B亚群禽白血病病毒分离株的生物学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽白血病是由禽白血病病毒和禽肉瘤病病毒引起的禽类多种肿瘤性疾病的统称。禽白血病病毒是在鸡群中普遍存在的一群反转录病毒,该病毒可引起禽的多种具有传染性的良性肿瘤和恶性肿瘤。根据在不同遗传型鸡胚成纤维细胞上的宿主范围、与相同或不同亚群成员的干扰模式以及用病毒--血清中和试验鉴定的病毒囊膜抗原,鸡的禽白血病病毒可分为A、B、C、D、E和J共6个亚群。其中A、B、C、D主要引起经典的淋巴样白血病,而J亚群主要引发髓样细胞瘤。在过去十年中,中国已对J亚群ALV的流行状况有了大量报道,由于中国在过去几十年中从未对ALV采取过有效的净化措施,中国鸡群、尤其地方品系中存在其它亚型ALV感染的可能性很大。但对J亚群以外其它亚群ALV还很少有研究。
     1. B亚群ALV野毒株SDAU09C2的分离和鉴定
     本文通过接种DF-1细胞(C/E)系,从山东某地方品系芦花鸡的鸡群中分离到一株外源性白血病病毒(ALV)SDAU09C2。根据GenBank中已发表不同亚群序列设计合成7对连续、相互部分重叠的引物,完成了该外源性禽白血病病毒分离株SDAU09C2的前病毒全基因组核苷酸序列,并与A、B、C、D、E、J亚群参考毒株进行了同源性分析。分析结果表明,该分离毒株gp85氨基酸序列与ALV-B的四株参考株的同源性最高,92.5%-95.1%之间,而与其他亚群的同源性在78.9-89.9%之间,与J亚群参考株的同源性更是低至36.9%-39.5%,因此将此分离毒株划归为B亚群。
     将其gag、pol基因与其它各亚群参考毒株进行比较,发现该分离毒株与各亚群毒株的同源性均在95%以上,实际上这两个基因在各个亚群之间非常保守。
     gp37基因编码的氨基酸序列同源性比较发现,虽然SDAU09C2属于B亚群ALV,但是其gp37却与ALV-A的MAV-1具有极高的同源性,说明gp37的同源性与亚群没有明确相关性。
     SDAU09C2的R区域与其它各亚群的同源性在80.0%-100.0%之间。U5区域与各亚群参考株相应序列同源性比较发现,其与外源性A、B、C、D、J亚群的同源性在90.0%以上,与E亚群的同源性在85.9%-87.5%,说明R和U5序列与ALV的亚群没有相关性。将SDAU09C2的U3序列与其它各亚群U3序列比较发现,SDAU09C2的U3序列与ALV-A参考株MQNCSU株的同源性最高,为91.1%,与ALV-B参考株RSR B和MAV-2的同源性分别为84.4%和36.1%,这说明不同毒株之间U3序列的同源性与毒株所属亚群同样没有直接的相关性。
     通过分析调控元件发现,SDAU09C2的U3序列调控元件与MQNCSU没有差异,而与B亚群RSR B株相比,SDAU09C2多出1个增强子序列CAAT box和1个CArG box,但缺少了一个PRE box。
     2. SDAU09C2株对不同品种鸡的致病性比较
     本研究通过动物试验比较了SDAU09C2株对不同品种鸡的致病性。由于本实验室的前期试验中对J亚群分子化克隆毒株NX0101的致病性等已进行了深入研究,因此采用NX0101株作为对照毒株。两个毒株在三种鸡(白来航SPF鸡、HN蛋鸡、地方品系芦花鸡)中均采用鸡胚接种的方式。动物试验的比较分析结果如下:
     2.1两株ALV肿瘤发生率的比较
     自出壳20周后, SDAU09C2毒株和NX0101毒株开始诱发产生肿瘤。截止目前,两株病毒均在SPF鸡中诱发肿瘤,发生率分别为8.7%和14.3%,在HN蛋鸡中只有SDAU09C2引发肿瘤,发生率为5.6%,而两株病毒均未在芦花鸡中引发肿瘤。两株病毒均可在不同部位引发多种类型肿瘤,SDAU09C2在目前诱发的肿瘤中多表现为血管瘤,另外还有卵巢和肠系膜的肿瘤,说明该B亚群毒株具有一定的致病性;而NX0101则诱发包括血管瘤、纤维肉瘤及弥漫性肿瘤在内的不同部位的多种类型肿瘤。
     2.2两株ALV在不同品种鸡中病毒血症检出率的比较
     白来航SPF鸡和HN蛋鸡中,两株病毒均在1-3周之内即可检测到病毒血症,特别是白来航SPF鸡,在3周时9/10的鸡可检测到病毒血症。SDAU09C2在这两种鸡中的横向感染能力强于NX0101。地方品系芦花鸡中,SDAU09C2接种的鸡只在5周时检测到一过性病毒血症,且阳性比例不高(2/12)。横向感染组病毒血症检测表明,SDAU09C2在芦花鸡中的横向传播能力弱于其在白来航SPF鸡和HN蛋鸡中的横向传播能力。
     2.3两株ALV在不同品种鸡中泄殖腔棉拭子p27检出率的比较
     白来航SPF鸡和HN蛋鸡中,在5-21周时SDAU09C2接种鸡泄殖腔棉拭子p27阳性检出率高于NX0101接种组。SDAU09C2在这两种鸡中的横向感染能力强于NX0101。地方品系芦花鸡中,在5-21周时NX0101接种组泄殖腔棉拭子p27阳性检出率高于SDAU09C2接种组。两株病毒在芦花鸡中的横向传播能力均弱于白来航SPF鸡和HN蛋鸡。
     2.4两株ALV在不同品种鸡中对体重抑制作用的比较
     SDAU09C2和NX0101均可对3个品种鸡的增重产生抑制作用。在HN蛋鸡中,SDAU09C2株的对体重增重的抑制作用强于NX0101株。但是在白来航SPF鸡中,SDAU09C2的抑制作用则弱于NX0101株。在地方品系芦花鸡中,SDAU09C2对体重的抑制作用略强于NX0101,但两株病毒对体重的抑制效果均弱于在另外2种鸡中的抑制效果。
     2.5两株ALV在不同品种鸡中免疫抑制作用的比较
     对NDV,AIV-H5,AIV-H9灭活免疫后35d的HI抗体的滴度的比较表明,SDAU09C2株可在白来航SPF鸡及芦花鸡中对NDV的抗体反应显示一定的免疫抑制作用,而在HN蛋用型鸡则没有免疫抑制作用。该株病毒在三个品种的鸡对AIV-H5和AIV-H9的抗体反应则无影响。与SDAU09C2株不同,J亚群的NX0101株在三个品种鸡对三种病毒的抗体反应都不表现明显的免疫抑制作用。
     出壳后6周随机剖杀,观察病毒对免疫器官发育的抑制作用。在白来航SPF鸡中,两株病毒均对法氏囊的发育产生明显的抑制作用;在蛋鸡中,SDAU09C2对胸腺及法氏囊的发育均具有抑制作用,而NX0101则未对三种免疫器官的发育表现抑制作用;在芦花鸡中,NX0101对法氏囊的发育具有抑制作用,而SDAU09C2则未对三种免疫器官的发育产生影响。两株病毒在三个品种鸡中均未对脾脏的发育产生抑制作用。
     2.6两株ALV在不同品种鸡中其它检测指标的比较
     2.6.1特异性抗体的检测
     两株病毒均可在3种鸡接种组和横向感染组诱导产生抗体,但是在白来航SPF鸡和HN蛋鸡中抗体水平和检出率均高于芦花鸡。2.6.2对鸡蛋的相关检测
     目前只有蛋鸡试验组全部开产。鸡蛋的检测结果说明,两株病毒接种鸡所产蛋中可在蛋清中检测到p27抗原及卵黄抗体。SDAU09C2株两者的检出率均高于NX0101株。
     2.6.3血液常规指标的检测
     在连续的跟踪监测过程中,两株病毒可使血液中白细胞和淋巴细胞数轻微变化,与对照组相比,差异不显著。但是在第21周时,两株病毒均可使血液中白细胞和淋巴细胞总数显著上升或下降。
     动物试验的结果表明,SDAU09C2和NX0101在不同品种鸡中具有不同的感染能力和致病性。这种差异主要是由于每只鸡的个体差异造成的,另外,不同品种鸡的遗传背景也会产生一定地影响。
Avian leukosis is a variety of tumor diseases caused by avian leukosis virus and avian sarcoma virus. Avian leuksis virus (ALV) is a member of the family Retroviridae. ALV infection of chickens is widespread and known to be capable of inducing a variety of infectious tumor diseases. Avian leukosis viruses, isolated from chickens, are classified based on their host range, cross-neutralization, and viral interference into six groups (A, B, C, D, E, and J). Subgroup A, B, C, D mainly induced classical lymphoid leukosis (LL), while subgroup J has been found to be associated primarily with myeloid leukosis (ML). In the past 10 years, ALV-J has been widely recognized and reported in many regions of China. In the past few decades, since there is no strict nationwide eradication program for ALV infection on chicken farms in China, it is very likely that Chinese chickens, especially the local breeds, may be infected by other subgroups of ALV. However, the related reports are relatively rare.
