过渡金属氧化物纳米结构的调控合成、组装及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属氧化物因其多样性的价电子结构,使其具有丰富物理和化学性质,并显示出在光学、磁学、催化和电池等领域广泛的应用前景。通过对过渡金属氧化物纳米材料的有效合成,探索其合成机制,进而实现对目标纳米结构的尺寸、化学组成及物性的有效调控,对于进一步探索结构与物性的关联具有重要作用。通过一系列的化学手段,将纳米晶“自下而上”的集成,即组装成具有更高级结构的功能体,对实现按照人们的意愿设计合成功能材料具有重要意义。本论文在过渡金属氧化物纳米结构合成新方法的设计、合成机制,功能组装及物性等方面进行了系统的探索研究。
     基于相转移和相分离的机制,成功制备了尺寸均匀的水合磷酸钇纳米晶;对纳米晶的形貌和尺寸进行了调控,并探讨了纳米晶形成和形貌演化的机理,丰富和发展了稀土纳米结构的合成方法。通过利用纳米晶表面有机长链的交叠产生的相互作用,实现了对纳米晶的2维组装,为从纳米晶向高级超结构的组装奠定了实验基础。
     基于硝酸铈铵具有稳定的二十面体结构,以其前驱物,发展了液相大量合成3nm氧化铈纳米晶的方法,并研究了其负载金后的催化性能;通过增加体系中反应物的浓度,直接制备了具有有序超结构的胶体纳米粒子,观察到了纳米晶在合成过程中的3维组装行为,为探讨具有有序超结构胶体粒子的形成和应用提供了实验依据。
     设计了液相合成不同形貌二氧化钛纳米晶的方法;通过利用水油体系形成的正相胶束,对纳米晶进行了组装,并研究了其催化和电池性能。
     设计了基于层状结构的有机分子与无机物复合双分子层,发展出了通用的合成超细(2 nm以下)过渡金属及其氧化纳米结构的方法;在实验上方法上,实现了纳米晶合成与组装的结合,成功的构建了具有应用前景的功能组装体。
Owing to variety of electronic structures, nanostructured transition metal oxides have exhibited strongly potential applications in optics, magnetics, catalysis and batteries. Preparing nanostructured transition metal oxides, investigating their possible formation mechanism and consequent controlling the size, composition and physical properties could be of the key importance. Apart from the synthesis, the organization of the as-obtained nanostructures towards advanced and complex superstructures also play a very important role in materials science, which would help the design of functional materials as the corresponding requirement. In this dissertation, systematic explorations have been carried out on synthetic strategies of nanostructured transition metal oxides, formation mechanisms, controllable organization and their properties.
     Based on the phase transfer and separation, the uniform yttrium phosphate hydrate nanocrystals with controllable size and shape have successfully prepared via a solution-base path way. Based on experimental facts, a possible formation mechanism was also proposed and applied to the preparation of the other lanthanide phosphates nanocrystals. By utilizing the multiple interactions between the long chain alkyl molecules, which absorbed on the surface of the nanocrystals, the 2 dimensional (2D) assembled superstructures were readily formed.
     Based on the special crystal structure of ammonium cerium nitrate, a novel method for synthesis of monodisperse 3nm cerium oxides nanocrystal in large scale was developed rationally. Furthermore, 3D assembled colloidal particles with high ordered internal secondary structures were also prepared in one step through increasing the concentration of the precursor in the synthetic system.
     A facile method was established for the synthesis of uniform titanium oxide nanocrystals with different shapes and sizes. Based on the constructed positive micelle, the as-obtained nanocrystals were organized into functional colloidal nanospheres. Systematical studies of their electronchemistry and catalytic properties indicated promising applications of the assembled products materials in catalysis and Li-ion battery.
     A general method for synthesis of ultrathin nanostructures was developed based on the rational artificial lamellar mesostructure. The as-obtained products can be organized into various ordered superstructures, which indicated that the synthesis and organization was couple together successfully.
引文
1. Zhao, X. M., Xia, Y. N. & Whitesides, G. M. Soft lithographic methods for nano-fabrication. J. Mater. Chem. 1997, 7, 1069-1074.
    2. Yang, P. D., Deng, T., Zhao, D. Y. et al. Hierarchically ordered oxides. Science 1998, 282, 2244-2246.
    3. Huang, Y., Duan, X. F., Cui, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.
    4. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486-491.
