RN_2. For the Zr-N film grown on Si at 500°C and RN_2 ranging from 20 to 100%, it is composed ofγ-ZrN and c-Zr_3N_4 The relative content decrease forγ-ZrN but increases for c-Zr_3N_4 with increasing RN_2.The Zr-N film undergo from theγ-ZrN phase to c-Zr_3N_4 phase, and undergo from the conductor to the semiconductor.
引文
[1] KING S L, GARDENLERS J G E, BOYD I W. Pulsed-laser deposited ZnO for device application [J]. Appl. Surf. Sci, l996, 96-98: 811-818.
    [2] LOOK D C, CLAFLIN B. p-type doping and devices based on ZnO [J]. Phys. Stat. Sol. (B), 2004, 241: 624-626.
    [3] TANG Z K, WONG G K L, YU P M, et al. Room-temperature ultraviolet laser emissionfrom self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett, 1998, 72: 3270-3272.
    [4] KLINGSHIRN. The Luminescence of ZnO under Oneand Two-Quantum Excitation [J]. Phys. StatusSolid (b), 1975, 71: 547-556.
    [5]宋词,杭寅,徐军.氧化锌晶体的研究进展[J].人工晶体学报, 2004, 33: 81-87.
    [6] KRAMER J. Blue-green luminescence in ZnO: Excitation by 20-eV kinetic energy gas-phase positive ions [J]. J. Appl. Phys, 1976, 47 (4): 1719-1720.
    [7] VANHEUSDEN K, SEAGER C H, WARREN W L, TALLANT D R, VOIGT J A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl.Phys.Lett, 1996, 68 (3): 403-405.
    [8] VANHEUSDEN K, WARREN W L, SEAGER C H, TALLANT D R, VOIGT J A. Mechanisms behind green photo luminescence in ZnO phosphor powders [J]. J. Appl. Phys, 1996, 79 (10): 7983-7990.
    [9] YU P, TANG Z K, WONG G K L, KAWASAKI M, OHTOMO A, KOINUMA H, SEGAWA Y. Ultraviolet spontaneous and stimulated emission from ZnO microcrystallite thin films at room temperature [J]. Solid State Commun, 1997, 103: 459-463.
    [10] BAGNALL D M, CHEN Y F, ZHU Z, YAO T, KOYAMA S, SHEN M Y, GOTO T. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett, 1997, 70 (17): 2230-2232.
    [11] SERVICE R. F. Will UV laser beat the blues? [J]. Science, 1997, 276: 895.
    [12] CAO H, ZHAO Y G, ONG H C, HO S T, DAI J Y, WU J Y, CHANG R P H.Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films [J]. Appl. Phys. Lett, 1998, 73: 3656-3658.
    [13] CAO H, LING Y, XU J Y, CAO C Q, KUMAR P. Photon statistics of random lasers with resonant feedback [J]. Phys. Rev. Lett, 2001, 86: 4524-4527.
    [14] CAO H, ZHAO Y G, HO S T, SEELIG E W, WANG Q H, CHANG R P H. Random Laser Action in Semiconductor Power [J]. Phys. Rev. Lett, 1999, 82: 2278-2281.
    [15] LOOK D C, REYNOLDS D C, LITTON C W, JONES R W, EASON D B, CANTWELL G. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J] . Appl. Phys. Lett, 2002, 81: 1830-1832.
    [16] TSUKAZAKI A, ONUMA T, OHTANI M, MAKINO T, SUMIYA M, OHTANI K, CHICHIBU S F, FUKE S, SEGAWA Y, OHNO H, KOINUMA H, KAWASAKI M. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater, 2005, 4: 42-45.
    [17] LIANG H W, LU Y M, SHEN D Z, LIU Y C, YAN J F, SHAN C X, LI B H, ZHANG Z Z, ZHANG J Y, FAN X W. P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO [J]. Phys. Status Solidi A, 2005, 202: 1060.
    [18] TSUKAZAKI A, KUBOTA M, OHTOMO A, ONUMA T, OHTANI K, OHNO H, CHICHIBU S F, KAWASAKI M. Blue Light-Emitting Diode Based on ZnO [J]. Jpn. J. Appl. Phys, 2005, 44: L643-L645.
    [19] AOKI T, HATANAKA Y, LOOK D C. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett, 2000, 76: 3257.
    [20] GUO X L, CHOI J H, TABATA H, KAWAI T. Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode [J]. Jpn. J. Appl. Phys, 2001, 40: L177- L179.
    [21] JIAO S J, ZHANG Z Z, LU M Y, SHEN D Z, YAO B, ZHANG J Y, LI B H, ZHAO D X, FAN X W, TANG Z K. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl. Phys. Lett, 2006, 88: 031911-031913.
    [22] KOHAN F, CEDER G, MORGAN D, CHRIS G. Van de Walle, First-principlesstudy of native point defects in ZnO [J]. Phys. Rev. B, 2000, 61: 15019-15021.
    [23] ZHANG S B, WEI S H, ZUNGER A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO [J]. Phys. Rev. B, 2001, 63: 075205-075211.
    [24] PARK C H, ZHANG S B, WEI S H. Origin of the impurity perspective p-type doping difficulty in ZnO [J]. Phys. Rev. B, 2002, 66: 073202-073204.
