二维胶体结晶及玻璃化转变的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为凝聚态物理学中的两大基本问题,结晶和玻璃化转变,是近几十年来人们研究的热点话题。我们知道,胶体在一定条件下,既可以经历结晶成核过程转变为规整排列的晶体;也可以经历玻璃化过程转变为无序的胶体玻璃。尽管晶体和玻璃在生活中以及自然界中普遍存在,人们在过去的几十年中也对胶体的结晶和玻璃化转变做了大量的研究,然而人们还是不能很清楚的认识和理解胶体结晶成核过程和玻璃化转变过程。为了更好地理解胶体的相变行为,也为了能对今后材料的优化提供指导作用,本论文中,我们将用实验的方法来探究胶体结晶过程和玻璃化转变行为。
     1、吸引力梯度诱导的二维结晶。我们设计了一种新颖的方法,即吸引力梯度法来制备胶体晶体。我们知道水和2,6-二甲基吡啶的混合溶液在接近混合溶液相分离温度时会产生吸引力。这样的吸引力可以被用来聚集胶体粒子和生长胶体晶体。本文中,我们将利用温度梯度来产生混合溶液中的吸引力梯度。胶体晶体首先在高温区域成核,因为高温区的吸引力强,然后,沿着高温区向低温区的方向生长。我们具体通过泰勒多边形构造法,径向分布函数和方向有序参量等来描述胶体晶体的生长。我们还发现,结晶粒子的数目随着时间的增加,以恒定的速率增长,最终形成了完美的二维单晶。我们最后又通过类比于团簇束沉降法,讨论了无缺陷结晶过程的微观机理。研究表明,我们找到了一个制备无缺陷的胶体晶体的有效方法,为以后的应用,如胶体印刷技术以及三维胶体晶体的制备提供了指导作用。
     2、pining诱导的二维胶体晶体的玻璃化。我们从实验上研究了pinning对二维胶体晶体的结构特征和动力学行为的影响。其中,pinning的数密度是控制整个过程的关键因素。我们观察发现,随着pinning数密度的增加,体系首先从结晶态转变为多晶态,随后又从多晶态转变成玻璃态。这种结晶态-玻璃态的转变过程显现出了鲜明的结构特征:在转换点处(pinning数密度为φ=6.9%),方向有序关联函数迅速的从长程有序变为短程有序,键角有序参数极化率呈现一个最大值。体系在动力学上也出现了一个急剧地变化:对于φ<6.9%时,当pinning的数密度增加时,由于pinning周围产生了缺陷,粒子运动的快。相反地,当φ>6.9%时,随着pinning数密度的增加,pinnning运动的比较慢,这是因为pinning固定不动,如同牢笼一样将周围的可移动粒子困住了。而在转换点处,粒子运动的最快。
     3、表面光滑和粗糙的粒子在二元混合溶液中的自组装。我们利用水和2,6-二甲基吡啶的混合溶液在接近溶液相分离温度时会产生吸引力的方法来诱导表面光滑和粗糙的粒子之间进行自组装。从实验过程中,我们可以看出,表面光滑的粒子之间更容易聚集,表面粗糙的粒子之间不发生聚集,表面光滑和粗糙的粒子之间的聚集不稳定。
As the two basic problems of the condensed matter physics, crystallization and glass transition,are a hot topic in recent decades. Under appropriate conditions, colloidal liquid can transform into both order colloidal crystals and disorder colloidal glass. Although crystal and glass exist universally in nature and our daily life, and many advances have been made in the past decades, the understanding of the microscopic mechanism of crystallization and glass transition in colloids is still far from being complete. In this thesis, we experimentally study the colloidal crystallization and glass transition and it will help us to understand the colloidal phase transition and provide reliable guidance for the optimization of the materials.
     1. Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient. Colloidal particles in a water-lutidine (WL) binary liquid mixture experience temperature-dependent attraction close to the mixture's demixing temperature. This temperature-tunable interaction can be potentially harnessed to assemble colloids and grow colloidal crystals. In this article, for the first time a novel attractive force gradient method is presented to fabricate high-quality, single-domain colloidal crystals. The well-controlled attractive force gradient here arises from a temperature gradient in the WL mixture. The nucleation of colloidal crystals in such a WL mixture preferably occurs in the high-temperature region because of the stronger attraction there. Crystallization propagates from the high-temperature region to the low-temperature region in a well-controlled way. The growth of the colloidal crystal is characterized in detail by Voronoi construction, the pair correlation function, and the orientational order parameter. It is found that the number of crystal-like particles increases with time, and a single-domain2D colloidal crystal can be produced. The mechanism of the defect-free crystallization process is discussed on the basis of an analogy to cluster beam deposition methods.