     1. Isolation and identification of subgroup B field strain SDAU09C2
     In this study, by inoculation blood samples in DF-1 (C/E) cell cultlure, an exogenous avian leukosis virus (ALV) strain SDAU09C2 was isolated from a breeder farm of Chinese native breed“Barred Plymouth Rock chicken”in Shandong province. To full proviral genome cloning, seven overlapping primers were designed according to reference strains published in GenBank. Identity of the sequence of SDAU09C2 was compared with other ALV reference strains of different subgroups. The results show that it had 92.5%-95.1% of amino acid identity in gp85 to four ALV-B reference strains, the gp85 identity to subgroups A, B, C, D, E was only in the range of 78.9%-89.9%. The identity to subgroup J was as low as 36.9 %-39.5%. So SDAU09C2 was divided into subgroup B.
     Comparison of gag、pol between the isolation and other reference strains showed that the sequence identity for gag and pol between SDAU09C2 and other subgroups was more than 95% on average. Actually, these two genes were very conservative between different subgroups.
     The analysis of amino acid encoding by gp37 showed that gp37 in SDAU09C2 has high identity to gp37 in ALV-A MAV-1 although SDAU09C2 belonged to subgroup B. The identity of gp37 among different subgroups has no clear correlation with its subgroup.
     The fragment R identity to subgroups A, B, C, D, E, J was in the range of 80.0%-100.0%. The U5 identity to exogenous subgroups A, B, C, D and J was more than 90.0%, while the identity to subgroup E was in the range of 85.9%-87.5%. The results indicated that R and U5 region had no relationship with subgroups.
     Its U3 had highest identity of 91% to ALV-A strain MQNCSU, much higher than 84.4% and 36.1% to ALV-B reference strains RSR B and MAV-2. It indicated that the identity of U3 among different subgroups has no clear correlation with its subgroup. Analysis of regulatory elements showed that none of the differences noted in the U3 sequences of SDAU09C2 involved any of the known regulatory elements present in the U3 region of MQNCSU. However, an enhancer CAAT box and a CArG box (CC(A/T)6GG) of U3 in SDAU09C2 is not present in the RSR B. In contrast, a PRE box of RSR B is not present in the SDAU09C2.
     2. Pathogenicity of SDAU09C2 in different chickens
     Pathogenicity of SDAU09C2 was studied in three different breeds by animal experiments. Because the pathogenicity of NX0101 has been studied deeply in our lab, NX0101 was chosen as a control strain. In the experiments, two viruses were both inoculated in ovo in different chickens, including white Leghorn SPF chicken, HN line egg-type chicken and Barred Plymouth Rock chicken. The comparison analysis of animal experiments was the following:
     2.1 Rates of tumors in different chickens
     On the 20th week after hatching, SDAU09C2 and NX0101 started inducing tumors. Up to now, both two viruses can induce tumor in white Leghorn SPF chicken, the rate was 8.7% and 14.3% respectively. While only SDAU09C2 induced tumor in HN egg-type chicken and the rate was 5.6%. Neither of two viruses can induce tumor in Barred Plymouth Rock chicken. Two viruses lead to a variety of tumors in different organs. SDAU09C2 mainly induced hemangioma, in addition to ovarian and mesenteric tumors. NX0101 can induce a variety of tumors in different parts, such as hemangioma, fibrosarcoma, diffuse tumor and so on.