    [25] LU J G, ZHANG Y Z, YE Z Z, ZENG Y J, HE H P, ZHU L P, HUANG J Y, WANG L, YUAN J, ZHAO B H, LI X H. Control of p- and n-type conductivities in Li-doped ZnO thin films [J]. Appl. Phys. Lett, 2006, 89: 112113-112115;
    [26] KANG H S, AHN B D, KIM J H, KIM G H, LIM S H, CHANG H W, LEE S Y. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant [J]. Appl. Phys. Lett, 2006, 88: 202108-202110.
    [27] KOBAYASHI A, SANKEY O F, DOW J D. Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO [J]. Phys. Rev. B, 1983, 28: 946-948
    [28] MINEGISHI K, KOIWAI Y, KIKUCHI Y, YANO K, KASUGA M, SHIMIZU A. Growth of p-type zinc oxide films by chemical vapor deposition [J]. Jpn. J. Appl. Phys, 1997, 36: L1453-L1455.
    [29] LEE E C, KIM Y S, JIN Y G, CHANG K J. Compensation mechanism for N acceptors in ZnO [J]. Phys. Rev. B, 2001, 64: 085120-085124.
    [30] YAN Y, ZHANG S B. Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO [J]. Phys. Rev. Lett, 2001, 86: 5723-5726.
    [31] LI X, YAN Y, GESSERT T A, PERKINS C L, YOUNG D, DEHART C, YOUNG M, COUTTS T J. Chemical vapor deposition-formed p-type ZnO thin films [J]. J. Vac. Sci. Technol. A, 2003, 21: 1342-1344.
    [32] LIANG H W, LU Y M, SHEN D Z, JIAO S J, LI B H, ZHANG J Y, LIU Y C, FAN X W. P-type ZnO thin films Prepared by plasma-molecular beam epitaxy using radical NO [J]. Phys. Statu .Solidi, 2005, 202: 1060-1065.
    [33] RYU Y R, LEE T S, WHITE H W. Properties of arsenic-doped p-type ZnOgrown by hybrid beam deposition [J]. Appl. Phys. Lett, 2003, 83: 87-89.
    [34] KO Y D, JUNG J, BANG K H, PARK M C, HUH K S, MYOUNG J M, YUN I. Characteristics of ZnO/Si prepared by Zn3P2 diffusion [J]. Applied Surface Science, 2002, 202: 266-271.
    [35] BANG K H, HWANG D K, PARK M C, KO Y D, YUN I, MYOUNG J M. Formation of p-type ZnO film on InP substrate by phosphor doping [J]. Applied Surface Science, 2003, 210: 177-182.
    [36] XIU F X, YANG Z, MANDALAPU L J, ZHAO D T, LIU J L, BEYERMANN W P. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy [J]. Appl. Phys. Lett, 2005, 87: 152101-152103.
    [37] YAMAMOTO T. Codoping for the fabrication of p-type ZnO [J]. Thin Solid Films, 2002, 420-421: 100-106;
    [38] LU J G, YE Z Z, ZHUGE F, ZENG Y J, ZHAO B H, ZHU L P. p-type conduction In N-Al co-doped ZnO thin films [J]. Appl.Phys.Lett, 2004, 85: 15-17.
    [39] LU J G, ZHU L P, YE Z Z, ZENG Y J, ZHUGE F, ZHAO B H, MA D W. Improved N–Al codoped p-type ZnO thin films by introduction of a homo-buffer layer [J]. J. Cryst. Growth, 2005, 274: 425–429.
    [40] ZHUGE F, ZHU L P, YE Z Z, MA D W, LU J G, HUANG J Y, WANG F Z, ZHANG S B. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO [J]. Appl. Phys. Lett, 2005, 87: 092103-092105.
    [41] BIAN J M, LI X M, GAO X D, YU W D, CHEN L D. Deposition and electrical properties of N-In codoped p-type Zn0 films by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett, 2004, 84: 541-543.
    [42] CAO Y, MIAO L, TANEMURA S, TANEMURA M, KUNO Y, HAYASHI Y. Low resistivityp-Zn0 films fabricated by sol-gel spin coating [J]. Appl. Phys. Lett, 2006, 88: 251116-251118.
    [43] WAN Q. Comment on "Low resistivityp-Zn0 films fabricated by sol-gel spin coating" [J]. Appl. Phys. Lett, 2006, 89: 176103-176105.
    [44] WANG L G, ZUNGER A. Cluster-Doping Approach for Wide-GapSemiconductors: The Case of p-Type ZnO [J]. Phys. Rev. Lett. B, 2003, 90: 256401-256403.
    [45] ?ZGüRü, ALIVOV Y I, LIU C, TEKE A, RESHCHIKOV M A, DO?AN S, AVRUTIN V, CHO S J, MORKO? H. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys, 2005, 98: 041301-041303.
    [46] JOSEPH M, TABATA H, KAWAI T. p-type electrical conduction in Zn0 thin films by Ga and N codoping [J]. Jpn J Appl. Phys, 1999, 38: L1205-1207.
    [47] JOSEPH M, TABATA H, SAEKI H, UEDA K, KAWAI T. Fabrication of the low-resistive p-type ZnO by codoping method [J]. Physica B, 2001, 302-303: 140-148.
    [48] TABATA H, SAEKI M, GUO S L, CHOI J H, KAWAI T. Control of the electric and magnetic properties of Zn0 films [J]. Physics B, 2001, 310: 993-998.
    [49] SINGH A V, MEHRA R M, WAKAHARA A, YOSHIDA A. p-type conduction in codoped Zn0 thin films [J]. J. Appl. Phys, 2003, 93: 396-399.