     2. Observation of pinning-induced vitrification in two-dimensional colloidal crystal. We experimentally studied the effect of pinning on the structure and dynamics in two-dimensional colloidal crystal. The number fraction of pinning particles is the key to controlling this process. In this paper, we observe that with increasing of number fraction of the pinning particles, the system transforms firstly from a crystal to a polycrystalline state, and then into a glass. The crystal-glass transition shows structural signatures:at the transition point (the number fraction φ=6.9%), the persistence of orientational order decreases sharply from long-range to short range, and the bond orientational order parameter susceptibility exhibits a maximum. The system also shows a sharply variation in particle dynamics:For φ<6.9%, as the number fraction of pinning particles increases, particles move faster due to the generation of some defects near the pinning particles. By contrast, for φ>6.9%, particles move slower when the number fraction of pinning particles increases, because their immobility has a distinct effect (caging of the moving particles). At the transition point (φ=6.9%), the particles move fastest.
     3. The self-assembly of particles with smooth surface and rough surface in the binary mixture. We use the mixture of water and2,6-lutidine which can produce attraction force close to the mixture's demixing temperature to induce the self-assembly of the particles with smooth surface and rough surface. In the experiment, we can see that, the particles with smooth surface can get together easily; the particles with rough surface can not get together; the particles with smooth surface and rough surface can get together but not very stable.
引文
[1]Dhont, J. K. G An introduction to dynamics of colloids. Elsevier, Amsterdam,1996.
    [2]Frenkel, D. Soft condensed matter. Physica A:A statistical mechanics and its applications 2002,313,1-31.
    [3]Poon, W. Colloids as big atoms. Science 2004,304,830-831.
    [4]Asakura, S.; Oosawa, F. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys.1954,22,1255-1256.
    [5]Pusey, P. N.; van Megen, W. Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature (London) 1986,320,340-342.
    [6]Davey, S. C.; Budai, J.; Goodby, J. W.; Pindak, R. X-Ray study of the Hexatic-B-to-Smectic-A phase transition in liquid-crystal films. Phys. Rev. Lett.1984,53,2129-2132.
    [7]Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. Three dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 2000,287,627-631.
    [8]van Blaaderen, A.; Wiltzius, P. Growing large well-oriented colloidal crystals. Adv. Mater.1997,9,833-835.
    [9]Schall, P.; Cohen, I.; Weitz, D. A.; Spaepen, F. Visualizing dislocation nucleation by indenting colloidal crystals. Nature (London) 2006,440,319-323.
    [10]Zhang, Z. X.; Yunker, P. J.; Habdas, P.; Yodh, A. G. Cooperative rearrangement regions and dynamical heterogeneities in colloidal glasses with attractive versus repulsive interactions. Phys. Rev. Lett.2011,107,208303.
    [11]Nguyen, V. D.; Dang, M. T.; Weber, B.; Hu, Z. B.; Schall, P. Visualizing the structural solid-liquid transition at colloidal crystal/fluid interfaces. Adv. Mater.2011, 23,2716-2720.
    [12]Anekal, S. G.; Bahukudumbi, P.; Bevan, M. A. Dynamic signature for the equilibrium percolation threshold of attractive colloidal fluids. Phys. Rev. E 2006,73,020403.
    [13]Deutschlander, S.; Horn, T.; Lowen, H.; Maret, G.; Keim, P. Two-dimensional melting under quenched disorder. Phys. Rev. Lett.2013,111,098301.
    [14]Debenedetti, P. G.; Stillinger, F. H. Supercooled liquids and the glass transition. Nature (London) 2001,410,259-267.
    [15]Kegel, W. K.; van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 2000,287,290-293.
    [16]王杰.胶体晶体的制备及研究,山东师范大学硕士学位论文,2006.
    [17]Alder, B. J.; Wainwright, T. E. Phase transition for a hard sphere system. J. Chem. Phys.1957,27,1208-1209.
    [18]Wood, W. W.; Jacobsen, J. D. Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys.1957,27,1207.
