硫族化合物纳米晶的合成与光学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于半导体纳米晶表现出特殊的光电性质,特别是硫族化合物纳米晶在光电子器件、生物、医学等领域有着广泛的应用。我们通过优化合成路线,制备高质量、单分散、形貌可控的半导体纳米晶,探索合成条件对纳米晶光学性质的可调性,使其可以在各个领域得到广泛的应用。本论文研究了水相和油相中硫族化合物纳米晶的合成与光学性质。利用常规的TEM、HRTEM、XRD、XPS、FTIR测试方法对所合成的材料进行表征,并研究不同的合成条件对产物光学性质的影响,探索材料的生长过程。
     1利用巯基乙酸为稳定剂在水相中合成出单分散的立方相CdTe纳米晶,粒径小于10nm。研究显示不同的反应条件制备的产物其光学性能也不同,随着反应时间、溶液PH值和Te/Cd比值的增加,CdTe发射峰会发生红移。在此基础上,我们研究了不同的体系,包括巯基丙酸(MPA), L-半胱氨酸(L-Cys),3-巯基-1,2-丙二醇(TG)作为稳定剂,并与巯基乙酸(TGA)体系相比较,研究了不同稳定剂对纳米晶的形貌、生长过程、稳定性以及光学性质的影响。实验结果表明,受稳定剂自身官能团性质和空间位阻的影响,用TGA、MPA、L-Cys、TG得到的CdTe纳米晶的吸收和发射峰位不同。用L-Cys做稳定剂时,纳米晶生长最快,产物粒径变大,从而得到最长的吸收波长和发射波长;用TG做稳定剂时,反应速度最慢,得到的纳米晶的吸收波长和发射波长最短。研究表明稳定剂中除了巯基对纳米晶表面有钝化作用外,稳定剂中的其它官能团也会控制纳米晶的生长从而影响纳米晶的尺寸和光学性质。稳定剂的性质也可以影响纳米晶的形貌和稳定性,用TGA合成的球状纳米晶比L-Cys包覆的纳米棒稳定性要好。
     2制备了合金型纳米晶ZnxCd1-xTe,并研究了不同制备条件对合金型纳米晶的光学性质的影响,及其在光伏器件中的应用。
     (?)在水相中合成出不同组分的ZnxCd1-xTe纳米晶,用XRD、TEM、HRTEM、XPS表征,并用Vegard定律证明了产物为合金结构。纳米晶分散性好,典型产物的粒径为5.6nm。
     (?)不同组分的合金纳米晶ZnxCd1-xTe随着Zn含量的增加,吸收光谱和发射光谱逐渐发生蓝移,合金纳米晶的禁带宽度随Zn/Cd比例的变化而改变。当Zn的浓度为30%时,纳米晶的发光量子效率达到最大。随着反应时间和反应温度的增加,合金纳米晶的粒径逐渐变大,吸收和发射光谱发生规律的红移现象,所有光谱都具备窄对称的良好发光性质。
     (?)将粒径小于10nm的ZnCdTe纳米晶掺到MEH-PPV:C60中,制备成器件结构为ITO/PEDOT:PSS/MEH-PPV:C60(+ZnCdTe)/Al的光伏器件。与纯的MEH-PPV器件和MEH-PPV:C60器件相比较,器件掺入合金纳米晶后,增强了器件的光电流响应。当ZnCdTe掺杂浓度不高于40%时,器件ITO/PEDOT-PSS/MEH-PPV:C60(+ZnCdTe)/Al的短路电流密度、开路电压和能量转换效率等都随着纳米晶浓度的增加而增加;当纳米晶含量高于70%时,电池各个性能参数急剧下降。器件性能在ZnCdTe的掺杂浓度为40%时达到最佳,此时与未掺杂的器件相比,短路电流密度增加三倍,电池的能量转换效率增加到二倍。
     3采用简单的“一锅法”成功的合成了单分散、高质量的Cu2S纳米球和纳米片。实验方法简单且可控性强,避免了传统方法中提前制备含铜有机前驱物的复杂性。
     令在高温和低温下,分别研究了纳米晶的生长过程。用XRD、FTIR及理论计算证明了反应早期中间产物硫醇铜盐的生成。早期阶段生成的硫醇铜盐逐渐分解促进Cu2S的成核和生长过程,随着反应温度的升高或者反应时间的延长,微小的Cu2S纳米球(3-6 nm)逐渐转变成纳米片。
     (?)改变合成条件例如反应温度、反应时间、表面活性剂的量、反应前驱物的浓度、多次注入反应物等可以调节Cu2S纳米片的半径、厚度和长径比。反应温度影响硫醇铜盐的分解速度和效率、反应单体的浓度、反应单体与纳米晶表面间的传质速率、纳米晶的成核速度和生长等进而影响最终产物的尺寸;TOPO和十二硫醇的双稳定剂作用,使得产物尺寸随着TOPO量的增加而增大;采用高浓度和低浓度的反应前驱物,都可得到单分散性产物,变化规律符合LaMer模型。210℃下多次注入反应物,有效的增大了Cu2S纳米片尺寸可调范围。实验中制备的Cu2S纳米片的带隙可以在1.36-1.53 eV调节,产物具备宽的吸收带,使此材料可能在光伏太阳能电池方面存在潜在的应用前景。
     4通过优化合成路线,改变稳定剂、反应溶剂、反应物种类、反应温度等条件可以得到多种形貌的六方纤维锌矿结构的CuInS2纳米晶。
     令用无机金属铜铟盐做反应物,注入硫源之前加入TOPO做稳定剂,TOPO的存在不利于得到CuInS2纳米晶;注入硫源之后加入TOPO做稳定剂,得到六方纤维锌矿的片状CuInS2纳米晶。不加入TOPO时,随着硫源的热注入温度从60℃升高到160℃,纳米晶形貌从三角形占主体的颗粒转变成大的纳米片,并且晶体结构由四方晶相转变成六方晶相。
     令用无机金属铜铟盐做反应物,油胺做稳定剂,十八碳烯做溶剂的条件下,可以得到片状六方纤维锌矿CuInS2纳米晶。随着反应温度的增加,纳米片平均尺寸变大。
     (?)用有机金属铜铟盐做反应物,油胺做稳定剂和反应溶剂,高温160℃下热注入硫源得到CuInS2纳米片;室温下混合硫源和反应有机金属盐,可以得到分散性好的CuInS2纳米颗粒。
     令用有机金属铜铟盐做反应物,十二硫醇做稳定剂和反应溶剂,逐渐升高反应温度,CuInS2纳米晶从蝌蚪状纳米晶-纳米线-纳米棒发生形貌的转变。我们可以控制反应温度,简单有效地控制一维CuInS2纳米晶的形貌。初步研究了CuInS2纳米晶的自组装形成机理,初始反应生成的纳米颗粒在不同的反应温度下组装成不同形貌的一维结构。得到的一维CuInS2纳米晶都为六方纤维锌矿结构,吸收光谱覆盖了从可见到红外光区,预示着这种方法合成的样品在光伏器件领域存在潜在的应用前景。
In this dissertation, the work is mainly focused on the synthesis and optical properties of chalcogenides nanomaterial fabricated in aqueous and oil phase. The nanomaterials are characterized by the measurement of TEM、HRTE2M、XRD、XPS、FTIR. We also studied the effect of the experimental conditions on optical properties of nanomaterials and the growth mechanism.
     1 CdTe nanocrystals was synthesized in aqueous solution with thioglycolic acid (TGA) as stabilizer, and the size is less than 10nm. The optical properties of products can be influenced by the reaction conditions. The emission peak shifts to long wavelength with increase in reaction time、PH value and the ratio of Te/Cd. Basing on the investigation on TGA-stabilized system, L-cysteine hydrochloride(L-Cys), 3-mercaptopropionic(MPA) and 1-thioglycerol(TG) were chosen as the stabilizers to investigate the effect of the stabilizers on the morphology, growth, stability and optical properties. CdTe nanocrystals capped with different stabilizers exhibit distinct UV-Vis absorption spectra and PL spectra. It is due to the different functional groups and stereo-hindrance effect. UV-Vis absorption spectra and PL spectra from CdTe nanocrystals obtained using L-Cys as the stabilizer shift to the longest wavelengths. That using TG as the stabilizer displays the shortest wavelengths. Besides sulfhydryl group (-SR) of all stabilizers can combine with Cd2+to form complexes, the other substituents of the stabilizer also affect the size and optical properties of CdTe nanocrystals. Moreover, the stability and morphology can also been effected by the property of stabilizer. The TGA-stabilized nanospheres are more stable than L-Cys-stabilized nanorods.