    [50] WANG H, et al. Preparation of p-type Zn0 films with (N, Ga) co-doping by MOVPE [J]. Materials Chemistry and Physics, 2008, 107: 244-247.
    [51] KRTSCHIL A, DADGAR A, OLEYNIK N, BL¨ASING J, DIEZ A, KROST A. Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic [J]. Appl. Phys. Lett, 2005, 87: 262105-262107.
    [52] LU J G, ZHANG Y Z, YE Z Z, ZHU L P, WANG L, ZHAO B H , LIANG Q L. Low-resistivity, stable p-type ZnO thin films realized using a Li–N dual-acceptor doping method [J]. Appl. Phys. Lett, 2006, 88: 222114-222116.
    [53] KIM H, CEPLER A, OSOFSKY M S, AUYEUNG R C Y, PIQUéA. Fabrication of Zr–N codoped p-type ZnO thin films by pulsed laser deposition [J]. Appl. Phys. Lett, 2007, 90: 203508-203510.
    [54] VLASENFLIN T H, TANAKA M. p-type conduction in ZnO dual-acceptor-doped with nitrogen and phosphorus [J]. Solid State Communications, 2007, 142: 292-294.
    [55] ROGERS D J, TEHERANI F H, YASAN A, MINDER K, KUNG P, RAZEGHI M. Electroluminescence at 375nm from a ZnO/GaN: Mg/c-Al2O3 heterojunctionlight emitting diode [J]. Appl. Phys. Lett, 2006, 88: 141918-141920.
    [56] ALIVOV Y I, KALININA E V, CHERENKOV A E, LOOK D C, ATAEV B M, OMAEV A K, CHUKICHEV M V, BAGNALL D M. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates [J]. Appl. Phys. Lett, 2003, 83: 4719-4721.
    [57] NAKAMURA A, OHASHI T, YAMAMOTO K, ISHIHARA J, AOKI T, TEMMYO J, GOTOH H. Full-color electroluminescence from ZnO-based heterojunction diodes [J]. Appl. Phys. Lett, 2007, 90: 093512-093515.
    [58] LEONG E S P, YU S F. UV random lasing action in p-SiC(4H)/i-ZnO-SiO2 nanocomposite/n-ZnO: Al heterojunction diodes [J]. Advanced Mater, 2006, 18: 1685-1688.
    [59] LEONG E S P, YU S F, LAU S P. Directional edge-emitting UV random laser diodes [J]. Appl. Phys. Lett, 2006, 89: 221109-221113.
    [60] AOKI T, HATANAKA Y, LOOK D C. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett, 2000, 76: 3257-3259.
    [61] GUO X L, CHOI J H, TABATA H, KAWAI T. Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode [J]. Jpn. J. Appl. Phys, 2001, 40: L177-L180.
    [62] KAWASAKI I, FUKAO S. The 3rd international workshop on ZnO and related materials, October 5-8, 2004 [C]. Japan: sendai, c2004.
    [63] TSUKAZAKI A, KUBOTA M, OHTOMO A, ONUMA T, OHTAN K, OHNO H, CHICHIBU S F, KAWASIKI M. Blue Light-Emitting Diode Based on ZnO [J]. Japanese Journal of Applied Physics, 2005, 44: L643–L645.
    [64] JIAO S J, ZHANG Z Z, LU Y M, SHEN D Z, YAO B, ZHANG J Y, LI B H, ZHAO D X, FAN X W, TANG Z K. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl. Phys. Lett, 2006, 88: 031911-0319113.
    [65] LIU W, GU S L, YE J D, ZHU S M, LIU S M, ZHOU X, ZHANG R, SHI Y, ZHENG Y D, HANG Y, ZHANG C L. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor depositiontechnique [J]. Appl. Phys. Lett, 2006, 88: 092101-092103.
    [66] XU W Z, YE Z Z, ZENG Y J, ZHU L P, ZHAO B H, JIANG L, LU J G, HE H P, ZHANG S B. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition [J]. Appl. Phys. Lett, 2006, 88: 173506 -173508.
    [67] DU G T, LIU W F, BIAN J M, HU L Z, LIANG H W, WANG X S, LIU A M, YANG T P. Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett, 2006, 89: 052113-052115.
    [68] LIM J H, KANG C K, KIM K K, PARK I K, HWANG D K, PARK S J. UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering [J]. Adv. Mater, 2006, 18: 2720-2724.
    [69] RYU Y R, LUBGUBAN J A, LEE T S, WHITE H W, JEONG T S, YOUN C J, KIM B J. Excitonic ultraviolet lasing in ZnO-based light emitting devices [J]. Appl. Phys. Lett, 2007, 90: 131115-131117.
    [1] SYUICHI T. Relation between optical property and crystallinity of ZnO thin films prepared by rf magnetron sputtering [J]. J. Appl. Phys. 1993, 73: 4739.
    [2] KUKLA R, KRUG T, LUDWIG R, WILMES K. A highest rate self-s pttering magnetron source [J]. Vacuum. 1990, 41: 1968-1970.
    [3]丛秋滋.多晶二维X射线衍射[M].北京:科学出版社,1997.
    [4] LERMANN G, BISCHOF T, MATEMY A, KIEFER W, KUMMELL T, BACHER G, FORCHEL A, LANDWEHR G. Resonant micro-Raman investigations of the ZnSe–LO splitting in II–VI semiconductor quantum wires [J]. J. Appl. Phys. 1997, 81: 11446.