    [19]Hoover, W. G.; Ree, F. H. Recent monte carlo calculations of the equation of state of Lenard-Jones and hard sphere molecules. J. Chem. Phys.1968,49,3609.
    [20]Carnahan, N. F.; Starling, K. E. Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys.1969,51,635.
    [21]Alder, B. J.; Hoover, W. G.; Young, D. A. Studies in molecular dynamics.v. high-density equation of state and entropy for disks and spheres. J. Chem. Phys.1968,49, 3688.
    [22]Bosma, G.; Pathmamanoharan, C.; de Hoog, E. H. A.; Kegel, W. K.; van Blaaderen, A.; Lekkerkerker, H. N. W. Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. J. Colloid Interface Sci.2002,245,292-300.
    [23]van Blaaderen, A.; Wiltzius, P. Real-space structure of colloidal hard-sphere glasses. Science 1995,270,1177-1179.
    [24]Bryant, G.; Williams, S. R.; Qian, L.; Snook, I. K.; Perez, E.; Pincet, F. How hard is a colloidal "hard-sphere" interaction? Phys. Rev. E 2002,66,060501.
    [25]Dullens, R. P. A.; Aarts, D.; Kegel, W. K. Direct measurement of the free energy by optical microscopy. PNAS 2006,103,529-531.
    [26]Sloane, N. J. A. Kepler's conjecture confirmed. Nature 1998,395,435-436.
    [27]Aste, T.; Weaire, D. The pursuit of perfect packing. IOP Publishing, Bristol,2000.
    [28]Bolhuis, P. G.; Frenkel, D.; Mau, S. C.; Huse, D. A. Entropy difference between crystal phases. Nature 1997,388,235-236.
    [29]Bruce, A. D.; Wilding, N. B.; Ackland, G. J. Free energy of crystalline solids:A lattice-switch Monte Carlo method. Phys. Rev. Lett.1997,79,3002-3005.
    [30]Mau, S. C.; Huse, D. A. Stacking entropy of hard-sphere crystals. Phys. Rev. E 1999, 59,4396-4401.
    [31]De Villeneuve, V. W. A. Structure and dynamics at colloidal boundaries. Utrecht University,2008.
    [32]van Megen, W.; Underwood, S. M. Change in crystallization mechanism at the glass transition of colloidal spheres. Nature 1993,362,616-618.
    [33]Zhu, J. X.; Li, M.; Rogers, R.; Meyer, W; Ottewill, R. H.; Russel, W. B.; Chaikin, P. M. Crystallization of hard-sphere colloids in microgravity. Nature 1997,387,883-885.
    [34]Pusey, P. N.; van Megen, W. Observation of a glass transition in suspensions of spherical colloidal particles. Phys. Rev. Lett.1987,59,2083-2086.
    [35]Zaccarelli, E.; Valeriani, C.; Sanz, E.; Poon, W. C. K.; Cates, M. E.; Pusey, P. N. Crystallization of hard-sphere glasses. Phys. Rev. Lett.2009,103,1350704.
    [36]Jeong, U.; Wang, Y. L.; Ibisate, M.; Xia, Y. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres. Adv. Funct. Mater.2005,15,1907-1921.
    [37]Holtz, J. H.; Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997,389,829-832.
    [38]Velev, O. D.; Lenhoff, A. M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid & Interface Sci.2000,5,56-63.
    [39]Jiang, P.; Bertone, J. F.; Colvin, V. L. A lost-wax approach to monodisperse colloids and their crystals. Science 2001,291,453-457.
    [40]Park, S. H.; Qin, D.; Xia, Y. N. Crystallization of mesoscale particles over large areas. Adv. Mater.1998,10,1028-1032.
    [41]Vlasov, Y. A.; Bo, X. Z.; Sturm, J. C.; Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 2001,414,289-293.
    [42]Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett.2006,6,2748-2754.
    [43]van Duffel, B.; Ras, R. H. A.; De Schryver, F. C.; Schoonheydt, R. A. Langmuir-Blodgett deposition and optical diffraction of two dimensional opal. J. Mater. Chem. 2001,11,3333-3336.
    [44]Auer, S.; Frenkel, D. Prediction of absolute crystal nucleation rate in hardsphere colloids. Nature (London) 2001,409,1020-1023.
    [45]Auer, S.; Frenkel, D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature (London) 2001,413,711-713.