     2 We successfully synthesized ZnxCd1-xTe alloyed nanocrystals in aqueous solution with TGA as the stabilizer, at lower temperature by using a facile route. We studied the effect of the reaction conditions on optical properties of alloyed nanocrystals and probed into their application in photovoltaic devices.
     (?)ZnxCd1-xTe alloyed nanocrystals with different compositions were synthesized in aqueous solution with thioglycolic acid (TGA) as stabilizer. The synthesized nanocrystals were characterized by XRD, TEM, HR-TEM and XPS. The structure of alloyed nanocrystals was confirmed by Vegard law. The ZnxCd1-xTe alloyed nanocrystals have a good dispersity with typical size of 5.6nm.
     (?)Composition-dependent absorption and PL spectra shift to short wavelength with increasing Zn content due to the change of band gap. The highest PL quantum yield (QY) of ZnxCd1-xTe alloyed nanocrystals is achieved when the concentration of Zn is 30%. The particle size increases with raised refluxing time and synthesis temperature, which led to the red shift of absorption and PL spectra. All the samples display a narrow symmetric-band and few electronic defect PL properties.
     (?) We blend the alloyed nanocrystals (<10nm) with the MEH-PPV:C6o to prepare photovoltaic devices. The structure of device is ITO/PEDOT:PSS/MEH-PPV:C6o(+ZnCdTe)/Al. Comparing the spectral response of photocurrent of the MEHPPV:C6o(+ZnCdTe) nanocomposite device with that of the devices based on MEH-PPV:C6o and pristine MEH-PPV, one can find that the nanocomposite device exhibits an enhanced photocurrent. When the weight ratio is not higher than 40%, the short current density, the open-circuit voltage and the power conversion efficiency increased with the weight ratio of ZnCdTe nanocrystals raised. The characteristics of the devices degraded when the concentration of ZnCdTe nanocrystals is too high up to 70%. The power conversion efficiency is doubled and the short current density is close to triple by blending ZnCdTe nanocrystals with the concentration of 40%.
     3 Mono dispersed copper(I) sulfide (Cu2S) nanodisks with high quality were synthesized by using a simple one-pot colloidal process, in which no pre-prepared organometallic precursors are required.
     (?) We studied the growth process of Cu2S nanocrystals at low and high temperature, respectively. Early product was characterized by XRD and FTIR and confirmed by theoretical arithmetic. Copper thiolate forms at the beginning of the reaction which effectively acts as a precursor whose decomposition leads to further nucleation and growth of Cu2S nanocrystals. That tiny naodots(3-6 nm) can gradually turn into nanodiks with the reaction temperature or time increased.
     (?) The diameter, thickness, aspect ratio, and optical property of the Cu2S nanodisks can be adjusted systematically by changing the reaction time, the amount of surfactants, the concentration of the precursors and the frequency of multiple injections. The temperature can affect the stability of the intermediate complexes, the amount of monomer species, the mass transfer rate of the monomers to the surface of nanocrystals and the rates of both nucleation and growth. The size of nanocrystal is therefore various at different reaction temperature. Both TOPO and dodecanethiol are surfactants that direct the anisotropic growth of Cu2S nanodisks. As the amount of TOPO is increased, the size of nanodisks raised accordingly. Increasing the concentration of the precursors leads to still monodisperse samples with smaller size, which is consistent with the classic LaMer model. The adjustable range of size can be widened efficiently by multiple injections. The band gap of as-synthesized Cu2S nanodisks can be tuned in the range of 1.36-1.53 eV. The nanodisks show a broad absorption band, making them potential candidates for applications in photovoltaic devices.
     4 Wurtzite CuInS2 nanocrystals with different morphologies were synthesized by optimize the conditions containing the stabilizer, solvent, reaction temperature and precursors.
     (?) Using the inorganic metal salts as the precursors, the addition of TOPO before the injection of dodecanethiol is unfavorable for the formation of CuInS2 nanocrystals. Wurtzite CuInS2 nanocrystals can be synthesized with the addition of TOPO after the injection of dodecanethiol. CuInS2 nanoparticles can turn into large nanodisks with the increased injected temperature of dodecanethiol from 60℃to 160℃without the addition of TOPO, while the structure of CuInS2 nanocrystals can be changed from tetragonal to hexagonal pattern.
     (?) Using inorganic metal salts as the precursors, wurtzite CuInS2 nanodisks can be synthesized with oleylamine as the stabilizer and ODE as the solvent. The size of nanodisk increases with the raised reaction temperature.
     (?) Using the organic metal salts as the precursors, CuInS2 nanodisks can be achieved by the injection of dodecanethiol at 160℃with oleylamine as the stabilizer and solvent. But CuInS2 nanoparticles are synthesized with good dispersity when dodecanethiol is mixed with organic metal salts at room temperature.
     (?) Using organic metal salts as the precursors, the morphologies of CuInS2 nanocrystals transform in the orders of tadpole-like structure, nanowires and nanorods as the increase of temperature with dodecanethiol as the stabilizer and solvent. We can effectively control the morphology by change the reaction temperature. We studied the "oriented attachment" machanism at different temperature. All one-dimensional CuInS2 nanocrystals are assigned to hexagonal wurtzite pattern. The absorption spectra can cover from visible to infrared region, which make the materials have potential applications on photovoltaic devices.
引文
[1]K. Terabe, T. Nakayama, T. Hasegawa, M. Aono, Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring, Appl. Phys. Lett., 2002,80:4009-4011.
    [2]S. R. Ovshinsky, Reversible Electrical Switching Phenomena in Disordered Structures, Phys. Rev. Lett.,1968,21:1450-1453.
    [3]J. Hajto, A. E. Owen, S. M. Gage, A. J. Snell, Quantized electron transport in amorphous-silicon memory structures, Phys. Rev. Lett.,1991,66:1918-1921.
    [4]M. E. Lunnon and D. W. Greve, Microstructure of Programmed n+pn+Polycrystalline Silicon Antifuses, J. Appl. Phys.,1983,54:3278-3281.
    [5]V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature,1994,370:354-357.
    [6]B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Electroluminescence from CdSe quantum-dot/polymer composites, Appl. Phys. Lett.,1995,66:1316-1318.
    [7]S. Coe, W. K. Woo, M. Bawendi, V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature,2002,420:800-803.
    [8]A. H. Muller, M. A. Petruska, M. Achermann, D. J. Werder, E. A. Akhadov, D. D. Koleske, M. A. Hoffbauer, V. I. Klimov, Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers, Nano Lett.,2005,5:1039-1044.
    [9]J. L. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. H. Niu, I. K. Ding, J. D. Luo, B. Q. Chen, A. K. Jen, D. S. Ginger, Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer, Nano Lett.2006,6:463-467.
    [10]N. D. Kumar, M. P. Joshi, C. S. Friend, P. N. Prasad, R. Burzynski, Organic-inorganic heterojunction light emitting diodes based on poly(p-phenylene vinylene)/cadmium sulfide thin films, Appl. Phys. Lett.,1997,71:1388-1390.
    [11]A. L. Rogach, N. Gaponik, J. M. Lupton, C. Bertoni, D. E. Gallardo, S. Dunn, N. L. Pira, M. Paderi, A. Eychmuller, et al. Light-emitting diodes with semiconductor nanocrystals, Angew. Chem. Int. Ed.,2008,47:6538-6549.
    [12]N. C. Greenham, X. Peng, A. P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Phys. Rev. B,1996,54:17628-17637.
    [13]D. X. Zhu, H. Ye, H. Y. Zhen, X. Liu, Improved performance in green light-emitting diodes made with CdSe-conjugated polymer composite, Synthetic Meta,2008,158:879-882.
    [14]Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Tian, M. S. Liu, J. Zhao, J. A. Bardecker, I. J. L. Plante, D. S. Ginger, A. K. Y. Jen, Improved performance from multilayer quantum dot light-emitting diodes via thermal annealing of the quantum dot layer, Adv. Mater.,2007,19:3371-3376.
    [15]S. Coe, W. K. Woo, J. S. Steckel, M. Bawendi, V. Bulovic, Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices, Org. Electron.,2003,4:123-130.
    [16]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanoparticles as fluorescent biological labels, Science,1998,281:2013-201.
    [17]K. Sato, Y. Tachibana, S. Hattori, T. Chiba, S. Kuwabata, Polyacrylic acid coating of highly luminescent CdS nanocrystals for biological labeling applications. Journal of Colloid and Interface Science,2008,324:257-260.