    [5] LUCOVSKY G, YANG J, CHAO S S, TYLER J E, CZUBATYJ W. Nitrogen-bonding environments in glow-discharge—deposited a-Si: H films [J]. Phys. Rev. B. 1983, 28: 3234.
    [6]马金鑫,朱国凯.扫描电子显微镜入门[M].北京:科学出版社,1985.
    [1] ZHANG S B, WEI S H, ZUNGER A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO [J]. Phys. Rev. B, 2001, 63: 075205-075211.
    [2] PARK C H, ZHANG S B, WEI S H. Origin of p-type doping difficulty in ZnO: The impurity perspective [J]. Phys. Rev. B, 2002, 66: 073202-073204.
    [3] WAGMAN D D, EVANS W H, PARKER V B, SCHUMM R H, HALOW I, BAILEY S M, CHURNEY K W,NUTTALL R W. The NBS Tables of Chemical Thermodynamic Properties [J]. J. Phys. Chem. Ref., 1982, Data 11: Suppl.2 371.
    [4] PASCAL P. Nouveau traitéde Chimie minérale, Tome V, Masson, Paris 1962; Thermodata (Banque de données thermochimiques, BP 66, 38402, Saint-Martin-d’Hères, France).
    [5] WANG L G, ZUNGER A. Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-Type ZnO [J]. Phys. Rev. Lett, 2003, 90: 256401-256404.
    [6] YAMAMOTO T, KATAYAMA-YOSHIDA H. Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO [J]. Jpn. J. Appl. Phys, 1999, 38: L166-L169.
    [7] YAMAMOTO T. Codoping Method for Solutions of Doping Problems in Wide-Band-Gap Semiconductors [J]. Phys. Stat. Sol. A, 2002, 193 (3): 423.
    [8] YAMAMOTO T. Control of N-Impurity States in N-Doped ZnO, ZnS and ZnTe [J]. Jpn. J. Appl. Phys, 2003, 42: 514-516.
    [9] LU J G, YE Z Z, ZHUGE F, ZENG Y J, ZHAO B H, ZHU L P. p-type conduction in N–Al co-doped ZnO thin films [J]. Appl. Phys. Lett, 2004, 85: 3134-3135.
    [10] YUAN G D, YE Z Z, ZHU L P, QIAN Q, ZHAO B H, FAN R X. Control of conduction type in Al- and N-codoped ZnO thin films [J]. Appl.Phys. Lett, 2005, 86:202106-202108.
    [11] JOSEPH M, TABATA H, KAWAI T. p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping [J]. Jpn. J. Appl. Phys. Part 2, 1999, 38:1205-1207.
    [12] KUMAR M, KIM T H, KIM S S, LEE B T. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N [J]. Appl. Phys. Lett , 2006, 89: 112103-112105.
    [13] BIAN J M, LI X M, GAO X D, YU W D, CHEN L D. Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett, 2004, 84: 541-543.
    [14] CHEN L L, LU J G, YE Z Z, LIN Y M, ZHAO B H, YE Y M, LI J S, ZHU L P. p-type behavior in In–N codoped ZnO thin films [J]. Appl. Phys. Lett, 2005, 87: 252106-252108.
    [15] LOOK D C, REYNOLDS D C, LITTON C W, JONES R W, EASON D B, CANTWELL G. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett, 2002, 81: 1830-1832.
    [16] TU M L, SU Y K, MA C Y. Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering [J]. J.Appl.Phys, 2006, 100: 053705-053708.
    [17] XING G Z, YAO B, CONG C X, YANG T, XIE Y P, LI B H, SHEN D Z. Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering [J]. J. Alloy Compd, 2008, 457: 36-41.
    [18] KIM H, CEPLER A, OSLFSKY M S, AUYEUNG R C Y, PIQUéA. Fabrication of Zr-N codoped p-type ZnO thin films by pulsed laser deposition [J]. Appl. Phys. Lett, 2007, 90: 203508-203510.
    [19] MANDALAPU L J, YANG Z, CHU S, LIU J L. Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes [J]. Appl. Phys. Lett, 2008, 92: 122101-122103.
    [20] BARNES T M, OLSON K, WOLDEN C A. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide [J]. Appl. Phys. Lett, 2005, 86: 112112-112114.
    [21] CLAFLIN B, LOOK D C, PARK S J, CANTWELL G. Persistent n-type photoconductivity in p-type ZnO [J]. J. Cryst. Growth, 2006, 287: 16-22.
    [22] REYNOLDS D C, LOOK D C, JOGAI B, LITTON C W, COLLINS T C,HARSCH W, CANTWELL G. Neutral-donor–bound-exciton complexes in ZnO crystals [J]. Phys. Rev. B, 1998, 57: 12151-12155.
    [23] LEE W, JEONG M C, MYOUNG J M. Optical characteristics of arsenic-doped ZnO nanowires [J]. Appl.Phys.Lett, 2004, 85: 6167-6169.
    [24] REUSS F, KIRCHNER C, GRUBER T H, KLING R, MASCHEK S, LIMMER W, WAAG A, ZIEMANN P. Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO [J]. J.Appl.Phys, 2004, 95: 3385-3390.
    [25] ZHUGE F, ZHU L P, YE Z Z, LU J G, HE H P, ZHAO B H. Al concentration dependence of electrical and photoluminescent properties of co-doped ZnO films [J]. Chem. Phys. Lett, 2007, 437: 203-206.