     2.2 Viremia induced by two ALVs in different chickens
     In white Leghorn SPF chicken and HN line egg-type chicken, both SDAU09C2 and NX0101 induced viremia during 1-3 wk of age in the most birds of white Leghorns SPF chickens and HN line egg-type chickens. Especially in white Leghorn SPF chicken, the rate of viremia can reach 9/10 on 3rd week. The SDAU09C2 demonstrated stronger horizontal transmission ability than NX0101. In the local breed Barred Plymouth Rock chicken, SDAU09C2 only induced transient viremia on the 5th week and the rate of viremia was low (2/12). In horizontal infection groups, horizontal infectivity of SDAU09C2 in Barred Plymouth Rock chicken was relative lower than in other 2 chicken breeds.
     2.3 Comarison of p27 in cloacal swab
     In white Leghorn SPF chicken and HN line egg-type chicken, during the 5-21 week of age, SDAU09C2 induced higher positive detection rate of p27 in cloacal swab than NX0101. The SDAU09C2 demonstrated stronger horizontal transmission ability than NX0101. In Barred Plymouth Rock chicken, during the the 5-21 week of age, NX0101 induced higher positive detection rate of p27 in cloacal swab than SDAU09C2. The horizontal infection of two viruses in Barred Plymouth Rock chicken was lower than that in white Leghorn SPF chicken and HN line egg-type chicken.
     2.4 Inhibition on body weight by two ALVs in different chickens
     Both strains induced growth retardation in all 3 chicken breeds, such growth inhibitory effects of SDAU09C2 were stronger than NX0101 in HN egg type chickens but smaller than NX0101 in white Leghorn SPF chickens. In local breed Barred Plymouth Rock chicken, growth inhibitory effects of SDAU09C2 were a little stronger than NX0101, and the inhibitory effects of two viruses were weaker than that of two viruses in other 2 breeds.
     2.5 Inhibition on immunity by two ALVs in different chickens
     35d after vaccine, SDAU09C2 could inhibit antibody reactions to vaccination against Newcastle disease virus in white Leghorn SPF chicken and Barred Plymouth Rock chickens but not in HN egg type chickens. While, SDAU09C2 didn’t affect the antibody reactions to vaccination against H5- and H9- avian influenza viruses (AIV-H5 and AIV-H9) in 3 chicken breeds. It indicated that NX0101 did not show significant inhibitory effects on HI antibody titers to NDV, AIV-H5 and AIV-H9 after vaccination in 3 chicken breeds.
     6 weeks after hatched, chickens were killed randomly and the immune organs were obtained to determine the inhibition on the development of immune organs. In the White Leghorn SPF chickens, both viruses inhibited the development of bursa of fabricius. In HN egg-type chickens, SDAU09C2 inhibited the development of thymus and bursal of fabricius while NX0101 didn’t show inhibition on the development of three immune organs. In the Barred Plymouth Rock chickens, NX0101 inhibited the development of the bursa of fabricius, while SDAU09C2 didn’t show inhibition on the development of three immune organs.
     2.6 Other tests in different chickens
     2.6.1 Analysis of specific antibody
     Two viruses can induce antibodies both in inoculated groups and horizontal transimission groups in the 3 breeds. In white Leghorn SPF chicken and HN line egg-type chicken, antibody level and positive rate were higher than those in Barred Plymouth Rock chicken.
     2.6.2 Detection of eggs
     Up to now, only HN egg-type chicken started to lay eggs. The results showed that p27 antigen in albumen and yolk antibody can be detected in SDAU09C2 and NX0101 inoculated HN egg-type chicken groups. And the eggs contained yolk antibody when the hens have developed antibodies. the positive rates of SDAU09C2 were much higher than NX0101.
     2.6.3 Influences on white blood ball and lymphocytes in the blood
     In the continuous tracking, the two viruses allowed the number of white blood ball and lymphocytes changed a little, while compared with the control group, the difference was not significant. But on the 21wk, the two viruses could make the total number of white blood ball and lymphocytes either increased or decreased significantly.
     The results suggested that two viruses showed different infectivity and pathogenicity in different chicken breeds. This difference may be caused by the individual difference of each chicken between chickens. In addition, different genetic background of different breeds of chickens can also play roles in it.
引文
BW卡尔尼克.高福,刘文军主译.禽病学.第9版.北京:北京农业大学出版社, 1991: 334-381.
    蔡雪辉等.检测禽白血病/肉瘤病毒ELISA双抗体法的研究.中国畜禽传染病, 1995, 1: 48-51.
    柴家前,王贵强,孙淑红,等. J亚群禽白血病病毒分子流行病学研究进展.山东畜牧兽医, 2009, 30: 40-41.
    成子强,张利,刘思当,等.中国麻鸡中发现禽J亚群白血病.微生物学报, 2005, 45: 584-587.
    成子强,赵振华,张利,等. J亚群白血病的病理学观察及PCR诊断.中国预防兽学报, 2003, 25 (6): 490-493.
    崔治中,孙怀昌,朱承如.禽白血病及禽网状内皮细胞增生病感染情况的调查.中国畜禽传染病, 1987, 15 (1): 37-38.
    崔治中,张志,杜岩,等.我国肉用型鸡中J亚群禽白血病的流行现状调查.中国兽医学报, 2002, 24 (4): 292-294.
    崔治中,孟珊珊,姜世金,等.我国白羽肉用型鸡群中CAV、REV和REOV感染状况的血清学调查.畜牧兽医学报, 2006, 37, 152-157.
    崔治中.鸡群中免疫抑制性病毒蛋传病毒的多重感染.中国家禽, 2000, 22 (5): 17-18.
    崔治中.免疫抑制性病毒多重感染在鸡群疫病发生和流行中的作用.畜牧兽医学报, 2003, 34: 417-421.
    崔治中.我国鸡群中免疫抑制性病毒多重感染的诊断和对策.动物科学与动物医学, 2001, 18 (4): 19-21.
    杜岩,崔治中,秦爱建,等.鸡的J亚群白血病病毒的分离及部分序列比较.病毒学报, 2000, 16: 341-346.