    [18]Z. Lin, S. Cui, H. Zhang, Q. Chen, B. Yang, X. Su, J. Zhang, Q. Jin, Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction, Analytical Biochemistry,2003,319:239-243.
    [19]J. Lee, A. O. Govorov, N. A Kotov, Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon-Exciton Interactions, luminescence Enhancement and Collective Effects, Nano Lett., 2004,4:2323-2330.
    [20]J. S. Li, S. Schachermeyer, Y. Wang, Y. D. Yin, W. W. Zhong, Detection of MicroRNA by Fluorescence Amplification Based on Cation-Exchange in Nanocrystal, Analytical Chemistry, 2009,81:9723-9729.
    [21]H. W. Hillhouse, M. C. Beard, Solar cells from colloidal nanocrystals:fundamental, material, devices, and economics, Current Opinion in Colloid & Interface Science,2009,14:245-259.
    [22]D. Q. Yun, W. Feng, H. C. Wu, K. Yoshino, Efficient conjugated polymer-ZnSe and-PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization, Solar Energy Materials and Solar Cells,2009,93:1208-1213
    [23]D. S. Ginger, N. C. Greenham, Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals, Phys. Rev. B,1999,59:10622-10629.
    [24]K. P. S. Parmar, E. Ramasamy, J. W. Lee, J. S. Lee, A simple method for producing mesoporous anatase TiO2 nanocrystals with elevated photovoltaic performance, Scripta Materialia,2010,62: 223-226
    [25]B. R. Saunders, M. L. Turner, Nanoparticle-polymer photovoltaic cells, Adv. Coll. Interf. Sci., 2008,138:1-23.
    [26]O. F. Yilmaz, S. Chaudhary, M. Ozkan, A hybrid organic-inorganic electrode for enhanced charge injection or collection in organic optoelectronic devices, Nanotechnology,2006,17: 3662-3667.
    [27]S. Gunes, K. P. Fritz, H. Neugebauer, N. S. Sariciftci, S. Kumar, G. D. Scholes, Hybrid solar cells using PbS nanocrystals.2007,91:420-423.
    [28]A. Henglein, Small-Particle Research:physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev.,1989,89:1861-1873.
    [29]L. Brus, Electronic wave functions in semiconductor clusters:experiment and theory, J. Phys. Chem.,1986,90:2555-2560.
    [30]C. B. Murray, D. J. Norris, Bawendi M. G., Synthesis and characerization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc.,1993,113: 8706-8715.
    [31]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004:616-617.
    [32]R. J. Bandaranayake, G. W. Wen, J. Y. Lin, et al. Structural phase-behavior in Ⅱ-Ⅵ semiconductor nanoparticles, Appl. Phys. Lett.,1995,67:831-833.
    [33]A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem.,1996,100:13226-13239.
    [34]张立德,牟季美.纳米材料和纳米结构.第一版,北京:科学出版社,2001:11-13.
    [35]张立德,牟季美.纳米材料学.辽宁科学技术出版社,1994:150-162.
    [36]J. S. Andrew, Quantum dots as luminescent probes in biological systems, Current. Opin. Solid. Mater. Sci.,2002,6:365-370.
    [37]刘恩科,朱秉升,罗晋生等.半导体物理学.第六版,北京:电子工业出版社,2003:321-354
    [38]E. B. Robert, M. S. Andrew, S. M. Nie, Quantum dots in biology and medicine, Phys. E,2004, 25:1-12.
    [39]徐叙瑢.发光材料与显示技术.北京:化学工业出版社,2002:21-56.
    [40]M. A. Hines, P. Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem.,1996,100:468-471.
    [41]J. Marcus, N. Jovan, J. E. Randy, J. N. Arthur, Rumbles Garry, Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions, J. Phys. Chem. B,2003,107: 11346-11352.
    [42]Chan W. C., Nie S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science,1998,281:2016-2018.
    [43]J. N. Demasa, G. A. Crosby, Article Measurement ofphotoluminescence quantum yields, J. Phys. Chem.,1971,75:991-1024.
    [44]H. Bao, Y. Gong, Z. Li, M. Gao, Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals:Toward Highly Fluorescent CdTe/CdS Core-Shell Structure, Chem. Mater.,2004,16:3853-3859.
    [45]D. N. Srivastava, N. Perkas, A. Gedanken, et al. Sonochemical synthesis of mesoporous iron oxide and accouts of its magnetic and catalytic properties, J. Phys. Chem. B,2002,106: 1878-1883.
    [46]李玲,向航.功能材料与纳米技术.北京:化学工业出版社,2002:20-50
    [47]G. H. Wang, H. Fuchs, R. Laschinski, R. Sander, R. Birringer, H. Gleiter, STM Characterization of Nanostructured Palladium, Ultramicroscopy,1992,42-44:594-598.
    [48]H. Chen, M. Kaya, R. W. Smith, Near net-shape long fibre reinforced intermetallic matrix composites produced by reactive infiltration process, Mater. Lett.,1992,13:180-183.
    [49]许并社.纳米材料及应用技术.北京:化学工业出版社,2004:78-179.
    [50]唐伟忠.薄膜材料制备原理、技术及应用.冶金工业出版社,2005,171-190.
    [51]G. Binning, H. Rohrer, Ch. Gerber., E. Weibel, Thnneling through a controllable vacuum gap, Appl. Phys. Lett.,1982,40:178-180.
    [52]程敏熙,熊钮庆,STM的同胞兄弟一原子力显微镜(AFM),大学物理,2000,9(9):38-42..
    [53]郭宁,秦紫瑞,原子力显微镜的发展与表面成像技术,理化检验-物理分册,1998,34(10):18-21.
    [54]沈学础.半导体光学性质.第二版,科学出版社,2001:307-317
    [55]K. Hashizume, M. Vacha, T. Tani, Preparation and optical properties of capped-CdSe nanocrystals, Journal of Luminesence,2000,87-89:402-404.
    [56]H. Yu, J. B. Li, R. A. Loomis, et al. Cadmium selenide quantum wires and the transition from 3D to 2D confinement, J. Am. Chem. Soc.,2003,125:16168-16169.
    [57]J. M. Pietryga, R. D. Schaller, D. Werder, et al. Pushing the band gap envelope:Mid-infrared emitting colloidal PbSe quantum dots, J. Am. Chem. Soc.,2004,126:11752-11753.
    [58]Y. C. Cao, J. H. Wang, One-pot synthesis of high-quality zinc-blende CdS nanocrystals, J. Am. Chem. Soc.,2004,126:14336-14337.
    [59]J. M. Tsay, M. Pflughoefft, L. A. Bentolila, et al. Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals, J. Am. Chem. Soc.,2004,126: 1926-1927.
    [60]D. V. Talapin, E. V. Shevchenko, C. B. Murray, et al. CdSe and CdSe/CdS nanorod solids, J. Am. Chem. Soc.,2004,126:12984-12988.
    [61]B. K. H. Yen, N. E. Stott, K. F. Jensen, et al. A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals, Adv. Mater.,2003,15:1858-1862.
    [62]X. G. Peng, J. Wickham, A. P. Alivisatos, Kinetics of Ⅱ-VI and III-V colloidal semiconductor nanocrystal growth:"Focusing" of size distributions, J. Am. Chem. Soc.,1998,120:5343-5344.
    [63]Z. A. Peng, X. G. Peng, Formation of high-quality CdTe.CdSe.and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc.,2001,123:183-184.
    [64]W. Nie, J. B. He, N. N. Zhao, X. L. Ji, A controllable synthesis of multi-armed CdTe nanorods, Nanotechnology 2006,17:1146-1149.
    [65]J. Aldana, Y. A. Wang, X. G. Peng, Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols, J. Am. Chem. Soc.,2001,123:8844-8850.
    [66]X. G Peng, L. Manna, W. D. Yang, et al. Shape control of CdSe nanocrystals, Nature,2000,404: 59-61.
    [67]X. G Peng, Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals, Adv. Mater.,2003,15:459-463.
    [68]L. S. Li, N. Pradhan, Y. Wang, X. Peng, High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors, Nano Lett.,2004,4:261-2264.
    [69]I. L. Medintz, H. T. Uyeda, E. R. Goldman, et al. Quantum dot bioconjugates for imaging, labeling and sensing, Nat. Mater.,2005,4:435-446.
    [70]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum dots for live cells in vivo imaging and diagnostics. Science,2005,307:538-544.
    [71]T. Nann, Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine, Chem. Commun.,2005,13:1735-1736.