    [30] JEONG S H, KIM B S,LEE B T. Photoluminescence dependence of ZnO films grown on Si (100) by radio-frequency magnetron sputtering on the growth ambient [J]. Appl. Phys. Lett, 2003, 82: 2625-2627.
    [31] ZU P, TANG Z K, WONG K L, KAWASAKI M, OHTOMO A, SEGAWA Y. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Commun, 1997, 103: 459-463.
    [32] YU Z G, WU P, GONG H. Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering [J]. Appl. Phys. Lett, 2006, 88: 132114-132116.
    [33] HWANG D K, OH M S, LIM J H, KANG C G, PARK S J. Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO [J]. Appl. Phys. Lett, 2007, 90: 021106-021108.
    [1] LI X N , KEYES B, ASHER S, ZHANG S B, WEI S H, COUTTS T J , LIMPIJUMNONG S, VAN DER WALLE C G. Hydrogen passivation effect in nitrogen-doped ZnO thin films [J]. Appl. Phys. Lett, 2005, 86: 122107-122109.
    [2] HUANG Y Q, LIU M D, LI Z, ZENG Y K, LIU S B. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol–gel process [J]. Mater. Sci. Eng. B, 2003, 97: 111-116.
    [3] BEHERA D , ACHARYA B S. Nano-star formation in Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence and laser Raman spectroscopy [J]. J. Lumin, 2008, 128: 1577-1586.
    [4] YAHIA S B, ZNAIDI L, KANAEV A, PETITET J P. Raman study of oriented ZnO thin films deposited by sol–gel method [J]. Spertrochimica Acta Part A, 2008, 71: 1234-1238.
    [5] LUKOMSKII A I, SHIPILO V B, SHISHONOK E M. Raman Scattering of Cubic Boron Nitride [J]. Phys. Stat. Sol 1987, 102: 137-139.
    [6] KONG J F, CHEN H, YE H B, SHEN W Z, ZHAO J L, LI X M. Raman scattering spectra of coupled LO-phonon-plasmon modes in N-In codoped p-type ZnO thin films [J]. Appl. Phys. Lett, 2007, 90: 041907-041909.
    [7] GUTOWSKI J, PRESSER N, BROSER I. Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy [J]. Phys. Rev. B, 1988, 38: 9746-9758.
    [8] ZHONG S, ZHANG W Y, WU X P, LIN B X, FU Z X. Effect of Annealing Temperature on Structural and Optical Properties of N-Doped ZnO Films [J]. Chin. Phys. Lett., 2008, 25: 2585-2587.
    [9] YAMAMOTO T, KATAYAMA-YOSHIDA H. Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO [J]. Jpn. J. Appl. Phys, 1999, 38: L166-L169.
    [10] LOOK D C, REYNOLDS D C, LITTON C W, JONES R W, EASON D B, CANTWELL G. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett, 2002, 81: 1830-1832.
    [11] YAO B, SHEN D Z, ZHANG Z Z, WANG X H, WEI Z P, LI B H, LV Y M, FAN X W, GUAN L X, XING G Z, CONG C X, XIE Y P. Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering [J]. J. Appl. Phys, 2006, 99: 123510-123514.
    [12] JEONG S H, KIM B S, LEE B T. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient [J]. Appl. Phys. Lett, 2003, 82: 2625-2627.
    [13] HE H P, ZHUGE F, YE Z Z, ZHU L P, ZHAO B H, HUANG J Y. Defect-related vibrational and photoluminescence spectroscopy of a codoped ZnO: Al: N film [J]. J. Phys. D: Appl. Phys, 2006, 39: 2339-2342.
    [14] LU J G, LIANG Q N, ZHANG Y Z, YE Z Z, FUJITA S Z. Improved p-type conductivity and acceptor states in N-doped ZnO thin films [J]. J. Phys. D: Appl. Phys, 2007, 40: 3177-3181.
    [15] REUSS F, KIRCHNER C, GRUBER T H, KLING R, MASCHEK S, LIMMER W, WAAG A, ZIEMANN P. Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO [J]. J.Appl.Phys, 2004, 95: 3385-3390.
    [16] YAMAMOTO T. Codoping Method for Solutions of Doping Problems in Wide-Band-Gap Semiconductors [J]. Phys. Stat. Sol. A, 2002, 193 (3): 423.
    [17] YAMAMOTO T. Control of N-Impurity States in N-Doped ZnO, ZnS and ZnTe [J]. Jpn. J. Appl. Phys, 2003, 42: 514-516.
    [18] YAN Y F, LI J B, WEI S H, AL-JASSIM M M. Possible Approach to Overcome the Doping Asymmetry in Wideband Gap Semiconductors [J]. Phys. Rev. Lett, 2007, 98: 135506-135509.
    [19] YAN Y F, WEI S H. Doping asymmetry in wide-bandgap semiconductors: Origins and solutions [J]. Phys. Stat. Sol. (b), 2008, 245: 641-652.
    [20] WAGMAN D D, EVANS W H, PARKER V B, SCHUMM R H, HALOW I, BAILEY S M, CHURNEY K W, NUTTALL R W. The NBS Tables of ChemicalThermodynamic Properties [J]. J. Phys. Chem. Ref. 1982, Data 11 Suppl.2: 371.
    [21] P. PASCAL. Nouveau traitéde Chimie minérale, Tome V, Masson, Paris; Thermodata (Banque de données thermochimiques, BP 66 1962 38402, Saint-Martin-d’Hères, France).