    5. Patolsky, F., Timko, B. P., Zheng, G. F. et al. Nanowire-based nanoelectronic devices in the life sciences. MRS Bull. 2007, 32, 142-149.
    6. Levy, L., Sahoo, Y., Kim, K. S. et al. Nanochemistry: Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mat. 2002, 14, 3715-3721.
    7. Clark, J. H. & Macquarrie, D. J. Environmentally friendly catalytic methods. Chem. Soc. Rev. 1996, 25, 303-&.
    8. Cozzoli, P. D., Pellegrino, T. & Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195-1208.
    9. Somers, R. C., Bawendi, M. G. & Nocera, D. G. CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev. 2007, 36, 579-591.
    10. Kreuter, J. Peroral Administration of Nanoparticles. Adv. Drug Deliv. Rev. 1991, 7, 71-86.
    11. Kruis, F. E., Fissan, H. & Peled, A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - A review. J. Aerosol. Sci. 1998, 29, 511-535.
    12. Wang, X. W., Xu, X. F. & Choi, S. U. S. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 1999, 13, 474-480.
    13. Qadri, S. B., Skelton, E. F., Hsu, D. et al. Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B 1999, 60, 9191-9193.
    14. De, G., Licciulli, A., Massaro, C. et al. Silver nanocrystals in silica by sol-gel processing. J. Non-Cryst. Solids 1996, 194, 225-234.
    15. Kiely, C. J., Fink, J., Brust, M. et al. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 1998, 396, 444-446.
    16. Norris, D. J., Yao, N., Charnock, F. T. et al. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3-7.
    17. Ebenstein, Y., Mokari, T. & Banin, U. Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl. Phys. Lett. 2002, 80, 4033-4035.
    18. Banin, U. & Millo, O. Tunneling and optical spectroscopy of semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 465-492.
    19. Costakramer, J. L., Garcia, N., Garciamochales, P. et al. Nanowire Formation in Macroscopic Metallic Contacts - Quantum-Mechanical Conductance Tapping a Table Top. Surf. Sci. 1995, 342, L1144-L1149.
    20. CostaKramer, J. L. Conductance quantization at room temperature in magnetic and nonmagnetic metallic nanowires. Phys. Rev. B 1997, 55, R4875-R4878.
    21. Liu, K., Chien, C. L., Searson, P. C. et al. Structural and magneto-transport properties of electrodeposited bismuth nanowires. Appl. Phys. Lett. 1998, 73, 1436-1438.
    22. Li, C. Z., Bogozi, A., Huang, W. et al. Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 1999, 10, 221-223.
    23. Rodrigues, V., Fuhrer, T. & Ugarte, D. Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 2000, 85, 4124-4127.
    24. Xu, D. S., Shi, X. S., Guo, G. L. et al. Electrochemical preparation of CdSe nanowire arrays. J. Phys. Chem. B 2000, 104, 5061-5063.
    25. Kang, J. W. & Hwang, H. J. Mechanical deformation study of copper nanowire using atomistic simulation. Nanotechnology 2001, 12, 295-300.
    26. Lei, Y., Zhang, L. D. & Fan, J. C. Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 2001, 338, 231-236.
    27. Huang, Y., Duan, X. F., Cui, Y. et al. Gallium nitride nanowire nanodevices. Nano Lett. 2002, 2, 101-104.
    28. Sawada, S. & Hamada, N. Energetics of Carbon Nanotubes. Solid State Commun. 1992, 83, 917-919.
    29. Ajayan, P. M., Ebbesen, T. W., Ichihashi, T. et al. Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature 1993, 362, 522-525.
    30. Ajayan, P. M., Ichihashi, T. & Iijima, S. Distribution of Pentagons and Shapes in Carbon Nanotubes and Nanoparticles. Chem. Phys. Lett. 1993, 202, 384-388.
    31. Li, W. Z., Xie, S. S., Qian, L. X. et al. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701-1703.
    32. Nikoobakht, B., Wang, Z. L. & El-Sayed, M. A. Self-assembly of gold nanorods. J. Phys. Chem. B 2000, 104, 8635-8640.
    33. Requicha, A. A. G., Meltzer, S., Arce, F. P. T. et al. Manipulation of nanoscale components with the AFM: Principles and applications. Proceedings of the 2001 1st Ieee Conference on Nanotechnology 2001, 81-86.