    [72]A. Fu, W. Gu, C. Larabell, A. P. Alivisatos. Semiconductor nanocrystals for biological imaging, Current Opinion in Neurobiology,2005,15:568-575.
    [73]A. M. Smith, Hongwei Duan, A. M. Mohs, Shuming Nie, Bioconjugated quantum dots for in vivo molecular and cellular imaging, Advanced Drug Delivery Reviews,2008,60:1226-1240.
    [74]L. Spanhel, M. Haase, H. Weller, A. Henglein, Photochemistry of Colloidal Semiconductors.20. Surface Modification and Stability of Strong Luminescing CdS-Particles, J. Am. Chem. Soc., 1987,109:5649-5655.
    [75]A. L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmuller, H. Weller, Synthesis and Characterization of Thiol-Stabilized CdTe Nanocrystals, Phys. Chem.,1996,100:1772-1778.
    [76]J. Rockenberger, L. Troger, A. L. Rogach, M. Tischer, M. Grundmann, A. Eychmuller, H. Weller, The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals, J. Chem. Phys.,1998,108:7807-7815.
    [77]A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, A. Eychmuller, Luminescence Properties of Thiol-Stabilized CdTe Nanocrystals, J. Phys. Chem. B,1999,103: 10109-10113.
    [78]M. Gao, S. Kirstein, H. Mohwald, A. L. Rogach, A. Kornowski, A. Eychmuller, H. Weller, Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification, J. Phys. Chem. B,1998,102:8360-8363.
    [79]N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, H. Weller, Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes, J. Phys. Chem. B,2002,106:7177-7185.
    [80]J. Guo, W. L. Yang, C. C.Wang, Systematic Study of the Photoluminescence Dependence of Thiol-Capped CdTe Nanocrystals on the Reaction Conditions, J. Phys. Chem. B.,2005,109: 17467-17473.
    [81]J. Li, X. Hong, D. Li, L. Wang, H. Z. Wang, Z. L. Du, J. H. Li, Y. B. Bai, T. Li, Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorods, J. Chem. Commun.,2004,7:1740-1741.
    [82]D. W. Deng, Y. B. Qin, X. Yang, J. S. Yua, Y. Pan, The selective synthesis of water-soluble highly luminescent CdTe nanoparticles and nanorods:The influence of the precursor Cd/Te molar ratio, Journal of Crystal Growth,2006,296:141-149.
    [83]Q. Peng, Y. Dong, Z. Deng, Low-Temperature Elemental-Direct-Reaction Route to Ⅱ-Ⅵ Semiconductor anocrystalline ZnSe and CdSe, Inorganic Chemistry,2001,40:3840-3841.
    [84]H. Zhang, L. Wang, H. Xiong, Hydrothermal synthesis to high quality CdTe nanocrystals, Advanced Materials,2003,15:1712-1715.
    [85]Q. Peng, Y. J. Dong, Z. X. Deng, et al. Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals, Inorg. Chem.,2002,41:5249-5254.
    [86]S. H. Yu, Y. S. Wu, J. Yang, et al. A novel solventothermal synthetic route to nanocrystalline CdE (E=S, Se, Te) and morphological control. Chemistry of Materials,1998,10:2309-2312.
    [87]Q. Peng, Y. J. Dong, Z. X. Deng, et al. Selective synthesis and magnetic properties of alpha-MnSe and MnSe2 uniform microcrystals, J. Phys. Chem. B,2002,106:9261-9265.
    [88]Q. Peng, Y. J. Dong, Y. D. Li, Synthesis of uniform CoTe and NiTe semiconductor nanocluster wires through a novel coreduction method, Inorg. Chem.,2003,42:2174-2175.
    [89]Q. Peng, Y. J. Dong, Y. D. Li, ZnSe semiconductor hollow microspheres, Angew. Chem. Int. Edit.,2003,42:3027-3030.
    [90]A. P. Alivisatos, Semiconductor clusters nanocrystals and quantum dots, Science,1996,271: 933-937.
    [91]Y. Q. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, G Gigli, White organic lightemitting devices with CdSe/ZnS quantum dots as a red emitter, J. Appl. Phys.,2005,97: 113501-113504.
    [92]M. Y. Gao, B. Richter, S. Kirstein, Electroluminescence and photoluminescence in CdSe/poly(p-phenylene vinylene) composite films, Synthetic Metals.,1999,102:1213-1214.
    [93]Y. Xuan, D. C. Pan, N. N. Zhao, X. L. Ji, D. G Ma, White electroluminescence from a Poly(Nvinylcarbazole) layer doped with CdSe/CdS core-shell quantum dots, Nanotechnology, 2006,17:4966-4969.
    [94]J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulovic, M. G. Bawendi, Blue Luminescence from (CdS)ZnS Core-shell Nanocrystals, Angew. Chem. Int. Ed.,2004,43: 2154-2158.
    [95]D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. Mceuen, A single-electron transistor made from a cadmium selenide nanocrystal, Nature,1997,389:699-701.
    [96]J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, O. O. Park, White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer, Nanotechnology, 2004,15:1217-1220.
    [97]S. Coe-Sullivan, J. S. Steckel, Wing-Keung Woo, M. G. Bawendi, V. Bulovic, Large-area ordered quantumdot monolayers via phase separation during spin-coating, Adv. Func. Mater., 2005,15:1117-1124.
    [98]J. T. Hu, L. S. Li, W. D. Yang, et al. Linearly polarized emission from colloidal semiconductor quantum rods, Science,2001,292:2060-2063.
    [99]J. H. Ahn, C. Bartoni, S. Dunn, C. S. Wang, D. V. Talapin, N. Gaponik, A. Eychmiiller, Y. L. Hua, M. B. Bryce, M. C. Petty, White organic light-emitting devices incorporating nanoparticles of Ⅱ-Ⅵ semiconductors, Nanotechnology,2007,18:335202-335208.
    [100]Z. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. Li, Q. Zhang, S. E. Mohney, J. Ruzyllo, Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots, Nano Lett.,2007,7:3803-3807.
    [101]W. U. Huynh, X. G. Peng, A. P. Alivisatos, CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices, Adv. Mater.,1999,11:923-927.
    [102]M. Morkel, L. Weinhardt, B. Lohmuller, et al. Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction, Appl. Phys. Lett.,2001,79:4482-4484.
    [103]N. Romeo, A. Bosio, R. Tedeschi, et al. A highly efficient and stable CdTe CdS thin film solar cell, Sol. Energy Mater. Sol. Cells,1999,58:209-218.
    [104]A. D. Compaan, A. Gupta, S. Lee, S. L. Wang, J. Drayton, High efficiency magnetron sputtered CdS/CdTe solar cells, Solar Energy,2004,77:815-822.
    [105]Y. Kashiwaba, K. Isojima, K. Ohta, Improvement in the efficiency of Cu-doped CdS/non-doped CdS photovoltaic cells fabricated by an all-vacuum process, Sol. Energy Mater. Sol. Cells,2003, 75:253-259.
    [106]A. V. Firth, Y. Tao, D. S. Wang, et al. Microwave assisted synthesis of CdSe nanocrystals for straightforward integration into composite photovoltaic devices, J. Mater. Chem.,2005,15: 4367-4372.
    [107]M. Bruchez, M. Moronne, P. Gin, et al. Semiconductor nanocrystals as fluorescent biological labels, Science,1998,281:2013-2016.
    [108]M. Green, Semiconductor quantum dots as biological imaging agents, Angew. Chem.-Int. Edit., 2004,43:4129-4131.
    [109]M. Y. Han, X. H. Gao, J. Z. Su, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol.,2001,19:631-635.
    [110]X. H. Gao, Y. Y. Cui, R. M. Levenson, et al. In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol.,2004,22:969-976.
    [111]A. R. Clapp, I. L. Medintz, J. M. Mauro, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors, J. Am. Chem. Soc.,2004,126:301-310.
    [112]T. Dietl, H. Ohno, F. Matsukura, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science,2000,287:1019-1022.
    [113]N. Takahashi, K. Takabayashi, I. Souma, et al. Magnetoluminescence in quantum dots and quantum wires of II-VI diluted magnetic semiconductors, J. Appl. Phys.,2000,87:6469-6471.
    [114]Y. W. Jun, Y. Y. Jung, J. Cheon, Architectural control of magnetic semiconductor nanocrystals, J. Am. Chem. Soc,2002,124:615-619.