    [1] HWANG D K, OH M S, LIM J H, KANG C G, PARK S J. Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO [J]. Appl. Phys. Lett, 2007, 90: 021106-021108.
    [2] CAO B Q, LORENZ M, RAHM A, WENCKSTERN H VON, CZEKALLA C, LENZNER J, BENNDORF G, GRUNDMANN M. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition [J]. Nanotechnology, 2007, 18: 455707.
    [3] ALLENIC A, PAN X Q, CHE Y, HU Z D, LIU B. Violet luminescence in phosphorus-doped ZnO epitaxial films [J]. Appl. Phys. Lett, 2008, 92: 022107-022109.
    [4] JIANG J, ZHU L P, WANG J R, GU X Q, PAN X H, ZHENG Y J, YE Z Z. Effects of phosphorus doping source temperatures on fabrication and properties of p-type ZnO thin films [J]. Mater. Lett, 2008, 62: 536-538.
    [5] XIAO Z Y, LIU Y C, MU R, ZHAO D X, ZHANG J Y. Stability of p-type conductivity in nitrogen-doped ZnO thin film [J]. Appl. Phys. Lett, 2008, 92: 052106-052108.
    [6] XU J, OTT R, SABAU A S, PAN Z W, XIU F X, LIU J L, ERIE J M, NORTON D P. Generation of nitrogen acceptors in ZnO using pulse thermal processing [J]. Appl. Phys. Lett, 2008, 92: 151112-151114.
    [7] VOLBERS N, LAUTENSCHL?GER S, LEICHTWEISS T, LAUFER A, GRAUBNER S, MEYER B K, POTZGER K, ZHOU S. Arsenic doped zinc oxide [J]. J. Appl. Phys, 2008, 103: 123106-123111.
    [8] WANG P, CHEN N, YIN Z, YANG F, PENG C, DAI R, BAI Y. As-doped p-type ZnO films by sputtering and thermal diffusion process [J]. J. Appl. Phys, 2006, 100: 043704-043707.
    [9] GUO W, ALLENIC A, CHEN Y B, PAN X Q, CHE Y, HU Z D, LIU B. Microstructure and properties of epitaxial antimony-doped p-type ZnO films fabricated by pulsed laser deposition [J]. Appl. Phys. Lett. 2007, 90,242108-242110.
    [10] PRZE?DZIECKA E, KAMI?SKA E, PASTERNAK I, PIOTROWSKA A, KOSSUT J. Photoluminescence study of p-type ZnO: Sb prepared by thermal oxidation of the Zn-Sb starting material [J]. Phys. Rev. B, 2007, 76: 193303-193306.
    [11] LU J G, ZHANG Y Z, YE Z Z, ZHU L P, WANG L, ZHAO B H, LIANG Q L. Low-resistivity, stable p-type ZnO thin films realized using a L-N dual-acceptor doping method [J]. Appl. Phys. Lett, 2006, 88: 222114-222116.
    [12] ZHANG Y Z, LU J G, YE Z Z, HE H P, ZHU L P, ZHAO B H, WANG L. Effects of growth temperature on Li-N dual-doped p-type ZnO thin films prepared by pulsed laser deposition [J]. Appl. Surf. Sci, 2008, 254: 1993-1996.
    [13] KUMAR M, KIM T H, KIM S S, LEE B T. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N [J]. Appl. Phys. Lett , 2006, 89: 112103-112105.
    [14] KIM H, CEPLER A, OSLFSKY M S, AUYEUNG R C Y, PIQUéA. Fabrication of Zr–N codoped p-type ZnO thin films by pulsed laser deposition [J]. Appl. Phys. Lett, 2007, 90: 203508-203510.
    [15] BIAN J M, LI X M, GAO X D, YU W D, CHEN L D. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett, 2004, 84: 541-543.
    [16] JANOTTI A, VAN DE WALLE C G. Oxygen vacancies in ZnO [J]. Appl. Phys. Lett, 2005, 87: 122102-122104.
    [17] VAITHIANATHAN V, LEE B T, KIM S S. Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition [J]. Appl. Phys. Lett, 2005, 86: 062101-062103.
    [18] ZENG Y J, YE Z Z, LU J G, ZHU L P, LI D Y, ZHAO B H, HUANG J Y. Effects of Al content on properties of Al-N codoped ZnO films [J]. Appl. Surf. Sci, 2005, 249: 203-207.
    [19] HE H P, ZHUGE F, YE Z Z, ZHU L P, WANG F Z, ZHAO B H, HUANG J Y. Strain and its effect on optical properties of Al-N codoped ZnO films [J]. J. Appl. Phys, 2006, 99: 023503-023507.
    [20] VAITHIANATHAN V, LEE B T, CHANG C H, ASOKAN K, KIM S S. Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy [J]. Appl. Phys. Lett, 2006, 88: 112103-112105.
    [21] KANG H S, KIM G H, KIM D L, CHANG H W, AHN B D, LEE S Y. Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film [J]. Appl. Phys. Lett, 2006, 89: 181103-181105.
    [22] HU G X, GONG H, CHOR E F, WU P. Properties of p-type and n-type ZnO influenced by P concentration [J]. Appl. Phys. Lett, 2006, 89: 251102-251104.
    [23] ZENG Y J, YE Z Z, XU W Z, LIU B, CHE Y, ZHU L P, ZHAO B H. Study on the Hall-effect and photoluminescence of N-doped p-type ZnO thin films [J]. Mater. Lett, 2007, 61: 41-44.