    杜岩,崔治中,秦爱建,等.从市场商品肉鸡中检出J亚群禽白血病病毒.中国家禽学报, 1999, 3 (1): 1-4.
    郭桂杰,孙淑红,崔治中. J亚群禽白血病病毒蛋鸡分离株SD07LK1全基因组核苷酸序列的比较分析.微生物学报, 2009, 49 (3): 400-404.
    李艳,崔治中,孙淑红.黄羽肉鸡J亚群白血病病毒的分子生物学特性和致病性.病毒学报, 2007, 23: 207-211.
    刘超男,高玉龙,高宏雷,等. J亚群与E亚群禽白血病自然重组病毒的全基因组序列分析.中国预防兽医学报, 2009, 31: 978-981.
    孟珊珊,崔治中,孙淑红. REV和ALV-J共感染鸡病毒血症及抗体反应的互相影响.中国兽医学报, 2006, 26 (4): 363-366.
    秦爱建, J亚群禽白血病病毒囊膜糖蛋白gp85基因及其产物的生物学和生物化学特性, 博士学位论文,扬州大学, 1999.
    秦爱建,崔治中, Lee L,等.抗J亚群禽白血病病毒囊膜糖蛋白特异性单克隆抗体的研制及其特性.畜牧兽医学报, 2001a, 32: 556-562.
    秦爱建,刘岳龙,周绮雯,等. J亚群禽白血病病毒的免疫荧光检测效果.中国预防兽医学报, 2001b, 3: 214-216.
    王辉,崔治中.蛋鸡J亚群白血病病毒的分离鉴定与序列分析.病毒学报, 2008, 24: 369 -375.
    王建新,崔治中,张纪元,等. J亚群禽白血病病毒与禽网状内皮组织增生病病毒共感染对肉鸡生长和免疫功能的抑制作用.中国兽医学报, 2003, 23 (3): 211-213
    王增福,崔治中,张志,等.我国1999-2003年间ALV-J野毒株gp85基因变异趋势.中国病毒学, 2005, 20: 393-398.
    徐镔蕊,董卫星,何召庆,等.间接荧光抗体法快速诊断海兰褐蛋鸡J亚群禽白血病的研究.中国兽医杂志, 2002a, 38 (9): 7-9.
    徐镔蕊,吕艳丽,董卫星,等.蛋鸡骨髓细胞瘤病的病理学诊断.畜牧兽医学报, 2002b, 33 (6): 562-564.
    徐镔蕊,董卫星,余春明,等.用ALV-J gp85单克隆抗体证明蛋鸡存在J亚群禽白血病. 畜牧兽医学报, 2005a, 36 (3): 269-271.
    徐镔蕊,董卫星,余春明.蛋鸡J亚群禽白血病的分子生物学诊断.病毒学报, 2005b, 21 (4): 289-292.
    杨玉莹,叶建强,赵振华,等.禽白血病J亚群内蒙株的分离与鉴定.中国病毒学, 2003, 18 (5): 454-458.
    殷震,刘景华.动物病毒学.第2版.北京:科学出版社, 1997, 870-885.
    张纪元,崔治中,丁家波,等. J亚群白血病病毒NX0101株感染性克隆化病毒的构建及其致病性,微生物学报, 2005, 45: 437-440.
    张小桃,卢受昇,张贺楠,等. J亚群禽白血病病毒SCAU- 0901株的分离鉴定.中国兽医科学, 2009, 39: 674-678.
    张志,崔治中,姜世金.从J亚群禽白血病肿瘤中检测出禽网状内皮增生症病毒.中国兽医学报, 2004, 24 (1): 10-13.
    张志,崔治中,姜世金,等.鸡肿瘤病料中马立克氏病病毒和禽网状内皮组织增生病病毒共感染的研究.中国预防兽医学报, 2003, 25 (4): 274-278.
    张志,崔治中,赵宏坤,等.商品代肉鸡J亚群禽白血病的病理及病毒分离鉴定.中国兽医杂志, 2002, 38: 6-8.
    张志,庄国庆,孙淑红,等.禽网状内皮增生病病毒和马立克氏病病毒共感染对鸡的致肿瘤作用.畜牧兽医学报, 2005, 36 (1): 62-65.
    赵冬敏,张青婵,崔治中.芦花鸡中B亚群禽白血病病毒的分离与鉴定.病毒学报, 2010, 26: 53-57.
    Adkins ITB, Borjatsch J, Nauhgton J. Idnetifieation of a cellular receptor of subgroup E avian leukosis virus. Proc Natl Acda Sci USA, 1997, 94: 11617-11622.
    Aly MM. Isolation of a subgroup J-like avian leukosis virus associated with myeloid leukosis in meat-type chickens in Egypt. Proceedings of the international symposium on ALV-J and other avian retroviruses. Germany: Rauischolzhauzen, 2000: 165-176.
    Arshad SS, Smith LM, Howes K. Tropism of subgroup J avian leukosis virus as detected by in situ hybtidization. Avian Pathol, 1999, 28:163-169.
    Bagust TJ, Fenton SP, Reddy MR. Detection of subgroup J Avian leucosis virus infection in Australian meat-type chickens. Australian Veterinary Journal, 2004, 82 (11): 701-706.
    Bagust TJ. Proceedings of the international symposium on ALV-J and other avian retroviruses. Germany Rauischolzhauzen, 2000, 234-239.
    Bai J, Howes K, Payne L N. Sequence of host-range determinantsin the env gene of a full-length, infectious provirus clone of exogenous avian leukosis HPRS-103 confirms that it represents a new subgroup (designed J) J. Gen Viol, 1995a, 76: 181-187.
    Bai J, Payne LN, Skinner MA, et al. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an element found previously only in sarcoma viruses. J Virol, 1995b, 69: 779-784.
    Banders UT, Coussens PM. Interactions between Marek’s disease virus encodedor induced fact or sand the Rous sarcoma virus long terminal repeat promoter. J Virol, 1994, 199: 1-10.
    Barbosa T, Zavala G, Cheng S. Molecualr characterization of three recombinant isolates of avian leukosis virus obtained from contaminated Marek’s disease vaccines. Avian Dis, 2008, 52: 245-252.
    Benkel, BF. Locus-specific diagnostic tests for endogenous avian leukosis-type viral loci in chickens. Poult Sci, 1998, 77: 1027-1035.