    [46]Filion, L.; Ni, R.; Frenkel, D.; Dijkstra, M. Simulation of nucleation in almost hard-sphere colloids:The discrepancy between experiment and simulation persists. J. Chem. Phys.2011,134,134901.
    [47]Williams, S. R.; Royall, C. P.; Bryant, G. Crystallization of dense binary hard-sphere mixtures with marginal size ratio. Phys. Rev. Lett.2008,100,225502.
    [48]乔诺斯等.软凝聚态物质,第一版.北京:科学出版社,2007.
    [49]van Blaaderen, A.; Ruel, R.; Wiltzius, P. Template-directed colloidal crystallization. Nature (London) 1997,385,321-324.
    [50]Hoogenboom, J. P.; van Lange-Suurling, A. K.; Romijn, J.; van Blaaderen, A. Hard-sphere crystals with hcp and non-close-packed structure grown by colloidal epitaxy. Phys. Rev. Lett.2003,90,138301.
    [51]Velikov, K. P.; Christova, C. G.; Dullens, R. P. A.; van Blaaderen, A. Layer-bylayer growth of binary colloidal crystals. Science 2002,296,106-109.
    [52]朱建国,郑文琛,郑家贵,孙小松,王洪涛.固体物理学.北京:科学出版社,2005.
    [53]Eisenmanm, C.; Gasser, U.; Keim, P.; Maret, G.; von Grunberg, H. H. Pair interaction of dislocations in two-dimensional crystals. Phys. Rev. Lett.2005,95,185502.
    [54]Zahn, K.; Lenke, R.; Maret, G Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett.1999,82,2721.
    [55]Zahn, K.; Lenke, R.; Maret, G Dynamic criteria for melting in two dimensions. Phys. Rev. Lett.2000,85,3656.
    [56]Keim, P.; Maret, G.; Herz, U.; von Grunberg, H. H. Harmonic lattice behavior of two-dimensional colloidal crystals. Phys. Rev. Lett.2004,92,215504.
    [57]Halperin, B. I.; Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 1978,41,121.
    [58]Lechner, W.; Dellago, C. Defect interactions in two-dimensional colloidal crystals: vacancy and interstitial strings. Soft Matter 2009,5,2752-2758.
    [59]Libal, A.; Reichhardt, C.; Olson Reichhardt, C. J. A. Point-defect dynamics in two-dimensional colloidal crystals. Phys. Rev. E 2007,75,011403.
    [60]Pertsinidis, A.; Ling, X. S. Diffusion of point defects in two-dimensional colloidal crystals. Nature 2001,413,147-150.
    [61]Kim, M. H.; Im. S. H.; Park, O. O. Rapid fabrication of two-and three-dimensional colloidal crystal films via confined convective assembly. Adv. Funct. Mater.2005,15, 1329-1335.
    [62]Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys.2011,83,587-643.
    [63]Angell, C. A. Formation of glasses from liquids and biopolymers. Science 1995,267, 1924-1935.
    [64]Vogel, H. Das temperatur-abhangigkeitsgesetz der viskositat von fliissigkeiten. Phys. Zeit.1921,22,645-646.
    [65]Tammann, G.; Hesse, W. Die abhangigkeit der viskositat von der temperatur bei unterkuhlten fliissigkeiten. Z. Anorg. Allg. Chem.1926,156,245-257.
    [66]Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc.1925,8,339-355.
    [67]Bassler, H. Viscous flow in supercooled liquids analyzed in terms of transport theory for random media with energetic disorder. Phys. Rev. Lett.1987,58,767-770.
    [68]Elmatad, Y. S.; Chandler, D.; Garrahan, J. P. Corresponding states of structural glass formers. J. Phys. Chem. B 2009,113,5563-5567.
    [69]Hecksher, T.; Nielsen, A. I.; Olsen, N. B.; Dyre, J. C. Little evidence for dynamic divergences in ultraviscous molecular liquids. Nature Phys.2008,4,737-741.
    [70]Elmatad, Y. S.; Jack, R. L.; Chandler, D.; Garrahan, J. P. Finite-temperature critical point of a glass transition. PANS 2010,107,12793-12798.
    [71]Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquid. Annu. Rev. Phys. Chem.2000,51,99-128.
    [72]Richert, R.; Bohmer, R. Heterogeneous and homogeneous diffusivity in anion-conducting glass. Phys. Rev. Lett.1999,83,4337-4340.