    [24] YAO B, GUAN L X, XING G Z, ZHANG Z Z, LI B H, WEI Z P, WANG X H, CONG C X, XIE Y P, LU Y M, SHEN D Z. P-type conductivity and stability of nitrogen-doped zinc oxide prepared by magnetron sputtering [J]. J. Lumin, 2007, 122-123: 191-194.
    [25] LEE W J, KANG J, CHANG K J. The Origin of p-Type Conductivity in P-Doped ZnO [J]. J. Korean Phys. Soc, 2007, 50: 602-607.
    [26] ZHUGE F, ZHU L P, YE Z Z, LU J G, HE H P, ZHAO B H. Al concentration dependence of electrical and photoluminescent properties of co-doped ZnO films [J]. Chem. Phys. Lett, 2007, 437: 203-206.
    [27] RYU Y R, LEE T S, WHITE H W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J]. Appl. Phys. Lett, 2003, 83: 87-89.
    [28] RYU Y R, LEE T S, LEEM J H, WHITE H W. Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO [J]. Appl. Phys. Lett, 2003, 83: 4032-4034.
    [29] KRTSCHIL A, DADGAR A, OLEYNIK N, BL¨ASING J, DIEZ A, KROST A. Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic [J]. Appl. Phys. Lett, 2005, 87: 262105-262107.
    [30] LU J G, ZHANG Y Z, YE Z Z, ZHU L P, WANG L, ZHAO B H, LIANG Q L. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptordoping method [J]. Appl. Phys. Lett, 2006, 88: 222114-222116.
    [31] TIAN R Y, ZHAO Y J. The origin of p-type conduction in (P, N) codoped ZnO [J]. J. Appl. Phys. 106 (2009) 043707-043712.
    [32] LIM W T, LEE C H. Highly oriented ZnO thin films deposited on Ru/Si substrates [J]. Thin solid films, 1999, 353: 12-15.
    [33] ISLAM M N, GOSH T B, CHOPRA K L, ACHARYA H N. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films [J]. Thin Solid Films, 1996, 280: 20-25.
    [34] GU Z B, LU M H, WANG J, WU D, ZHANG S T, MENG X K, ZHU Y Y, ZHU S N, CHEN Y F, PAN X Q. Structure, optical, and magnetic properties of sputtered manganese and nitrogen-codoped ZnO films [J]. Appl. Phys. Lett, 2006, 88: 082111-082113.
    [35] ONYIRIUKA E C. Zinc phosphate glass surfaces studied by XPS [J]. J. Non-cryst. Solids, 1993, 163: 268-273.
    [36] PERKINS C L, LEE S H, LI X N, ASHER S E, COUTTS T J. Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy [J]. J. Appl. Phys, 2005, 97: 034907-034913.
    [37] LU J G, YE Z Z, ZHUGE F, ZENG Y J, ZHAO B H, ZHU L P. p-type conduction in N-Al co-doped ZnO thin films [J]. Appl. Phys. Lett, 2004, 85: 3134-3135.
    [38] CALLEJA J M, CARDONA M. Resonant Raman scattering in ZnO [J]. Phys. Rev. B, 1977, 16: 3753-3761.
    [39] DU G T, YAN M, ZHANG Y T, YANG T P. Preparation of intrinsic and N-doped p-type ZnO thin films by metalorganic vapor phase epitaxy [J]. Appl. Phys. Lett, 2005, 87: 213103-213105.
    [40]MA Y, DU G T, YANG S R, YANG T P, YANG H J, YANG X T, ZHAO B J, LIU D L. Effect of VI/II Ratio on Structure and Optoelectrical Properties of Zinc Oxide Thin Films Deposited by Metal-Organic Chemical Vapor Deposition [J]. Chin. Phys. Lett, 2003, 20: 1155-1157.
    [41] BUNDESMANN C, ASHKENOV N, SCHUBERT M, SPEMANN D, BUTZ T, KAIDASHEV E M, LORENZ M, GRUNDMANN M. Raman scattering in ZnOthin films doped with Fe, Sb, Al, Ga, and Li [J]. Appl. Phys. Lett, 2003, 83: 1974-1976.
    [42] HARIMA H. Raman studies on spintronics materials based on wide bandgap semiconductors [J]. J. Phys: Condens. Matter, 2004, 16: S5653- S5660.
    [43] YAN Y F, LI J B, WEI S H, AL-JASSIM M M. Possible Approach to Overcome the Doping Asymmetry in Wideband Gap Semiconductors [J]. Phys. Rev. Lett, 2007, 98: 135506-135509.
    [44] DUAN X Y, ZHAO Y J, YAO R H. Pushing p-type conductivity in ZnO by (Zr, N) codoping: A first-principles study [J]. Solid State Commun, 2008, 147: 194-197.
    [45] YANG X D, XU Z Y, SUN Z, SUN B Q, DING L, WANG F Z, YE Z Z. Recombination property of nitrogen-acceptor-bound states in ZnO [J]. J. Appl. Phys, 2006, 99: 046101-04610.
    [1] LAMNI R, MARTINEZ E, SPRINGER S G, SANJINéS R, SCHMID P E, LéVYF. Optical and electronic properties of magnetron sputtered ZrNx thin films [J]. Thin Solid Films, 2004, 447-448: 316-321.
    [2] CHHOWALLA M, EMRAH UNALAN H. Thin films of hard cubic Zr3N4 stabilized by stress [J]. Nature Mater, 2005, 4: 317-322.