    Bennett RP. Amino acids encoded downstream of gag are not required by Rous sarcoma virus Protease during gag-mediated assembly. J Virol, 1991, 65: 272-280.
    Benson SJ, Ruis BL, Fadly AM. The unique envelope gene of the group J avian leukosis virus derive from a ev/J provirus, a novel family of avian endogenous viruses. J Virol, 1998a, 72: 1157-1164.
    Benson SJ, Ruis BL, Garbers AL, et al. Independent isolates of the emerging subgroup J avian leucosis virus derive from a common ancestor. J Virol, 1998b, 72: 1121-1129.
    Bieth E, Darlix JL. Complete nucleotide sequence of a highly infectious avian leukosis virus. Nucleic Acids Res, 1992, 20: 367.
    Bizub D, Katz RA, Skalka AM. Nucleotide sequence of noncoding regions inRous-associated virus-2: comparisons delineate conserved regions important in replication and oncogenesis. J Virol, 1984, 49: 557-565.
    Borjasthe J, Naughton J, Rolls MM. CARI, a TNFR-related protein is acellular receptor for cyotpathic avian-Sacroma viruses and mediates apopotsis. Cell, 1996, 87.
    Bova CA, Manfredi JP, Ronald S. env genes of avian retroviruses: nucleotide sequence and molecular recombinants define host range determinants. Virol, 1986, 152: 343-354.
    Bova-Hill C, Olsen JC, Swanstrom R. Genetic analysis of the Rous sarcoma virus subgroup D env gene: mammal tropism correlates with the temperature sensitivity of gp85. J Gen Virol, 1991, 65: 2073-2080.
    Brandvold KA, Ewert DL, KentSC, et al. Bloeked B cell differentiation and emigration support the early growth of myc-induced lymphomas. Oncogene, 2001. 20: 3226-3234.
    Brown DW, BP Blais, HL Robinson. Long terminal repeat (LTR) sequences, env, and a region near the 5’LTR influence the pathogenic potential of recombinants between Rous-associated virus types 0 and 1. J Virol, 1988, 62: 3431-3437.
    Burmester BR, Fonter BR, Walter WG. Pathogenicity of a viral strain (RPL 12) causing avian visceral lymphomatosis and related neoplasms. III. Influence of host age and route of inoculation. J Natl Cancer Inst, 1960, 24: 1423-1442.
    Burmester BR, NF Waters. Variation in the presence of the virus of visceral lymphomatosis in the eggs of the same hens. Poult Sci, 1956, 35: 939-944.
    Burmester BR. Immunity to visceral lymphomatosis in chicks following injection of virus into dams. Proc Soc Exp Biol Medicine, 1955, 88:153-155.
    Buscaglia C, Del Barrio EI, Flamini MA. Proceedings of the International Symposium on ALV-J and Other Avian Retroviruses. Germany: Rauischolzhauzen, 2000, 177-180.
    Calnek, BW. Lymphoid leukosis virus: a survey of commercial breeding flocks for genetic resistance and incidence of embryo infection. Avian Dis, 1968, 12:104-111.
    Chesters PM, Howes K, Petherbridge L, et al. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J Gen Virol, 2002, 83(10): 2553-2561.
    Coffin JM, PN Tsichlis, KF Conklin, et al. Genomes of endogenous and exogenous avian retroviruses. Virol, 1983, 126: 51-72.
    Coffin JM,Hughes SH, Varmus HE. Retroviral Pathogenesis ln: Retroviruses, Cold Spring Harbor Laboratory Press. 1997.
    Cottral GE, BR Burmester, NF Waters. Egg transmission of avian lymphomatosis. Poult Sci, 1954, 33: 1174-1184.
    Crittenden LB, DW Salter. A transgene, alv 6, that expresses the envelope of subgroup A avian leukosis virus reduces the rate of congenital transmission of a field strain of avianleukosis virus. Poult Sci, 1992, 71: 799-806.
    Crittenden LB, EJ Smith, FA Gulvas, et al. Endogenous virus expression in chicken lines maintained at the regional poultry research laboratory. Virol, 1979, 95: 434-444.
    Crittenden LB, EJ Smith, W Okazaki. Identification of broiler breeders congenitally transmitting avian leukosis virus by enzyme linked immunosorbent assay. Poult Sci, 1984, 63: 492-496.
    Crittenden LB, Kung HJ. Mechanisim of induction of lymphoid leukosis and related neoplasms by avian leukosis virus. In: J.M.Goldmanand, O.Jarrett (eds.) Mechanism of viral leukaemogenesis. Charchill living stone, Edinburg. Scouand, 1984, 64-88.
    Crittenden LB. The epidemiology of avian lymphoid leukosis. Cancer Res. 1976, 36: 570-73.
    Crittenden LB. Retroviral elements in the genome of the chicken: implications for poultry genetics and breeding. Crit Rev Poult Biol, 1991, 3: 73-109.
    Cui ZZ, Lee LF, Silva RF. Monoclonal antibodies against avian reticuloendotheliosis virus identification of strain-specific and strain-common epitopes. J Immun, 1986, 136 (11): 4237-4241.
    Cui ZZ, Sun SH, Meng SS. Simultaneous endemic infections with subgroup J avian leukosis virus and reticuloendotheliosis virus in commercial and local breeds of chickens. Avian Pathol, 2009, 38: 443-448.
    Cui ZZ, Du Y, Zhang Z, et al. Comparison of Chinese field strains of avian leukosis subgroup J viruses with prototype strain HPRS-103 and United States strains. Avian Dis, 2003, 47: 1321-1330.
    Dorner AJ, Stoye JP, Coffin JM. Molecular basis of host range variation in avian retroviruses. J Virol, 1985, 53: 32-39.
    Dupraz P. Analysis of deletions and thermosenstive mutation in Rous sarcoma virus gag protein10. J Virol, 1993, 67: 3824-3826.
    Fadly A, R Silva, H Hunt, et al. Isolation and characterization of an adventitious avian leukosis virus isolated from commercial Marek’s disease vaccines. Avian Dis, 2006, 50: 380-385.
    Fadly AM, Nair V. Leukosis/Sarcoma Group. In: Diseases of Poultry. ed.12th. Saif Y M,
    Fadly A M, Glisson J R, McDougald L R, Nolan L K, and Swayne D E. eds. 2008, Blackwell Publishing, Ames. pp. 514-568.