    [115]K. Sato, H. Katayama-Yoshida, A initio study on the magnetism in ZnO-, ZnS-, ZnSe-and ZnTe-based diluted magnetic semiconductors, Phys. Status Solidi B-Basic Res.2002,229: 673-680.
    [116]L. M. Chen, P. J. Klar, W. Heimbrodt, et al. Towards ordered arrays of magnetic semiconductor quantum wires, Appl. Phys. Lett.,2000,76:3531-3533.
    [117]F. J. Brieler, M. Froba, L. M. Chen, et al. Ordered arrays of II/Ⅵ diluted magnetic semiconductor quantum wires:Formation within mesoporous MCM-41 silica, Chem.-Eur. J. 2002,8:185-194.
    [118]F. J. DiSalvo, Thermoelectric cooling and power generation, Science,1999,285:703-706.
    [119]T. C. Harman, P. J. Taylor, M. P. Walsh, et al. Quantum dot superlattice thermoelectric materials and devices, Science,2002,297:2229-2232.
    [120]R. Venkatasubramanian, E. Siivola, T. Colpitts, et al. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature,2001,413:597-602.
    [121]S. S. Hsieh, F. F. Wang, C. S. Lin, The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels, Biomaterials,2006,27:1656-1664.
    [122]J. Rodriguez-Viejo, K. F. Jensen, H. Mattoussi, et al. Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites, Appl. Phys. Lett., 1997,70:2132-2134.
    [123]R. Gill, I. Willner, I. Shweky, Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates:Probing Hybridization and DNA Cleavage, J. Phys. Chem. B,2005,109: 23715-23719.
    [124]X. Fu, K. L. Huang, S. Q. Liu, A robust and fast bacteria counting method using CdSe/ZnS core/shell quantum dots as labels, Journal of Microbiological Methods,2009,79:367-370.
    [125]Q. B. Wang, N. Iancu, D. K. Seo, Preparation of Large Transparent Silica Monoliths with Embedded Photoluminescent CdSe@ZnS Core/Shell Quantum Dots, Chemistry of Materials, 2005,17:4762-4764.
    [126]J. Muller, J. M. Lupton, A. L. Rogach, Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures, Physical Review B,2005,72: 205339-205350.
    [127]I. Mekis, D. V. Talapin, A. Kornowski, et al. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches, J. Phys. Chem. B,2003,107:7454-7462.
    [128]A. Singha, B. Satpati, P. V. Satyam, Electron and phonon confinement and surface phonon modes in CdSe-CdS core-shell nanocrystals, Journal of Physics Condensed Matter,2005,17: 5697-5708.
    [129]J. W. Stouwdam, J. Shan, F. van Veggel,et al. Photostability of Colloidal PbSe and PbSe/PbS Core/Shell Nanocrystals in Solution and in the Solid State, J. Phys. Chem. C,2007,111: 1086-1092.
    [130]J. Xu, D. H. Cui, T. Zhu, et al. Synthesis and surface modification of PbSe/PbS core-shell nanocrystals for potential device applications, Nanotechnology,2006,17:5428-5434.
    [131]S. Lindroos, J. Puiso, S. Tamulevicius, M. Leskela, CdS-PbS multilayer thin films grown by the SILAR method, Solid State Phenomena,2004,99-100:243-246.
    [132]A. Hasselbarth, A. Eychmiiller, R. Eichberger, et al. Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids, J. Phys. Chem.,1993,97:5333-5340.
    [133]I. Chakraborty, D. Mitra, S. P. Moulik, Spectroscopic studies on nanodispersions of CdS, HgS, their core-shells and composites prepared in micellar medium, Journal of Nanoparticle Research,2005,7:227-236.
    [134]C. T. Cheng, C. Y. Chen, C. W. Lai, et al. Syntheses and photophysical properties of type-Ⅱ CdSe/ZnTe/ZnS (core/shell/shell) quantum dots, J. Mater. Chem.,2005,15:3409-3414.
    [135]B. Blackman, D. Battaglia, X. G. Peng, Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-Ⅱ/Type-Ⅰ Nanocrystals, Tuning the Efficiency and Stability by Growth, Chem. Mater.,2008,20:4847-4853.
    [136]徐毓龙.氧化物与化合物半导体基础.陕西:西安电子科技大学出版社,1991:10-60
    [137]R. E. Bailey, S. M. Nie, Alloyed semiconductor quantum dots:tuning the optical properties without changing the particle size, J. Am. Chem. Soc.,2003,125:7100-7106.
    [138]Fehin, N., Levy, L., Ingert, D., Pileni, M.P., Magnetic Interactions of Cd1-yMnyS nanosized particles, J. PhyS. Chem.,1999,103:4-10.
    [139]X. H. Zhong, M. Y. Han, Z. L. Dong, T. J. White, W. Knoll, Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability, J. Am. Chem. Soc.,2003,125:8589-8594.
    [140]X. H. Zhong, Y. Y. Feng, W. G Knoll, M. Y. Han, Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width, J. Am. Chem. Soc.,2003,125:13559-13563.
    [141]W. Jiang, A. Singhal, J. Zheng, C. Wang, W. C. W. Chan, Optimizing the Synthesis of Red-to Near-IR-Emitting CdS-Capped CdTexSe1-x Alloyed Quantum Dots for Biomedical Imaging, Chem. Mater.,2006,18:4845-4854.
    [142]N. Pradhan, X. G. Peng, Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry, J. Am. Chem. Soc.,2007,129: 3339-3347.
    [143]A. Shavel, N. Gaponik, A. Eychmuller, Efficient UV-Blue Photoluminescencing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals, J. Phys. Chem. B.,2004,108: 5905-5908.
    [144]F. C. Liu, T. L. Cheng, C. C. Shen, W. L. Tseng, M. Y. Chiang, Synthesis of Cysteine-capped ZnxCd1-xSe Alloyed Quantum Dots Emitting in the Blue-Green Spectral Range, Langumir,2008, 24:2162-2167.
    [145]Y. Wang, Y. B. Hou, A. W. Tang, B. Feng, Y. Li, J. Liu, F. Teng, Synthesis and optical properties of composition-tunable and water-soluble ZnxCd1-xTe alloyed nanocrystals, J. Crystal. Growth, 2007,308:19-25.
    [146]B. Tang, F. Yang, Y. Lin, L. H. Zhuo, J. C. Ge, L. H. Cao, Synthesis and characterization of wavelength-tunable, water-soluble and near-infrared-emitting CdHgTe nanorods, Chem. Mater., 2007,19:1212-1214.
    [147]W. Y. Mao, J. Guo, W. L. Yang, C. C. Wang, J. He, J. Y. Chen, Synthesis of high-quality near-infraredemittingCdTeS alloyed quantum dots via the hydrothermal method, Nanotechnology,2007,18:485611-485617.
    [148]C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, W. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, J. Nano. Lett.,2005,5: 331-338.
    [149]R. Weil, M. Joucal, J. L. Loison et al. Preparation of optical quality ZnCdTe thin films by vacuum evaporation, Applied Optical,1998,37:2681-2685.
    [150]B. M. Basol, V. K. Kapur and M. L. Ferris., Low cost technique for preparing CdZnTe films and solar cells, J. Appl. Phys.,1989,66:1816-1821.
    [151]Y. G. Zheng, Z. C. Yang, J. Y. Ying, Aqueous Synthesis of Glutathione-Capped ZnSe and Zn1-xCdxSe Alloyed Quantum Dots, Advanced Materials,2007,19:1475-1479.
    [152]B. Samanta, D. Das, A. K. Barua, Role of buffer layer at the p/i interface on the stabilized efficiency of a-Si solae cells, Solar Energy Materials and Solar Cells,1997,46:233-237
    [153]R. P. Barber Jr, R. D. Gomez, W. N. Herman, D. B. Romero, Organic photovoltaic devices based on a block copolymer/fullerene blend, Organic Electronics,2006,7:508-513.
    [154]U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weisso rtel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature,1998,395:583-585.
    [155]C. He, Q. G. He, Y. J. He, Y. F. Li, F. L, Bai, C. H. Yang, Y. Q. Ding, L. X. Wang, J. P. Ye, Organic solar cells based on the spin-coated blend films of TPA-th-TPA and PCBM. Solar Energy Materials & Solar Cells,2006,90:1815-1827.
    [156]雷永泉.新能源材料.天津:天津大学出版社,2000:20-65
    [157]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2005:15-75
    [158]H. Kallmann, M. Pope, Photovoltaic effect in organic crystals, J. Chem. Phys.,1959,30: 585-586.
    [159]C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett.,1986,48:183-185.