    34. Kwan, S., Kim, F., Akana, J. et al. Synthesis and assembly of BaWO4 nanorods. Chem. Commun. 2001, 447-448.
    35. Larsen, T. H., Sigman, M., Ghezelbash, A. et al. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J. Am. Chem. Soc. 2003, 125, 5638-5639.
    36. Koh, Y. W., Lai, C. S., Du, A. Y. et al. Growth of bismuth sulfide nanowire using bismuth trisxanthate single source precursors. Chem. Mat. 2003, 15, 4544-4554.
    37. Harnack, O., Pacholski, C., Weller, H. et al. Rectifying behavior of electrically aligned ZnO nanorods. Nano Lett. 2003, 3, 1097-1101.
    38. Greene, L. E., Law, M., Yuhas, B. D. et al. ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 2007, 111, 18451-18456.
    39. Ewers, T. D., Sra, A. K., Norris, B. C. et al. Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices. Chem. Mat. 2005, 17, 514-520.
    40. Fan, H. Y., Wright, A., Gabaldon, J. et al. Three-dimensionally ordered gold nanocrystal/silica superlattice thin films synthesized via sol-gel self-assembly. Adv. Funct. Mater. 2006, 16, 891-895.
    41. Shevchenko, E. V., Talapin, D. V., Murray, C. B. et al. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 2006, 128, 3620-3637.
    42. Shevchenko, E. V., Talapin, D. V., Kotov, N. A. et al. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55-59.
    43. Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18, 393-403.
    44. Radzilowski, L. H., Carragher, B. O. & Stupp, S. I. Three-dimensional self-assembly of rodcoil copolymer nanostructures. Macromolecules 1997, 30, 2110-2119.
    45. Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599-5611.
    46. Hannour, A., Bardotti, L., Prevel, B. et al. 2D arrays of CoPt nanoclusterassemblies. Surf. Sci. 2005, 594, 1-11.
    47. Zewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 2006, 57, 65-103.
    48. Talapin, D. V., Rogach, A. L., Kornowski, A. et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1, 207-211.
    49. Rabani, E. Structure and electrostatic properties of passivated CdSe nanocrystals. J. Chem. Phys. 2001, 115, 1493-1497.
    50. Willner, I., Patolsky, F. & Wasserman, J. Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew. Chem.-Int. Edit. 2001, 40, 1861-1864.
    51. Kulakovich, O., Strekal, N., Yaroshevich, A. et al. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2002, 2, 1449-1452.
    52. Sun, S. H., Zeng, H., Robinson, D. B. et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273-279.
    53. Jun, Y. W., Seo, J. W., Oh, S. J. et al. Recent advances in the shape control of inorganic nano-building blocks. Coord. Chem. Rev. 2005, 249, 1766-1775.
    54. Kassner, M. E., Nemat-Nasser, S., Suo, Z. G. et al. New directions in mechanics. Mech. Mater. 2005, 37, 231-259.
    55. Tak, Y. & Yong, K. J. Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 2005, 109, 19263-19269.
    56. Wang, Y. W., Schmidt, V., Senz, S. et al. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186-189.
    57. Lieber, C. M. & Wang, Z. L. Functional nanowires. MRS Bull. 2007, 32, 99-108.
    58. Cui, Y., Wei, Q. Q., Park, H. K. et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.
    59. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851-853.
    60. Huang, Y., Duan, X. F., Wei, Q. Q. et al. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630-633.
    61. Wang, W. U., Chen, C., Lin, K. H. et al. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 3208-3212.
    62. Lu, W. & Lieber, C. M. Semiconductor nanowires. J. Phys. D-Appl. Phys. 2006,39, R387-R406.
    63. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841-850.
    64. Yang, C. M., Sheu, H. S. & Chao, K. J. Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48. Adv. Funct. Mater. 2002, 12, 143-148.
    65. Song, J. H., Kim, F., Kim, D. et al. Crystal overgrowth on gold nanorods: Tuning the shape, facet, aspect ratio, and composition of the nanorods. Chem.-Eur. J. 2005, 11, 910-916.
    66. Lee, H. J., Habas, S. E., Somorjai, G. A. et al. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc. 2008, 130, 5406-+.
    67. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
    68. Dresselhaus, M. S., Chen, G., Tang, M. Y. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043-1053.
    69. Law, M., Sirbuly, D. J. & Yang, P. D. Chemical sensing with nanowires using electrical and optical detection. Int. J. Nanotechnol. 2007, 4, 252-262.