    Fadly AM, RL Witter. Comparative evaluation of in vitro and in vivo assays for the detection of reticuloendotheliosis virus as a contaminant in a live virus vaccine of poultry. Avian Dis, 1997, 41: 695-701.
    Fadly AM, Smith EJ. Isolation and some characteristics of a subgroup J-like avian leukosis virus associated with myeloid leukosis in meat-type chickens in the United States. Avian Dis,1999, 43: 391-400.
    Fadly AM, Smith EL. An overview of subgroup J-like avian leucosis virus infection in broiler flocks in the United States. Proceedings of the avian tumor viruses symposium, July 21st, 1997, Reno, Nevada. American Association of Avian Pathologists, p54-57.
    Fadly AM. Avian leukosis virus (ALV) infection, shedding, and tumors in maternal ALV antibody-positive and -negative chickens exposed to virus at hatching. Avian Dis, 1988, 32 (1): 89-95.
    Franklin RB, CY Kang, K Min-Min Wan, et al. Transformation of chick embryo fibroblasts by reticuloendothelia virus. Virol, 1977, 83: 313-321.
    Friesen B, H Rubin. Some physicochemical and immunological properties of an avian leukosis virus (RIF). Virol, 1961, 15: 387-396.
    Frisby DP, RA Weiss, M Roussel, et al. The distribution of endogenous chicken retrovirus sequences in the DNA of galliform birds does not coincide with avian phylogenetic relationships. Cell, 1979, 17: 623-634.
    Fujita DJ, Chen YC, Friis RR, et al. RNA tumor viruses of pheasants: characterization of avian leukosis subgroups F and G. Virol, 1974, 60: 558-571.
    Fung YKT, LB Crittenden, HJ Kung. Orientation and position of avian leucosis virus DNA relative to the cellular oncogene c-mycin B-lymphoma tumors of highly susceptible 1515x chickens. J Virol, 1982, 44: 742-746.
    Fung YKT, WG Lewis, HJ Kung, et al. Activation of the cellular oncogene c-erbB by LTR insertion: molecular basis for induction of erythro blastosis by avian leucosis virus.Cell, 1983, 33: 357-368.
    Gavora JS, U Kuhnlein, LB Crittenden, et al. Endogenous viral genes: association with reduced egg production rate and egg size in white leghorns. Poult Sci, 1991, 70: 618-623.
    Gilden RV. The molecular biology of animal viruses, 1977, p.435-542.
    Gingerich E, Porter R E, Lupiani B, et al. Diagnosis of myeloid leukosis induced by a recombinant avian leukosis virus in commercial white leghorn egg laying flocks. Avian Dis, 2002, 46(3): 745-748.
    Gong M, Semus HL, Bird KJ. Differential selection of cells with proviral c-myc and c-erbB integrations after avian leukosis virus infection. J Virol. 1998, 72 (7): 5517-5525.
    Guo W, Winistorfer SC, Stoltzfus CM. Selective inhibition of splicing at the avian sarcoma virus src 3 splice sits by direct-repeat posman-scriptional elements. J Virol, 2000, 74: 8513-8523.
    Hanafusa T, H Hanafusa, CE Metroka, et al. Pheasant virus: New class of ribodeoxyvirus. Proc Natl Acad Sci, 1976, 63: 401-413.
    Hanafusa T, H Hanafusa. Isolation of leukosis-type virus from pheasant embryo cells:possible presence of viral genes in cells. Virol, 1973, 51: 247-251.
    Hertig C, BE Coupar, AR Gould, et al. Field and vaccine strains of fowl pox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis virus. Virol, 1997, 235: 367-376.
    Himly M, DN Foster, I Bottoli, et al. The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virol, 1998, 248: 295-304.
    Hu WS, Temin HM. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc. Natl. Acad. Sci. U. S. A. 1990a, 87: 1556-1560.
    Hu WS, Temin HM. Retroviral recombination and reverse transcription. Science, 1990b, 250: 1227-1233.
    Hughes SH, JJ Greenhouse, CJ Petropoulos, et al. Adaptor plasmids simplify the insertion of foreign DNA into helper independent retroviral vectors. J Virol, 1987, 61: 3004-3012.
    Hunt HD, Lee LF, Fosetr D. A genetically engineered cell line resistant to Subgroup J avian leukosis virus infection (C/J). Virol, 1999, 264: 205-10.
    Hunter E. Amino-terminal amino acid sequence of p10, the fifth major gag polypeptide of avian sarcoma and leukosis virus. J Virol, 1983, 45: 885-888.
    J Sambrook, E F Fritsch, T Maniatis著.金东雁,黎孟枫等译.分子克隆实验指南.第二版.北京:科学出版社, 1996.
    Johnson JA, W Heneine. Characterization of endogenous avian leukosis viruses in chicken embryonic fibroblast substrates used in production of measles and mumps vaccines. J Virol, 2001, 75: 3605-3612.
    Kawamura H, T Wakabayashi, S Yamaguchi, et al. Inoculation experiment of Marek’s disease vaccine contaminated with a reticuloendotheliosis virus. Natl. Inst. Anim. Health Q (Tokyo). 1976, 16: 135-140.
    Kim Y, Gharaibeh SM, Stedman NL, et al. Comparison and verification of quantitative competitive reverse transcription polymerase chain reaction (QC-RT-PCR) and real time RT-PCR for avian leukosis virus subgroup J. J Virol, 2002 , 102 (1-2): 1-8.
    Kung HJ, Boerkel, Coffin JM. Retroviral mutagenesis of cellular oncogene: a review with insights into the mechanism of insertional activation. Curr Top Mirobiol Immunol. 1991, 171: 1-25.
    Landman WJ, Wilgen JL, Koch G, et al. Avian leukosis virus subtype J in ovo-infected specific pathogen free broilers harbour the virus in their feathers and show feather abnormalities. Avian Pathol, 2001, 30 (6): 675-684.
    Lupiani B, Hunt H, Silva R, et al. Identification and characterization of recombinantsubgroup J avian leukosis viruses (ALV) expressing subgroup A ALV envelope. Virol, 2000, 276: 37-43.