    [3] YAO B, LIU L, LIU S E, DING B Z, SU W H, LI Y. Effect of local pressure on the crystallization product of amorphous alloys induced by mechanical milling [J]. Journal of Non-Crystalline Solids, 2000, 277: 91-97.
    [4] DING Z H, YAO B, QIU L X, BAI S Z, GUO X Y, XUE Y F, WANG W R, ZHOU X D, SU W H. Formation of titanium nitride by mechanical milling and isothermal annealing of titanium and boron nitride [J]. Journal of Alloys and Compounds, 2005, 391: 77-81.
    [5] CALKA A. Formation of titanium and zirconium nitrides by mechanical alloying [J]. Appl. Phys. Lett, 1991, 59: 1568-1569.
    [6] ZERR A, MIEHE G, RIEDEL R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure [J]. Nature Mater, 2003, 2: 185- 189.
    [7] HE Y, JAYAPRAKASH C, ROTTMAN C. Shapes of grain inclusions in crystals [J]. Phys. Rev. B, 1985, 32: 12-22.
    [8] WU D, ZHANG Z, FU W, FAN X, GUO H. Structure, electrical and chemical properties of zirconium nitride films deposited by dc reactive magnetron sputtering [J]. Appl. Phys, 1997, 64: 593-595.
    [9] ZERR A, et al. Synthesis of cubic silicone nitride [J]. Nature, 1999, 400: 340-342.
    [10] MO S D, et al. Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4 [J]. Phys. Rev. Lett, 1999, 83: 5046-5048.
    [11] SOIGNARD E, et al. High pressure-high temperature synthesis and elasticity of the cubic nitride spinelγ-Si3N4 [J]. J. Phys: condens Matter, 2001, 13: 557-559.
    [12] TANAKA et al. Hardness of cubic silicon nitride [J]. J. Mater. Res, 2002, 17: 731-733.
    [13] CHING W Y, et al. Prediction of spinel structure and properties of single anddouble nitrides [J]. Phys. Rev. B, 2001, 63: 064102-064104.
    [14] CHING W Y, et al. Structure and properties of spinel Fe3N4 and comparison to zinc blende FeN [J]. Appl. Phys. Lett, 2002, 80: 2904-2906.
    [15] TETER D M, et al. Low-Compressibility Carbon Nitrides [J]. Science, 1996, 271: 53-55.
    [16] KROLL P. Hafnium Nitride with Thorium Phosphide Structure: Physical Properties and an Assessment of the Hf-N, Zr-N, and Ti-N Phase Diagrams at High Pressures and Temperatures [J]. Phys. Rev. Lett, 2003, 90: 125501-125503.
    [17] CHHOWALLA M, UNALAN H E. Thin Films of Hard Cubic Zr3N4 Stabilized by Stress [J]. Nat. Mater, 2005, 4: 317-322.
    [1] CHHOWALLA M, UNALAN H E. Thin Films of Hard Cubic Zr3N4 Stabilized by Stress [J]. Nat. Mater, 2005, 4: 317-322.
    [2] DEL RE M, GOUTTEBARON R, DAUCHOT J P, LECLèRE P, TERWAGNE G, HECQ M. Study of ZrN layers deposited by reactive magnetron sputtering [J]. Surf. Coat. Technol, 2003, 174-175: 240-245.
    [3] PRIETO P, GALA?N L, SANZ J M. Electronic structure of insulating zirconium nitride [J] Phys. Rev. B 1993, 47: 1613-1615.
    [4] GUITTET M J, CROCOMBETTE J P, GAUTIER-SOYER M. Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects [J]. Phys. Rev. B, 2001, 63: 125117-125123.
    [5] NETTERFIELD P R, MARTIN P J, MCKENZIE D R. Properties of. ZrNX prepared by ion-assisted deposition [J]. J.Mater. Sci. Lett, 1990, 9: 972-974.
    [6] KROLL P. Hafnium Nitride with Thorium Phosphide Structure: Physical Properties and an Assessment of the Hf-N, Zr-N, and Ti-N Phase Diagrams at High Pressures and Temperatures [J]. Phys. Rev. Lett, 2003, 90: 125501-125503.
    [7] MATTESINI M, AHUJA R, JOHANSSON B. Cubic Hf3N4 and Zr3N4: A class of hard materials [J]. Phys. Rev. B, 2003, 68: 184108-184110.
    [8] ZERR A, MIEHE G, RIEDEL R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure [J]. Nat. Mater, 2003, 2: 185-189.
    [9] MCKENZIE D R, MULLER D, PAILTHORPE B A. Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon [J]. Phys. Rev. Lett, 1991, 67: 773-776.
    [10] MCKENZIE D R. Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon [J]. J.Vac.Sci.Technol.B, 1993, 11: 1928-1935.
    [11] SCHWARZ K, WILLIAMS A R, CUOMO J J, HARPER J H E. Zirconium nitride-a new material for Josephson junctions [J]. Phys. Rev. B, 1985, 32: 8312-8316.
    [12] LERCH M, FüGLEIN E, WRBA J. Synthesis, crystal structure, and hightemperature behavior of Zr3N4 [J]. Z.Anorg.Allg.Chem, 1996, 622: 367-372.
    [13] SIGNORE M A, RIZZO A, MIRENGHI L, TAGLIENTE M A, CAPPELLO A. Characterization of zirconium oxynitride films obtained by radio frequency magnetron reactive sputtering [J]. Thin Solid films, 2007, 515: 6798-6804.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.