    70. Gomar-Nadal, E., Puigmarti-Luis, J. & Amabilino, D. B. Assembly of functional molecular nanostructures on surfaces. Chem. Soc. Rev. 2008, 37, 490-504.
    71. Habas, S. E., Lee, H., Radmilovic, V. et al. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692-697.
    72. Humphrey, S. M., Grass, M. E., Habas, S. E. et al. Rhodium nanoparticles from cluster seeds: Control of size and shape by precursor addition rate. Nano Lett. 2007, 7, 785-790.
    73. Kim, S. H., Yin, Y. D., Alivisatos, A. P. et al. IR spectroscopic observation of molecular transport through Pt@CoO yolk-shell nanostructures. J. Am. Chem. Soc. 2007, 129, 9510-9513.
    74. Park, J. Y., Renzas, J. R., Contreras, A. M. et al. The genesis and importance of oxide-metal interface controlled heterogeneous catalysis; the catalytic nanodiode. Top. Catal. 2007, 46, 217-222.
    75. Somorjai, G. A. & Park, J. Y. The impact of surface science on the commercialization of chemical processes. Catal. Lett. 2007, 115, 87-98.
    76. Scott, R. W. J., Wilson, O. M. & Crooks, R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 2005, 109, 692-704.
    77. Bratlie, K. M., Li, Y. M., Larsson, R. et al. Compensation effect of benzene hydrogenation on Pt(111) and Pt(100) analyzed by the selective energy transfer model. Catal. Lett. 2008, 121, 173-178.
    78. Zhou, K. B., Wang, X., Sun, X. M. et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206-212.
    79. Bratlie, K. M., Lee, H., Komvopoulos, K. et al. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097-3101.
    80. Zhang, Y. W., Grass, M. E., Kuhn, J. N. et al. Highly selective synthesis of cataytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc. 2008, 130, 5868-+.
    81. Eychmuller, A. Structure and photophysics of semiconductor nanocrystals. J. Phys. Chem. B 2000, 104, 6514-6528.
    82. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153-1175.
    83. Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115-2117.
    84. Wang, C. J., Shim, M. & Guyot-Sionnest, P. Electrochromic nanocrystal quantum dots. Science 2001, 291, 2390-2392.
    85. Peng, Q., Dong, Y. J., Deng, Z. X. et al. Low-temperature elemental-direct-reaction route to II-VI semiconductor nanocrystalline ZnSe and CdSe. Inorg. Chem. 2001, 40, 3840-+.
    86. Peng, Z. A. & Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389-1395.
    87. Wang, X. & Li, Y. D. Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124, 2880-2881.
    88. Wang, X. & Li, Y. D. Rational synthesis of alpha-MnO2 single-crystal nanorods. Chem. Commun. 2002, 764-765.
    89. Li, Y. D., Li, X. L., Deng, Z. X. et al. From surfactant-inorganic mesostructures to tungsten nanowires. Angew. Chem.-Int. Edit. 2002, 41, 333-+.
    90. Yan, L., Li, Y. D., Deng, Z. X. et al. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int. J. Inorg. Mater. 2001, 3, 633-637.
    91. Wang, X. & Li, Y. D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem.-Int. Edit. 2002, 41, 4790-4793.
    92. Deng, Z. X., Wang, C. & Li, Y. D. New hydrolytic process for producing zirconium dioxide, tin dioxide, and titanium dioxide nanoparticles. J. Am. Ceram. Soc. 2002, 85, 2837-2839.
    93. Sun, X. M. & Li, Y. D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem.-Eur. J. 2003, 9, 2229-2238.
    94. Sun, X. M., Chen, X., Deng, Z. X. et al. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 2003, 78, 99-104.
    95. Li, C. H., Si, S. F., Wang, R. J. et al. Hydrothermal synthesis and structural characterization of a three-dimensional coordination polymer, [MnNa2(Hbtc)(2)(H2O)(3)] (btc = 1,2,4-benzenetricarboxylate). J. Coord. Chem. 2004, 57, 1621-1627.
    96. Wang, X., Zhuang, J., Peng, Q. et al. A water-ethanol mixed-solution hydrothermal route to silicates nanowires. J. Solid State Chem. 2005, 178, 2332-2338.
    97. Wang, X. & Li, Y. D. Solution-based synthetic strategies for 1-D nanostructures. Inorg. Chem. 2006, 45, 7522-7534.
    98. Wang, X., Zhuang, J., Peng, Q. et al. Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods. Adv. Mater. 2006, 18, 2031-+.