    Lupiani B, Pandiri AR, Mays J. Molecular and biological characterization of a naturally occurring recombinant subgroup B avian leukosis virus with a subgroup J-like long terminal repeat. Avian Dis, 2006, 50: 572-578.
    Mayer L, Sauter M, Racz A, et al. Analmost-intact human endogenous retrovirus K on human chromosome 7. Nat Genetic, 1999, 21 (3): 257 -258.
    Mays JK, Pandiri AR, Fadly AM. Susceptibility of various parental lines of commercial white leghorn layers to infection with a naturally occurring recombinant avian leukosis virus containing subgroup B envelope and subgroup J long terminal repeat. Avian Dis, 2006, 50: 342-347.
    Morgan HR. Avian leukosis-sarcoma virus antibodies in wildfowl, domestic chickens, and man in Kenya. Proc Soc Exp Biol Med, 1973, 144:1-4.
    Nakamura K, Ogiso M, Tsukamoto, et al. Lesions of bone and bone marrow in myeloid leucosis occurring naturally in adult broiler breeders. Avian Dis, 2000, 44(1): 215-221.
    Neiman PE. Retrovirus-induced B cell neoplasia in the bursa of Fabricius. Adv Immun, 1994, 56: 467-84.
    Neumann U, Berrocal A, Fadly AM. Morphological evidence for avian leukosis virus (ALV) subgroup J avian myelocytomatosis observed in broiler parent flocks in Costa Rica. Proceedings of the International Symposium on ALV-J and other avian retroviruses. Germany: Rauischolzhauzen, 2000, 181-183.
    Pandiri AR, Gimeno IM, Reed WM, et al. Distribution of viral antigen gp85 and provirus in various tissues from commercial meat-type and experimental White Leghorn Line 0 chickens with different subgroup J avian leukosis virus infection profiles. Avian Pathol, 2008, 37 (1): 7-13.
    Pandiri AR, Reed WM, Mays JK, et al. Influence of strain, dose of virus, and age at inoculation on subgroup J avian leukosis virus persistence, antibody response, and oncogenicity in commercial meat-type chickens. Avian Dis, 2007, 51 (3): 725-732.
    Payne LN, GiliesPie AM, Howes K. Recovery of acutely transforming viruses from myeloid leueosis induced by HPRS-103 strain of avian leukosis virus. Avian Dis, 1993, 37: 438-450.
    Payne LN, AE Holmes, K Howes, et al. Further studies on the eradication and epizootiology of lymphoid leukodid virus infection in a commercial strain of chickens. Avian Pathol, 1982, 11: 154-162.
    Payne LN, AM Gillespie, K Howes. Myeloid leukaemogenicity and transmission of the HPRS-103 strain of avian leukosis virus. Leukemia, 1992, 6: 1167-1176.
    Payne LN, AM Gillespie, K Howes. Unsuitability of chicken sera for detection of exogenous ALV by the group-specific antigen ELISA. Vet Rec, 1993, 132: 555-557.
    Payne LN, Brown SR, Bumstead K, et al. A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol, 1991, 72: 801-807.
    Payne LN, Fadly AM. Leucosis/sarcoma group in diseases of poultry (10th ed).Iowa State University Press. 1997, 414-446.
    Payne LN, Howes K, Gilespie AM, et al. Host range of Rous sarcoma virus pseudotype RSV (HPRS-103) in 12 avian species: support for a new avian retrovirus envelope subgroup J. J Gen Virol, 1992, 73: 2995-2997.
    Payne LN, N Bumstead. Theoretical considerations on the relative importance of vertical and horizontal transmission for the maintenance of infection by exogenous avian lymphoid leukosis virus. Avian Pathol, 1982, 11: 547-553.
    Payne LN. HPRS-103: retrovirus strikes back. The emergence of subgroup J avian leucosis virus. Avian Pathol, 1998a, 27: 36-45.
    Payne LN. Retrovirus-induced disease in poultry. Poult Sci, 1998b, 77: 1204-1212. Pepinsky RB. Structure and processing of the p2 region of avian sarcoma and leukosis virus. J Virol, 1986, 58: 50-58.
    Peter M Chesters, Lorraine P Smith, Venugopal Nair. E (XSR) element contributes to the oncogenicity of avian leukosis virus (subgroup J). J Gen Virol, 2006, 87, 2685-2692.
    Purehase HG, Okazaki W, Vogt PK, et al. Oncogenicity of avian leukosis viruses of different subgroups and of mutants of sarcoma viruses. Infect Immun, 1977, 15 (2): 423-428.
    Qin A, Lee LF, Fadly AM. Development and characterization of monoclonal antibodies to subgroup J avian leukosis. Avian Dis, 2001, 45: 938-945.
    Qin AJ, Wu YP, Lucy L, et al. Development and characterization of monoclonal antibodies to avian leukosis virus subgroup J.poster in 136th American Veterinary Medicine Association annual convention New Orenh, 1999, July, 11 -14.
    Regenmortel MHV, CM Fauquet, DHL Bishop, et al. Virus Taxonomy Classification and Nomenclature of Virus. Academic Press: New York, 2000, 1162.
    Rong L, Edinger A, Bates B. Role of basic residues in the subgroup-determining region of the subgroup A avian sarcoma and leukosis virus envelope in receptor binding and infection. J Virol, 1997, 71: 3458-3465.
    Rubin H, A Cornelius, L Fanshier. The pattern of vongenital transmission of an avian leukosis virus. Proc Natl Acad Sci USA, 1961, 47: 1058-1060.
    Rubin H, L Fanshier, A Cornelius, WF Hughes. Tolerance and immunity in chicken after congential and contact infection with an avian leukosis cirus. Virol, 1962, 17: 143-156.
    Rubin H. Genetic control of cellular susceptibility to pseudotypes of Rous sarcoma virus. Virol, 1965, 26: 270-276.
    Ryden TA, K Beemon. Avian retroviral long terminal repeats bind CCAAT/enhancer- binding protein. Mol Cell Biol. 1989, 9:1155–1164.
    Sacco MA, Howes K, Smith LP, et al. Assessing the roles of endogenous retrovirus EAV-HP in avian leukosis virus subgroup J emergence and tolerance. J Virol, 2004a, 78: 10525-10535.
    Sandelin K, T Estola. Occurrence of different subgroup of avian leukosis virus in Finnish poultry. Avian Pathol, 1974, 3:159-168.