    [160]H. Masahiro, F. Hiroshi, Y. Masaaki, Three-layered organic solar cell with a photoactive interlayer of code posited pigments, Appl. Phys. Lett.,1991,58:1062-1064.
    [161]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science,1992,258:1474-1476.
    [162]N. S. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, Semiconducting polymer(?)\buckminsterfullerene heterojunctions:diodes, photodiodes, and photovoltaic cells, Appl. Phys. Lett.,1993,62:585-587.
    [163]G. Yu, J. Gao, J. C. Hummelen, et al. Polymer Photovoltaic Cells:Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Scienee,1995,270:1789-1791.
    [164]C. J. Brabec, S. E. Shaheen, C.Winder, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett.,2002,80:1288-1290.
    [165]W. Ma, C. Yang, X. Gong, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater.,2005,15:1617-1622.
    [166]J. Y. Kim, S. H. Kim, H. H. Lee, et al. New Architecture for high-efficiency polmer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater.,2006, 18:572-576.
    [167]Z. B. He, G. L. Zhao, G. R. Han, X. W. Zhang, P. Y. Du, W. J. Weng, G. Shen, A study of photoconductive properties of vacuum-sublimated copper-phthalocyanine/zinc sulphide multilayer films, Thin Solid Film,2003,424:157-160.
    [168]S. A. McDonald, P. W. Cyr, L. Levina, and E. H. Sargent, Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors, Appl. Phys. Lett.,2004,85:2089-2091.
    [169]J. X. Cheng, S. H. Wang, and X. Y. Li, Fast interfacial charge separation in chemically hybridized CdS-PVK nanocomposites studied by photoluminescence and photoconductivity measurements, Chem. Phys. Lett.,2001,333:375-380.
    [170]Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, Synthesis and photovoltaic application of copper(Ⅰ) sulfide nanocrystals, Nano. Lett.,2008,8:2551-2555.
    [171]Y. S. Liu, L. Wang, D. H. Qin, Y. Cao, Photovoltaic devices from multi-armed CdS nanorods and conjugated polymer composites, Chin. Phys. Lett.,2006,23:3345-3348.
    [172]B. Kannan, K. Castelino, A. Majumdar, Design of nanostructured heterojunction polymer photovoltaic devices, Nano Lett,2003,12:1729-1733
    [173]J. S. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, J. M. J. Frechet, Employing end-functional polythiophene to control the morphology of nanocrystals-polymer composites in hybrid solar cells, J. Am. Chem. Soc.,2004,126:6550-6551.
    [174]L. Wang, Y. S. Liu, X. Jiang, D. H. Qin, Y. Cao, Enhancement of photovoltaic characteristics using a suitable solvent in hybrid polymer/multiarmed CdS nanorods solar, Cells. J. Phys. Chem. C,2007,111:9538-9542.
    [175]Y. Y. Lin, C.W. Chen, J. Chang, T. Y. Lin, I. S. Liu, W. F. Su, Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials, Nanotechnology,2006,17:1260-1263.
    [176]D. S. Ginger, N. C. Greenham, Charge transport in semiconductor nanocrystals, Synthetic Metals,2001,124:117-120
    [177]B. Q. Sun, N. C. Greenham, Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers, Phys. Chem. Chem. Phys.,2006,8:3557-3560.
    [178]D. H. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok, Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells, Appl. Phys. Lett.,2006,88:183111-183113.
    [179]H. J. Snaith, G. L. Whiting, B. Q. Sun, N. C. Greenham, W. T. S. Huck, R. H. Friend, Self-organization of nanocrystals in polymer brushes. application in heterojunction photovoltaic diodes, Nano Lett.,2005,5:1653-1657.
    [180]Y. Zhou, Y.C. Li, H. Z. Zhong, J. H. Hou, Y. Q. Ding, C. H. Yang, Y. F. Li, Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals, Nanotechnology,2006,17:4041-4047.
    [181]W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, A. P. Alivisatos, Controlling the morphology of nanocrystals-polymer composites for solar cells, Adv. Funct. Mater.,2003,13: 73-79.
    [182]B. Q. Sun, E. Marx, N. C. Greenham, Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers, Nano Lett.,2003,3:961-963.
    [183]I. Gur, N. A. Fromer, A. P. Alivisatos, Controlled Assembly of Hybrid Bulk-Heterojunction Solar Cells by Sequential Deposition, J. Phys. Chem. B,2006,110:25543-25546.
    [184]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science,2002, 295:2425-2427.
    [185]S. A. McDonald, G. Konstantatos, S. G Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent. Solution-processed PbS quqntum dot infrared photodetectors and photovoltaics, Nat. Mater.,2005,4:138-142.
    [186]A. Maria, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, Solution-processed infrared photovoltaic devices with> 10% monochromatic internal quantum efficiency, Appl. Phys. Lett., 2005,87:213112-2131124.
    [187]W. J. E. Beek, M. M. Wienk. R. A. J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticlesand a conjugated polymer, Adv. Mater.,2004,16:1009-1013.
    [188]C. Dridi, V. Barlier, H. Chaabane, J. Davenas, H. BenOuada, Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO2 nanocompositesfor solar cell applications, Nanotechnology,2008,19:375201-375211.
    [189]D. J. D. Moet, L. J. A. Koster, B. De. Boer, P. W. M.Blom, Hybrid Polymer Solar Cells from Highly Reactive Diethylzinc:MDMO-PPV versus P3HT, Chem. Mater.,2007,19:5856-5861.
    [190]Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, H. W. Hillhouse, Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells, Nano. Lett.,2008,8(9):2982-2987
    [191]M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, Sythesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2(CIGS) nanorystals "Ink" for printable photovoltaics, J. Am. Chem. Soc,2008,130:16770-16777.
    [192]A. Gupta, V. Parikh, A. D. Compaan, High efficiency ultra-thin sput-tered CdTe solar cells, Solar Energy Materials and Solar Cells,2006,90:2263-2271.
    [193]N. P. Gaponik, D. V. Talapin, A. L. Rogach, A. Eychmuller, Electrochemical Synthesis of CdTe Nanocrystal/Polypyrrole Composites for Optoelectronic Applications, J. Mater. Chem.,2000, 10:2163-2166.
    [194]J. E. B. Katari, V. L. Colvin, A. P. Alivisatos, X-Ray Photoelectron-Spectroscopy of Cdse Nanocrystals with Applications to Studies of the Nanocrystal Surface, J. Phys. Chem.,1994,98: 4109-4117.
    [195]D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals, J. Phys. Chem. B,2001, 105:2260-2263.
    [196]L. Qu, X. Peng, Control of Photoluminescence Properties of CdSe Nanocrystals in Growth, J. Am. Chem. Soc.,2002,124:2049-2055.
    [197]Jifang Weng, Xingtao Song, Liang Li, Huifeng Qian, Keying Chen, Xuemin Xu, Chengxi Cao, Jicun Ren, Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging, Talanta,2006,70:397-402.
    [198]H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein, J. Am. Chem. Soc.,2000,122:12142-12150.
    [199]D. V. Talapin, A. L. Rogach, I. Mekis, S. Haubold, A. Kornowski, M. Haase, H. Weller, Synthesis and Surface Modification of Amino-Stabilized CdSe, CdTe and InP Nanocrystals, Colloids Surf. A,2002,202:145-154.
    [200]L. Li, H. F. Qian, N. H. Fang, Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions, Journal of Luminescence,2006,116:59-66.
    [201]H. Zhang, Z. Zhou, B. Yang, M. Y. Gao, The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles, J. Phys. Chem. B, 2003,107:8-13.
    [202]H. Zhang, D. Y. Wang, B. Yang, Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures, J. Am. Chem. Soc.,2006,128: 10171-10180.
    [203]C. D. M. Donega, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh, A. Meijerink, Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals, J. Phys. Chem. B,2003,107:489-496.
    [204]B. Bhattacharjee, C.H. Hsu, C.H. Lu, W.H. Chang, Colloidal CdSe-ZnS Core-shell Nanoparticles:Dependence of Physical Properties on Initial Cd to Se Concentration, Phys. E, 2006,33:388-393.
    [205]X. H. Zhong, Z. H. Zhang, S. H. Liu, M. Y. Han, W. G. Knoll, Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength, J. Phys. Chem. B,2004,108:15552-15559.
    [206]G H. Ning, X. P. Zhao, J. Li, Structure and optical properties of MgxZn1-xO nanoparticles prepared by sol-gel method, Opt. Mater.,2004,27:1-5.