    99. Wang, D. S., Xu, R., Wang, X. et al. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 2006, 17, 979-983.
    100. Wang, J., Zhang, H. X., Ge, J. P. et al. A vapor-solid strategy to silica sheathed metal nanostructures and microstructures via reactions of metal chlorides with silicon. J. Phys. Chem. B 2006, 110, 807-811.
    101. Shimizu, T. Bottom-up synthesis and morphological control of high-axial-ratio nanostructures through molecular self-assembly. Polym. J. 2003, 35, 1-22.
    102. Whang, D., Jin, S., Wu, Y. et al. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255-1259.
    103. Ryan, K. M., Erts, D., Olin, H. et al. Three dimensional architectures of ultra-high density semiconducting nanowires deposited on chip. J. Am. Chem. Soc. 2003, 125, 6284-6288.
    104. Bjork, M. T., Thelander, C., Hansen, A. E. et al. Few-electron quantum dots in nanowires. Nano Lett. 2004, 4, 1621-1625.
    105. Ariga, K., Hill, J. P. & Ji, Q. M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 2007, 9, 2319-2340.
    106. Luth, H. Semiconductor nanostructures: a new impact on electronics. Appl. Surf. Sci. 1998, 130, 855-865.
    107. Lu, Y. F., Fan, H. Y., Stump, A. et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 1999, 398, 223-226.
    108. Himmelhaus, M. & Takei, H. Self-assembly of polystyrene nano particles into patterns of random-close-packed monolayers via chemically induced adsorption. Phys. Chem. Chem. Phys. 2002, 4, 496-506.
    109. Tripp, S. L., Pusztay, S. V., Ribbe, A. E. et al. Self-assembly of cobalt nanoparticle rings. J. Am. Chem. Soc. 2002, 124, 7914-7915.
    110. Zeng, H., Sun, S. H., Vedantam, T. S. et al. Exchange-coupled FePt nanoparticle assembly. Appl. Phys. Lett. 2002, 80, 2583-2585.
    111. Zhang, Z. L., Horsch, M. A., Lamm, M. H. et al. Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 2003, 3, 1341-1346.
    112. Parviz, B. A., Ryan, D. & Whitesides, G. M. Using self-assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans. Adv. Packag. 2003, 26, 233-241.
    113. Springholz, G. Three-dimensional stacking of self-assembled quantum dots in multilayer structures. C. R. Phys. 2005, 6, 89-103.
    114. Park, J., Kang, E., Son, S. U. et al. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17, 429-+.
    115. Yang, P. D. The chemistry and physics of semiconductor nanowires. MRS Bull. 2005, 30, 85-91.
    116. Gao, P. X., Ding, Y., Mai, W. J. et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 2005, 309, 1700-1704.
    117. Feng, P. Y., Bu, X. H. & Zheng, N. F. The interface chemistry between chalcogenide clusters and open framework chalcogenides. Accounts Chem. Res. 2005, 38, 293-303.
    118. Duan, X. F., Huang, Y., Cui, Y. et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69.
    119. Zhong, Z. H., Wang, D. L., Cui, Y. et al. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377-1379.
    120. Cui, Y., Zhong, Z. H., Wang, D. L. et al. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149-152.
    121. Huang, Y. & Lieber, C. M. Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem. 2004, 76, 2051-2068.
    122. Zheng, G. F., Lu, W., Jin, S. et al. Synthesis and fabrication of high-performancen-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890-+.
    123. Qian, F., Li, Y., Gradecak, S. et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 2004, 4, 1975-1979.
    124. Huang, J. G. & Kunitake, T. Nano-precision replication of natural cellulosic substances by metal oxides. J. Am. Chem. Soc. 2003, 125, 11834-11835.
    125. Zhou, J., Xu, N. S., Deng, S. Z. et al. Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Adv. Mater. 2003, 15, 1835-1840.
    126. Sanchez, C., Julian, B., Belleville, P. et al. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559-3592.
    127. Zong, B. Y., Wu, Y. H., Han, G. C. et al. Synthesis of iron oxide nanostructures by annealing electrodeposited Fe-based fillms. Chem. Mat. 2005, 17, 1515-1520.
    128. Sun, X. M., Liu, J. F. & Li, Y. D. Oxides@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property. Chem. Mat. 2006, 18, 3486-3494.
    129. Zhuang, Z. B., Peng, Q., Liu, J. F. et al. Indium hydroxides, oxyhydroxides, and oxides nanocrystals series. Inorg. Chem. 2007, 46, 5179-5187.