    [73]Wang, C. Y.; Ediger, M. D. Lifetime of spatially heterogeneous dynamic domains in polystyrene melts. J. Chem. Phys.2000,112,6933-6937.
    [74]Schmidt-Rohr, K.; Spiess, H. W. Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys. Rev. Lett.1991,66, 3020-3023.
    [75]Kob, W.; Donati, C.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett.1997,79, 2827-2830.
    [76]Hurley, M. M.; Harrowell, P. Non-Gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid. J. Chem. Phys.1996,105, 10521-10526.
    [77]Lacevic, N.; Starr, F. W.; Schroder, T. B.; Glotzer, S. C. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J. Chem. Phys.2003,119,7372-7387.
    [78]Kob, W.; Donati, C.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett.1997,79, 2827-2830.
    [79]Keys, A. S.; Abate, A. R.; Glotzer, S. C.; Durian, D. J. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nature Phys.2007,260-264.
    [80]Turnbull, D. Under what conditions can a glass be formed? Contempor. Phys.1969, 10,473-488.
    [81]Cohen, M. H.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959,31,1164-1169.
    [82]Gibbs, J. H.; Di Marzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys.1958,28,373-383.
    [83]Adam, G.; Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys.1965,43,139-146.
    [84]Anderson, P. W. Ⅲ-Condensed Matter (Balain R, Maynard R, Toulouse Geds.), Lectures on amorphous systerms (Course 3), Amsterdam:North-Holland Publishing Company,1979,161-261.
    [85]Goldstein, M. Viscous liquids and the glass transition:a potential energy barrier picture. J. Chem. Phys.1969,51,3728-3739.
    [86]Sciortino, F.; Tartaglia, P. Glassy colloidal systems. Advances in Physics 2005,54, 471-524.
    [87]Das, S. P. Mode-coupling theory and the glass transition in supercooled liquids. Rev. Mod. Phys.2004,76,785-851.
    [88]Inoue, S.; Spring, K. R. Video microscopy:the fundamentals.2nd ed. Plenum Press: New York,1997.
    [89]Crocker, J. C.; Grier, D. G Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci.1996,179,298-310.
    [90]IDL6.2功能白皮书.北京星图环宇科技有限公司,2007.
    [91]Gallagher, P. D.; Maher, J. V. Partitioning of polystyrene latex spheres in immiscible critical liquid mixtures. Phys. Rev. A 1992,46,2012-2021.
    [92]Gallagher, P. D.; Kumaz, M. L.; Maher, J. V. Aggregation in polystyrene-sphere suspensions in near-critical binary liquid mixtures. Phys. Rev. A 1992,46,7750-7755.
    [93]Gulari, E.; Collings, A. F.; Schmidt, R. L.; Pings, C. J. Light scattering and shear viscosity studies of the binary system 2,6-lutidine-water in the critical region. J. Chem. Phys.1972,56,6169-6179.
    [94]Hertlein, C.; Helden, L.; Gambassi, A.; Dietrich, S.; Bechinger, C. Direct measurement of critical Casimir forces. Nature 2008,451,172-176.
    [95]Buttinoni, I.; Bialke, J.; Kummel, F.; Lowen, H.; Bechinger, C.; Speck, T. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett.2013,110,238301.
    [96]Deckman, H. W.; Dunsmuir, J. H. Natural lithography. Appl. Phys. Lett.1982,41, 377-379.
    [97]Hulteen, J. C.; Van Duyne, R. P. Nanosphere lithography:a materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 1995, 13,1553.
    [98]Zhang, G.; Wang, D.; Mohwald, H. Ordered binary arrays of au nanoparticles derived from colloidal lithography. Nano Lett.2007,7,127-132.
    [99]Chan, G. H.; Zhao, J.; Hicks, E. M.; Schatz, G. C.; Van Duyne, R. P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007,7,1947-1952.
    [100]Gwinner, M. C.; Koroknay, E.; Fu, L. W.; Patoka, P.; Kandulski, W.; Giersig, M.; Giessen, H. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography. Small 2009,5,400-406.
    [101]Chang, C. H.; Tian, L.; Hesse, W. R.; Gao, H.; Choi, H. J.; Kim, J. G.; Siddiqui, M.; Barbastathis, G. From two-dimensional colloidal self-assembly to three-dimensional nanolithography. Nano Lett.2011,11,2533-2537.