    [207]H. X. Liu, F. L. Su, S. M. Zhou, Preparation of MgxZn1-xO by sol-gel method and its characteristics, J. Synth. Cryst.,2005,34:849-852.
    [208]T. W. Kim, D. U. Lee, D. C. Choo, Y. S. Lim, H. S. Lee, J. Y. Lee, H. Lim, Coexisting Phenomena of the CuPt-Type and the Cu3Au-Type-Ordered Structures Near ZnTe/ZnSe Heterointerfaces in ZnxCd1-xTe/ZnSySe1-y Quantum Wells, Solid State Commun,2001,117: 501-504.
    [209]A. Aydinli, A. Compaan, G. Coutreras-Puente, Polycrystalline Cd1-xZnxTe thin films on glass by pulsed laser deposition, Solid State Commun.,1991,80:465-468.
    [210]P. W. Sze, N. F. Wang, M. P. Houng, Y. H. Wang, Effects of Substrate Preheating for the Growth of ZnxCd1-xTe/(100) GaAs by MOCVD, J. Crystal Growth,1997,180:177-184.
    [211]T. M. Razykov, A novel chemical molecular beam deposition method for fabrication of IFCVI low dimensional structures, Microelectron. J.,2005,36:599-600.
    [212]Y. C. Li, H. Z. Zhong, R. Li, Y. Zhou, C. H. Yang, Y. F. Li, High-yield fabrication and electrochemical characterization of tetrapod-shaped CdSe CdTe and CdSexTe1-x nanocrystals, Adv. Funct. Mater.,2006,16:1705-1716.
    [213]M. W. DeGroot, H. Rosner, J. F. Corrigan, Control of metal-ion composition in the synthesis of ternary II-Ⅱ'-VI nanoparticles by using a mixed-metal cluster precursor approach, Chem. Eur. J., 2006,12:1547-1554.
    [214]Y. Viale, P. Gilliot, O. Cregut, J.P. Likforman, M. Gallart, B. Honerlage, Selective excitation through multiphonon emission on ZnCdTe quantum dots embedded in Zn-rich ZnCdTe quantum wells, Phys. Rev. B,2004,69:115324-115330.
    [215]C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Plastic Solar Cells, Adv. Funct. Mater.,2001,11: 15-26.
    [216]C. J. Brabec, Organic photovoltaics:technology and market, Sol. Energy Mater. Sol. Cells, 2004,83:273-292.
    [217]H. Hoppe, N. S. Sariciftci, Organic solar cells:an overview, J. Mater. Res.,2004,19: 1924-1945.
    [218]C. H. Yang, J. Qiao, Q. J. Sun, K. J. Jiang, Y. L. Li, Y. F. Li, Improvement of the performance of polymer/C60 photovoltaic cells by small-molecule doping, Synth. Met.,2003,137:1521-1522.
    [219]E. Lioudakis, A. Othonos, I. Alexandrou, Femtosecond Dynamics in Single Wall Carbon Nanotube/Poly(3-Hexylthiophene) Composites, Nanoscale Res. Lett.,2008,3:278-283.
    [220]A. W. Tang, F. Teng, H. Jin, Y. H. Gao, Y. B. Hou, C. J. Liang, Y. S. Wang, Investigation on photoconductive properties of MEH-PPV/CdSe-nanocrystal nanocomposites, Mater. Lett.,2007, 61:2178-2181.
    [221]U. W. Huynh, J. J. Dittmer, N. Teclemariam, D. J. Milliron, A. P. Alivisatos, Charge transport in hybrid nanorod-polymer composite photovoltaic cells, Phys. Rev. B,2003,67:115326-115337.
    [222]H. Jin, Y. B. Hou, A. W. Tang, X. G. Meng, F. Teng, Photoconductive Properties of MEH-PPV/CuS-Nanoparticle Composites, Chin. Phys. Lett.,2006,23:693-697.
    [223]D. J. Milliron, I.Gur, A.P. Alivisatos, Hybrid organic-nanocrystals solar cells, Mrs Bulletin, 2005,30:41-44.
    [224]P. M. Sirimanne, H. Tributsch, Parameters determining efficiency and degradation of TiO2 dye CuI solar cells, J. Solid State Chem.,2004,177:1789-1795.
    [225]K. Yu, J. H. Chen, Enhancing Solar Cell Efficiencies through 1-D Nanostructures, Nanoscale Res. Lett.,2009,4:1-10.
    [226]S. S. Hullavarad, N. V. Hullavarad, P. C. Karulkar, A. Luykx, P. Valdivia, Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires:a novel approach, Nanoscale Res. Lett.,2007,2:161-167.
    [227]D. C. Olson, S. E. Shaheen, M. S. White, J. Mitchell, F. A. M. Test, R. T. Collins, D. S. Ginley, Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer-Oxide Hybrid Solar Cells, Adv. Funct. Mater.,2007,17:264-269.
    [228]J. Dai, W. P. Jian, J. Q. Zhuang, W. S. Yang, Synthesis and optical properties of ZnxCd1-xS:Ag nanocrystals, Chem. J. Chin. Univ.,2006,27:704-707.
    [229]Q. R. Hou, J. Y. Wang, Vertical gradient greeze growth of CdZnTe crystals with Zn/Cd reservoir, Rare Metals,1994,13:287-290.
    [230]X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,J. Am. Chem. Soc.,1997,119:7019-7029.
    [231]P. Reiss, J. Bleuse, A. Pron, HighlyLuminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion, Nano Lett.,2002,2:781-784.
    [232]S. F. Wuister, A. Meijerink, Synthesis and luminescence of CdS quantum dots capped with a silica precursor, J. Lumin,2003,105:35-43.
    [233]S. H. Wei, S. B. Zhang, A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys, J. Appl. Phys.,2000,87:1304-1311.
    [234]L. S. Li, N. Pradhan, Y. J. Wang, X. G. Peng, High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors, Nano Lett.2004,4:2261-2264.
    [235]A. Priyam, A. Chatterjeea, S. C. Bhattacharya, Surface-functionalized cadmium chalcogenide nanocrystals:A spectroscopic investigation of growth and photoluminescence, J. Crystal Growth,2007,304:416-424.
    [236]S. F. Wuister, F. V. Driel, A. Meijerink, Luminescence of CdTe nanocrystals, J. Lumin.,2003, 102-103:327-332.
    [237]Z. T. Deng, L. Cao, F. Q. Tang, B. Zou, A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis, J. Phys. Chem. B,2005,109:16671-16675.
    [238]H. Zhang, B. Yang, X-ray photoelectron spectroscopy studies of the surface composition of highly luminescent CdTe nanoparticles in multilayer films, Thin Solid Films,2002,418: 169-174.
    [239]J.F. Fernandez, A. C. Caballero, M. Villegas, Structure and magnetism in the Zn-Mn-O system: A candidate for room temperature ferromagnetic semiconductor, J. Eur. Ceram. Soc.,2006,26: 3017-3025.
    [240]Y. Li, Y. B. Hou, H. Jin, Q. M. Shi, L. X. Zhang, Effect of TiO2 Nanotubes on Polymer-Fullerene Bulk Heterojunction Solar Cells, Chin. Phys. Lett.,2007,24:2654-2656.
    [241]I. Gur, N.A. Fromer, C.P. Chen, A.G. Kanaras, A.P. Alivisatos, Hybrid solar cell with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett.,2007, 7:409-414.
    [242]C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci.,2000,30: 545-610.
    [243]N. Pradhan, D. Goorskey, J. Thessing, X. G. Peng, An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals, J. Am. Chem. Soc.,2005,127, 17586-17587.
    [244]N. Tian, Z. Y. Zhou, S. G Sun, Y. Ding, Z. L. Wang, Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity, Science,2007,316: 732-735.
    [245]H. Z. Zhong, Y. Zhou, M. F. Ye, Y. J. He, J. P. Ye, C. He, C. H. Yang, Y. F. Li, Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals, Chem. Mater.,2008,20:6434-6443.
    [246]A. M. Smith, A. M. Mohs, S. M. Nie, Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain, Nature Nanotech,2009,4:56-63.
    [247]S. H. Choi, K. An, E. G. Kim, J. H. Yu, J. H. Kim, T. Hyeon, Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals, Adv. Funct. Mater.,2009,19:1645-1649.
    [248]R. Marshall, S. S. Mitra, Optical Properties of Cuprous Sulfide, J. Appl. Phys.,1965,36: 3882-3883.
    [249]A. C. Rastogi, S. Salkalachen, Improvements in stoichiometry and stability of p-Cu(x)S in thin-film CdS solar cells, J. Appl. Phys.,1985,58:4442-4445.