    130. Yang, P. D., Yan, H. Q., Mao, S. et al. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 2002, 12, 323-331.
    131. Mao, S. S., Russo, R. E. & Yang, P. D. Optical energy conversion in crystalline nanowires. Nanostructure Science, Metrology and Technology 2002, 225-228.
    132. Johnson, J. C., Yan, H. Q., Schaller, R. D. et al. Single nanowire lasers. J. Phys. Chem. B 2001, 105, 11387-11390.
    133. Huang, M. H., Mao, S., Feick, H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897-1899.
    134. Maiti, A., Rodriguez, J. A., Law, M. et al. SnO2 nanoribbons as NO2 sensors: Insights from first principles calculations. Nano Lett. 2003, 3, 1025-1028.
    135. Kong, X. H., Yu, D. P. & Li, Y. D. Synthesis of SnO2 nanoribbons by direct oxidation of tin powders. Chem. Lett. 2003, 32, 100-101.
    136. Greytak, A. B., Lauhon, L. J., Gudiksen, M. S. et al. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 2004, 84, 4176-4178.
    137. Xiang, J., Lu, W., Hu, Y. J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489-493.
    138. Wu, Y. Y. & Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165-3166.
    139. Wang, F. D., Dong, A. G., Sun, J. W. et al. Solution-liquid-solid growth of semiconductor nanowires. Inorg. Chem. 2006, 45, 7511-7521.
    140. Greene, L. E., Yuhas, B. D., Law, M. et al. Solution-grown zinc oxide nanowires. Inorg. Chem. 2006, 45, 7535-7543.
    141. Mokari, T., Habas, S. E., Zhang, M. J. et al. Synthesis of lead chalcogenide alloy and core-shell nanowires. Angew. Chem.-Int. Edit. 2008, 47, 5605-5608.
    142. Huang, M. H., Wu, Y. Y., Feick, H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113-116.
    143. Wang, J. W. & Li, Y. D. Hydrothermal synthesis of M2S3 (M = Sb, Bi) bulk single crystals and nanorods. Mater. Chem. Phys. 2004, 87, 420-423.
    144. Lu, Z. G., Liu, J. F., Tang, Y. et al. Hydrothermal synthesis of CaSnO3 cubes. Inorg. Chem. Commun. 2004, 7, 731-733.
    145. Pal, U. & Santiago, P. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B 2005, 109, 15317-15321.
    146. Wang, X., Zhuang, J., Peng, Q. et al. Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg. Chem. 2006, 45, 6661-6665.
    147. Zhuang, Z. B., Peng, Q., Zhuang, J. et al. Controlled hydrothermal synthesis and structural characterization of a nickel selenide series. Chem.-Eur. J. 2006, 12, 211-217.
    148. Kong, X. H., Liu, X. B., He, Y. D. et al. Hydrothermal synthesis of P-nickel hydroxide microspheres with flakelike nanostructures and their electrochemical properties. Mater. Chem. Phys. 2007, 106, 375-378.
    149. Wang, C., Li, Y. D., Wang, J. W. et al. Solvothermal processes to indium selenide precursors and their conversion to phase-pure polycrystalline In2Se3. Main Group Met. Chem. 2001, 24, 21-26.
    150. Li, Y. D., Wang, Z. Y., Duan, X. F. et al. Solvothermal reduction synthesis of InSb nanocrystals. Adv. Mater. 2001, 13, 145-148.
    151. Chen, M., Xie, Y., Lu, J. et al. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem. 2002, 12, 748-753.
    152. Yu, D. B., Yu, S. H., Zhang, S. Y. et al. Metastable hexagonal In2O3 nanofibers templated from InOOH nanofibers under ambient pressure. Adv. Funct. Mater. 2003, 13, 497-501.
    153. Xu, J., Ge, J. P. & Li, Y. D. Solvothermal synthesis of monodisperse PbSe nanocrystals. J. Phys. Chem. B 2006, 110, 2497-2501.
    154. Wang, X., Zhuang, J., Peng, Q. et al. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.
    155. Huo, Z. Y., Chen, C. & Li, Y. D. Self-assembly of uniform hexagonal yttrium phosphate nanocrystals. Chem. Commun. 2006, 3522-3524.