    Schaefer-Klein J, I Givol, EV Barsov, et al. The ev-0 derived cell line DF-1 supports the efficient replication of avian leukosis sarcoma viruses and vectors. Virol, 1998, 248: 305-311.
    Schwartz DE, Tizard R, Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell, 1983, 32(3):853-69.
    Shioda T, Levy L, Chen Mayer C. Small amino acid change in the V3 hypervariable region of gp120 can affect the T cell line and macrophage tropism of human immunodeficiency virus type I. Proc Nati Acad Sci, 1992, 89: 9434-9438.
    Silva RF, Fadly AM, Hunt HD. Hypervariability in the envelope genes of subgroup J avian leukosis viruses obtained from different farms in the United States. Virol, 2000, 272: 106-111.
    Silva RF, Fadly AM, Taylor SP. Development of a polymerase chain reaction to differentiate avian leukosis virus (ALV) subgroup: detection of an ALV contaminant in commercial Marek’s disease vaccines. Avian Dis, 2007, 51: 663-667.
    Smith EJ,Borjasteh J,Naughton J. The CARI gene encoding a cellular receptor specific of
    Subgroup B and D avian lekuosis viruses maps to the chieken tvb locus. J Virol, 1998, 72: 3501-3503.
    Smith LM, AA Toye, K Howes, et al. Novel endogenous retroviral sequences in the chicken genome closely related to HPRS-103 (subgroup J) avian leukosis virus. J Gen Virol, 1999, 80: 261-268.
    Smith LM, Brown SR, Howes K, et al. Development and application of polymerasechain reaetion(PCR)tests for the detection of subgroup J avian leukosis virus.Virus Res, 1998, 54 (1): 87-98.
    Smith, EJ. Endogenous avian leukosis viruses. In G.F. DeBoer (ed.). Avian Leukosis. Martinus Nijhoff. Boston, MA, 1987, pp. 101-120.
    Spackman E, Pope CR, Cloud SS, et al. The effects of avian leukosis virus subgroup J on broiler chicken performance and response to vaccination. Avian Dis, 2003, 47 (3): 618-26.
    Spencer JL, B Benkel, M Chan, et al. Evidence from virus closely related to avian myeloblastosis-associated virus type 1 in a commercial stock of chickens. Avian Pathol, 2003, 32: 383-390.
    Spencer JL, JS Gavora, RS Gowe. Lymphoid leukosis virus: Natural transmission and nonneoplastic effects. Cold Spring HARB Conf Cell Prolifer, 1980, 7: 553-564.
    Spencer JL, LB Crittenden, BR Burmester, et al. Lymphoid leukosis: Interrelations among virus infections in hens, eggs, embryos, and chicks. Avian Dis, 1977, 21: 331-345.
    Sun SH, Cui ZZ. Epidemiological and pathological studies of subgroup J avian leukosis virus infectious in Chinese local“yellow”chicken. Avian Pathol, 2007, 36: 221-226.
    Tarn W, Ben-Yehuda D, Hayward WS. Bic a novel gene activated by proviral insertions in avian leukosis virus-induced lymnphomas, is likely to function through its noncoding RNA. Mol Cell Biol, 1997, 17:1490-1502.
    Tereba A, LB Crittenden, SM Astrin. Chromosomal localization of three endogenous retrovirus loci associated with virus production in white leghorn chickens. J Virol, 1981, 39: 282-289.
    Troesch CD, PK Vogt. An endogenous virus from Lophortyx quail is the prototupe for envelope subgroup I of avian leukosis retroviruses. Virol, 1985, 143: 595-602.
    Venugoal K, Smith L M, Howes K, et al. Antigenic variants of J subgroup avian leukosis virus: sequence analysis reveals multiple changes in env gene. J Gen Virol, 1998, 79: 757-766.
    Venugopal K, Howes K, Barron GS. Recombinant env-gp85 of HPRS-103 (Subgroup J) avian leucosis virus: Antigenic characteristics and usefulness as a diagnostic reagent. Avian Dis, 1997, 41: 283-288.
    Venugopal K, Howes K, Flannery DM. Isolation of a cutely transforming subgroup J avian leukosis viruses that induce erythroblastosis and myelocytomatosis. Avian Pathol, 2000, 29, 327-332
    Vogt VM. Primary structure of p19 species of avian sarcoma and leukosis virus. J Virol, 1985, 56: 31-39.
    Weiss RA. Cellular receptors and glycoproteins involved in retrovirus entry. The Retroviridae. 1992, II: 1-108.
    Weiss RA, N Teich, H Varmus, et al. RNA Tumor Viruses, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982.
    Williams SM, Reed WM, Bacon LD, et al. Response of white leghorn chickens of various genetic lines to infection with avian leukosis virus subgroup J. Avian Dis, 2004, 48 (1): 61-67.
    Witter RL, Bacon LD, Hunt HD, et al. Avian leukosis virus subgroup J infection profiles in broiler breeder chickens: association with virus transmission to progeny. Avian Dis, 2000, 44 (4): 913-31.
    Xu B, Dong W, Yu C, et al. Occurrence of avian leukosis virus subgroup J in commercial layer flocks in China. Avian Pathol, 2004, 33: 13-17.
    Young JA T. Avian leukosis virus receptor inetacrtions. Avina Pathol, 1998, 27: 21- 2578.
    Zachow KR, KF Conklin. CArG, CCAAT, and CCAATlike protein binding sites in avian retrovirus long terminal repeat enhancers. J Virol, 1992, 66: 1959-1970.
    Zavala G, Cheng S, Jackwood MW. Molecular epidemiology of avian leukosis virus subgroup J and evolutionary history of its 3' untranslated region. Avian Dis, 2007, 51 (4): 942-53.
    Zavala G, Cheng S. Detection and characterization of avian leukosis virus in Marek’s disease vaccines. Avian Dis, 2006a, 50: 209-215.
    Zavala G, Cheng S. Experimental infection with avian leukosis virus isolated from Marek's disease vaccines. Avian Dis, 2006b, 50 (2): 232-237.
    Zhang QC, Zhao DM, Guo HJ, et al. Isolation and Identification of a Subgroup A avian leukosis virus from imported meat-type grand-parent chicken. Virologica Sinica, 2010, 25 (2): 130-136.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.