    [250]G. Liu, T. Schulmeyer, J. Brotz, A. Klein, W. Jaegermann, Interface properties and band alignment of Cu2S/CdS thin film solar cells, Thin Solid Films,2003,431/432:477-482.
    [251]N. S. Xu, S. E. Huq, Novel cold cathode materials and applications, Mater. Sci. Eng. R,2005, 48:47-189.
    [252]T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, M. Aono, Nanometer-scale switches using copper sulfide, Appl. Phys. Lett.,2003,82:3032-3034.
    [253]Z. B. Zhuang, Q. Peng, B. Zhang, Y. D. Li, Controllable Synthesis of Cu2S Nanocrystals and Their Assembly into a Superlattice, J. Am. Chem. Soc.,2008,130:10482-10483.
    [254]M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, B. A. Korgel, Solventless Synthesis of Monodisperse Cu2S Nanorods, Nanodisks, and Nanoplatelets, J. Am. Chem. Soc., 2003,125:16050-16057.
    [255]Y. B. Chen, L. Chen, L. M. Wu, The Structure-Controlling Solventless Syntheses of Uniform Cu2S Nanodisks and their Optical Properties, Chem. Eur. J.,2008,14:11069-11075.
    [256]T. H. Larsen, M. Sigman, A. Ghezelbash, R. C. Doty, B. A. Korgel, Solventless Synthesis of Copper Sulfide Nanorods by Thermolysis of a Single Source Thiolate-Derived Precursor, J. Am. Chem. Soc.,2003,125:5638-5639.
    [257]Z. P. Liu, D. Xu, J. B. Liang, J. M. Shen, S. Y. Zhang, Y. T. Qian, Growth of Cu2S Ultrathin Nanowires in a Binary Surfactant Solvent, J. Phys. Chem. B,2005,109:10699-10704.
    [258]W. P. Lim, C. T. Wong, S. L. Ang, H. Y. Low, W. S. Chin, Phase-Selective Synthesis of Copper Sulfide Nanocrystals, Chem. Mater.,2006,18:6170-6177.
    [259]H. Lee, S. W. Yoon, E. J. Kim, J. Park, In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials, Nano Lett.,2007,7:778-784.
    [260]H. T. Zhang, G. Wu, X. H. Chen, Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates, Langmuir,2005,21:4281-4282.
    [261]H. Zhang, Y. Q. Zhang, J. X. Yu, D. R. Yang, Phase-Selective Synthesis and Self-Assembly of Monodisperse Copper Sulfide Nanocrystals, J. Phys. Chem. C,2008,112:13390-13394.
    [262]X. S. Du, Z. Z. Yu, A., Dasary, J. Ma, Y. Z. Meng, Y. W. Mai, Facile Synthesis and Assembly of Cu2S Nanodisks to Corncoblike Nanostructures, Chem. Mater.,2006,18:5156-5158.
    [263]L. Chen, Y. B. Chen, L. M. Wu, Synthesis of uniform Cu2S nanowires from copper-thiolate polymer precursors by a solventless thermolytic method, J. Am. Chem. Soc.,2004,126: 16334-16335.
    [264]Y. Yin, A. P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature,2005,437:664-670.
    [265]N. Sandhyarani, T. Pradeep, An investigation of the structure and properties of layered copper thiolates, J. Mater. Chem.,2001,11:1294-1299.
    [266]A. N. Bordenyuk, C. Weeraman, A. Yatawara, H. D. Jayathilake, I. Stiopkin, Y. Liu, A. V. Benderskii, Vibrational sum frequency generation spectroscopy of dodecanethiol on metal nanoparticles, J. Phys. Chem. C,2007,111:8925-8933.
    [267]N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press:New York,1975.
    [268]V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Colloidal nanocrystal shape and size control:The case of cobalt, Science,2001,291:2115-2117.
    [269]V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, Synthesis of hcp-Co nanodisks, J. Am. Chem. Soc.,2002,124:12874-12880.
    [270]D. W. Deng, J. S. Yu, Y. J. Pan, Water-soluble CdSe and CdSe/CdS nanocrystals:A greener synthetic route, Colloid Interface Science,2006,299:225-232.
    [271]K. M. Reddy, S. V. Manorama, A. R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys.,2002,78:239-245.
    [272]L. Mer, V. K., R. H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc.,1950,72:4847-4854.
    [273]李瑞.CuInS2和Zn2x(CuIn)1-xS2合金化半导体纳米晶的制备与表征[硕士学位论文],北京:中国地质大学,2007:5-6.
    [274]Y. X. Qi, Q. C. Liu, K. B. Tang, Z. H. Liang, Z. B. Ren, X, M. Liu, Synthesis and characterization of nanostructured wurtzite CuInS:a new cation disordered polymorph of CuInS, J. Phys. Chem. C,2009,113:3939-3944
    [275]A. Y. Zhang, Q. Ma, M. K. Lu, G. W. Yu, Y. Y. Zhou, Z. F. Qiu, Copper-indium sulfide hollow nanospheres synthesized by a facile solution-chemical method, Crystal Growth & Design,2008, 8:2402-2405
    [276]S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors, Chem Mater,2003,15:3142-3147.
    [277]J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. V. Wandruszka, T. R. Fletcher, M. Williams, C. M. Wang, M. G Norton, Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors, Nano Lett.,2006,6: 1218-1223.
    [278]S. L. Castro, S. G Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor, J. Phys. Chem. B,2004,108:12429-12435.
    [279]H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system, Chem. Mater,2006,18:3330-3335.
    [280]B. Koo, R. N. Patel, B. A. Korgel, Wurtzite-chalcopyrite polytypism in CuInS2 nanodisks, Chem Mater,2009,21(9):1962-1966.
    [281]N. C. Greenham, X. Peng, and A. P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Phys. Rev. B,1996,54:17628-17637.
    [282]W. U. Huynh, X. G. Peng, and A. P. Alivisatos, CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices, Adv. Mater.,1999,11:923-927.
    [283]L. Zang, C. Liu, Q. Li, Z. Wang, Z. Liu, Q. Gong, Broadband optical limiting performance of polymer-wrapped carbon nanotubes in the orange-NIR region, Optics Communications,2006, 265:354-358.
    [284]Z. Wang, C. Liu, Z. Liu, H. Xiang, Z. Li, Q. Gong, π-π interaction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites, Chem. Phys. Lett., 2005,407:35-39.
    [285]C. Yang, M. Wohlgenannt, Z. V. Vardeny, W. J. Blau, A. B. Dalton, R. Baughman A. A. Zakhidov, Photoinduced charge transfer in poly(p-phenylene vinylene) derivatives and carbon nanotube/C6o composites, Physica B,2003,338:366-369.
    [286]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science,2002, 295:2425-2427.
    [287]K. Yoshino, T. Ikari, S. Shirakata, H. Miyake, and K. Hiramatsu, Sharp band edge photoluminescence of high-purity CuInS2 single crystals, Appl. Phys. Lett.,2001,78:742-744.
    [288]D. C. Pan, L. J. An, Z. M. Sun, W. Hou, Y. Yang, Z. Z. Yang, and Y. F. Lu, Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition, J. Am. Chem. Soc.,2008,130: 5620-5621.
    [289]J. Xiao, Y. Xie, R. Tang, Y. Qian, Synthesis and characterization of ternary CuInS2 nanorods via a hydrothermal route, J. Solid State Chem.2001,161:179-183.
    [290]J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. Vonwandruszka, T. R. Fletcher, M. Williams, C. Wang, M. G. Norton, Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors, Nano. Lett.,2006,6: 1218-1223.
    [291]D. C. Pan, L. J. An, Z. M. Sun, Y. Yang, Z. Z. Yang, Y. F. Lu, Sythesis of Cu-In-S nanocrystals with tunable structure and composition, J. Am. Chem. Soc.,2008,130:5620-5621.
    [292]S. H. Choi, E. G Kim, T. Hyeon, One-pot synthesis of copper-indium sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes, J. Am. Chem. Soc.,2006,128:2520-2521.
    [293]W. Han, L. Yi, N. Zhao, A. Tang, M. Gao, Z. Tang, Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals, J. Am. Chem. Soc.,2008,130:13152-13161.
    [294]S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, Y. Cui, Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods, J. Am. Chem. Soc.,2009,131:4962-4966.
    [295]韩伟.磁性及半导体硫化物纳米材料的合成与研究[博士学位论文],北京:中国科学院研究生院,2007:36-37.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.