    156. Michel, M., Taylor, A., Sekol, R. et al. High-performance nanostructured membrane electrode, assemblies for fuel cells made by layer-by-layer assembly of carbon nanocolloids. Adv. Mater. 2007, 19, 3859-+.
    157. Rele, S., Song, Y. H., Apkarian, R. P. et al. D-periodic collagen-mimetic microfibers. J. Am. Chem. Soc. 2007, 129, 14780-14787.
    158. Gazit, E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 2007, 36, 1263-1269.
    159. Shi, Y. T., Yuan, R., Chai, Y. Q. et al. Amplification of antigen-antibody interactions via back-filling of HRP on the layer-by-layer self-assembling of thionine and gold nanoparticles films on titania nanoparticles/gold nanoparticles-coated Au electrode. J. Electroanal. Chem. 2007, 604, 9-16.
    160. Du, W. M., Qian, X. F., Ma, X. D. et al. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chem.-Eur. J. 2007, 13, 3241-3247.
    161. Krishnan, R. S., Mackay, M. E., Duxbury, P. M. et al. Self-assembled multilayers of nanocomponents. Nano Lett. 2007, 7, 484-489.
    162. Javey, A., Nam, S., Friedman, R. S. et al. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773-777.
    163. Tao, A. R., Huang, J. X. & Yang, P. D. Langmuir-Blodgettry of Nanocrystals and Nanowires. Accounts Chem. Res. 2008, 41, 1662-1673.
    164. Kim, F., Kwan, S., Akana, J. et al. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123, 4360-4361.
    165. Gangloff, L., Minoux, E., Teo, K. B. K. et al. Self-aligned, gated arrays of individual nanotube and nanowire emitters. Nano Lett. 2004, 4, 1575-1579.
    166. Law, M., Sirbuly, D. J., Johnson, J. C. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269-1273.
    167. Law, M., Greene, L. E., Johnson, J. C. et al. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455-459.
    168. Tao, A. R., Ceperley, D. P., Sinsermsuksakul, P. et al. Self-Organized Silver Nanoparticles for Three-Dimensional Plasmonic Crystals. Nano Lett. 2008, 8, 4033-4038.
    169. Yan, R. X. & Li, Y. D. Down/Up conversion in Ln(3+)-doped YF3 nanocrystals.Adv. Funct. Mater. 2005, 15, 763-770.
    170. Yan, R. X., Sun, X. M., Wang, X. et al. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chem.-Eur. J. 2005, 11, 2183-2195.
    171. Kompe, K., Borchert, H., Storz, J. et al. Green-emitting CePO4 : Th/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem.-Int. Edit. 2003, 42, 5513-5516.
    172. Wang, X. & Li, Y. D. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties. Chem.-Eur. J. 2003, 9, 5627-5635.
    173. Wang, X., Sun, X. M., Yu, D. P. et al. Rare earth compound nanotubes. Adv. Mater. 2003, 15, 1442-1445.
    174. Wang, X. & Li, Y. D. Fullerene-like rare-earth nanoparticles. Angew. Chem.-Int. Edit. 2003, 42, 3497-3500.
    175. Zeng, J. H., Li, Z. H., Su, J. et al. Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology 2006, 17, 3549-3555.
    176. Liu, J. F. & Li, Y. D. General synthesis of colloidal rare earth orthovanadate nanocrystals. J. Mater. Chem. 2007, 17, 1797-1803.
    177. Heer, S., Lehmann, O., Haase, M. et al. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem.-Int. Edit. 2003, 42, 3179-3182.
    178. Meiser, F., Cortez, C. & Caruso, F. Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem.-Int. Edit. 2004, 43, 5954-5957.
    179. Thomas, J. M., Johnson, B. F. G., Raja, R. et al. High-performance nanocatalysts for single-step hydrogenations. Accounts Chem. Res. 2003, 36, 20-30.
    180. Schlogl, R. & Abd Hamid, S. B. Nanocatalysis: Mature science revisited or something really new? Angew. Chem.-Int. Edit. 2004, 43, 1628-1637.
    181. Narayanan, R. & El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663-12676.
    182. Wang, D. S., Wang, X., Xu, R. et al. Shape-dependent catalytic activity of CuO/MgO nanocatalysts. J. Nanosci. Nanotechnol. 2007, 7, 3602-3606.
    183. Joo, S. H., Park, J. Y., Tsung, C. K. et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126-131.
    184. Yang, S. W. & Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 2006, 128, 9330-9331.
    185. Kato, T., Kihara, H., Uryu, T. et al. Molecular Self-Assembly of Liquid-Crystalline Side-Chain Polymers through Intermolecular Hydrogen-Bonding - Polymeric Complexes Built from a Polyacrylate and Stilbazoles. Macromolecules 1992, 25, 6836-6841.
    186. Antonelli, D. M. & Ying, J. Y. Synthesis of Hexagonally Packed Mesoporous Tio2 by a Modified Sol-Gel Method. Angew. Chem.-Int. Edit. Engl. 1995, 34, 2014-2017.
    187. Zhang, W. F., He, Y. L., Zhang, M. S. et al. Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D-Appl. Phys. 2000, 33, 912-916.
    188. Yu, J. C., Yu, J. G., Ho, W. K. et al. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem. Commun. 2001, 1942-1943.
    189. Kay, A. & Gratzel, M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mat. 2002, 14, 2930-2935.
    190. Fan, Q. P., Wang, X. & Li, Y. D. Photo-catalytic activity and life time of the TiO2 nano-particles. Chin. J. Inorg. Chem. 2003, 19, 521-526.
    191. Nagaveni, K., Sivalingam, G., Hedge, M. S. et al. Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl. Catal. B-Environ. 2004, 48, 83-93.
    192. Barbe, C. J., Arendse, F., Comte, P. et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 1997, 80, 3157-3171.
    193. Kalyanasundaram, K. & Gratzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 1998, 177, 347-414.
    194. Bach, U., Lupo, D., Comte, P. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583-585.
    195. Gratzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841-6851.
    196. Gratzel, M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett. 2005, 34, 8-13.
    197. Murphy, J. E., Beard, M. C., Norman, A. G. et al. PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc.2006, 128, 3241-3247.
    198. Seo, D., Park, J. C. & Song, H. Polyhedral gold nanocrystals with O-h symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128, 14863-14870.
    199. Dalpian, G. M. & Chelikowsky, J. R. Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 2006, 96.
    200. Pinaud, F., Michalet, X., Bentolila, L. A. et al. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 2006, 27, 1679-1687.
    201. Zhou, K. B., Wang, R. P., Xu, B. Q. et al. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 2006, 17, 3939-3943.
    202. Ge, J. P., Xu, S., Zhuang, J. et al. Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silica sheathed core/shell structures. Inorg. Chem. 2006, 45, 4922-4927.
    203. Mokari, T. L., Zhang, M. J. & Yang, P. D. Shape, size, and assembly control of PbTe nanocrystals. J. Am. Chem. Soc. 2007, 129, 9864-+.
    204. Liang, X., Wang, X., Zhuang, J. et al. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757-2765.
    205. Ji, X. H., Song, X. N., Li, J. et al. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939-13948.
    206. Tao, A. R., Habas, S. & Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310-325.
    207. Huo, Q. S., Margolese, D. I., Ciesla, U. et al. Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials. Nature 1994, 368, 317-321.
    208. Huo, Q. S., Margolese, D. I. & Stucky, G. D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mat. 1996, 8, 1147-1160.
    209. Ciesla, U., Schacht, S., Stucky, G. D. et al. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem.-Int. Edit. Engl. 1996, 35, 541-543.
    210. Yang, P. D., Zhao, D. Y., Margolese, D. I. et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152-155.
    211. Yang, P. D., Zhao, D. Y., Chmelka, B. F. et al. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem. Mat. 1998, 10, 2033-+.
    212. Zhao, D. Y., Yang, P. D., Huo, Q. S. et al. Topological construction of mesoporous materials. Curr. Opin. Solid State Mat. Sci. 1998, 3, 111-121.
    213. Messer, B., Song, J. H., Huang, M. et al. Surfactant-induced mesoscopicassemblies of inorganic molecular chains. Adv. Mater. 2000, 12, 1526-1528.
    214. Song, J. H., Wu, Y. Y., Messer, B. et al. Metal nanowire formation using Mo3Se3- as reducing and sacrificing templates. J. Am. Chem. Soc. 2001, 123, 10397-10398.
    215. Jana, N. R., Gearheart, L. A., Obare, S. O. et al. Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem. 2002, 12, 2909-2912.
    216. Gai, P. L. & Harmer, M. A. Surface atomic defect structures and growth of gold nanorods. Nano Lett. 2002, 2, 771-774.
    217. Kim, F., Song, J. H. & Yang, P. D. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002, 124, 14316-14317.
    218. Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M. et al. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870-1901.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.