    [102]Sharma, A. C.; Jana, T.; Kesavamoorthy, R.; Shi, L.; Virji, M. A.; Finegold, D. N.; Asher, S. A. A general photonic crystal sensing motif:creatinine in bodily fluids. J. Am. Chem. Soc.2004,126,2971-2977.
    [103]Matsuda, K.; Nakamura, N.; Takahashi, K.; Inoue, K.; Koga, N.; Iwamura, H. Design, synthesis, and characterization of three kinds of π-cross-conjugated hexacarbenes with high-spin (S=6) ground states. J. Am. Chem. Soc.1995,117,5550-5560.
    [104]Liu, L.; Zhang, Y. L.; Wang, W. L.; Gu, C. Z.; Bai, X. D. Nanosphere lithography for the fabrication of ultranarrow grapheme nanoribbons and on-chip bandgap tuning of graphene. Adv. Mater.2011,23,1246-1251.
    [105]Denkov, N. D.; Velev, O. D.; Kralchevsky, P. A.; Ivanov, I. B.; Yoshimura, H.; Nagayama, K. Mechanism of formation of two dimensional crystals from latex particles on substrates. Langmuir 1992,8,3183-3190.
    [106]Micheletto, R.; Fukuda, H.; Ohtsut, M. A simple method for the production of a two-dimensional, ordered array of small latex particles. Langmuir 1996,11, 3333-3336.
    [107]Sun, J.; Tang, C. J.; Zhan, P.; Han, Z. L.; Cao, Z. S.; Wang, Z. L. Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces. Langmuir 2010,26,7859-7864.
    [108]Trau, M.; Saville, D. A.; Aksay, I. A. Field-induced layering of colloidal crystals. Science 1996,272,706.
    [109]Zhang, K. Q.; Liu, X. Y. In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 2004,429,739.
    [110]Cheng, Z.; Russell, W. B.; Chaikin, P. M. Controlled growth of hard-sphere colloidal crystals. Nature 1999,401,893-895.
    [111]Dimitrov, A. S.; Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996,12,1303-1311.
    [112]Wong, S.; Kitaev, V.; Ozin, G. A. Colloidal crystal films:advances in universality and perfection. J. Am. Chem. Soc.2003,125,15589-15598.
    [113]Born, P.; Blum, S.; Munoz, A.; Kraus, T. Role of the meniscus shape in large-area convective particle assembly. Langmuir 2011,27,8621-8633.
    [114]Born, P.; Munoz, A.; Cavelius, C.; Kraus, T. Crystallization mechanisms in convective particle assembly. Langmuir 2012,28,8300-8308.
    [115]Jiang, P.; Prasad, T.; McFarland, M. J.; Colvin, V. L. Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Appl. Phys. Lett.2006,89,011908.
    [116]Mihi, A.; Ocana, M.; Miguez, H. Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv. Mater.2006,18,2244-2249.
    [117]Picard, G. Fine particle 2D crystals prepared by the dynamic thin laminar flow method. Langmuir 1997,13,3226-3234.
    [118]Reinmuller, A.; Oguz, E. C.; Messina, R.; Lowen, H.; Schope, H. J.; Palberg, T. Colloidal crystallization in the quasi-two-dimensional induced by electrolyte gradients. J. Chem. Phys.2012,136,164505.
    [119]Picard, G. Fine particle monolayers made by a mobile dynamic thin laminar flow (DTLF) device. Langmuir 1998,14,3710-3715.
    [120]Lee, J.; Strandburg, K. J. First-order melting transition of the hard-disk system. Phys. Rev. B 1992,46,11190-11193.
    [121]Israelachvili, J. N. Intermolecular and surface forces.2nd ed. Academic Press:New York,1992.
    [122]Hansen, J.-P.; McDonald, I. R. Theory of simple liquids.3rd ed. Academic Press: New York,2006.
    [123]Gasser, U.; Weeks, E. R.; Schofield, A.; Pusey, P. N.; Weitz, D. A. Real space imaging of nucleation and growth in colloidal crystallization. Science 2001,292,258.
    [124]Muller, K. Cluster-beam deposition of thin films:a molecular dynamics simulation. J. Appl. Phys.1987,61,2516.
    [125]Sato, S.; Nozaki, S.; Morisaki, H.; Iwase, M. Tetragonal germanium films deposited by the cluster-beam evaporation technique. Appl. Phys. Lett.1995,66,3176.
    [126]Alden, T. H.; Livingst, J. D. Magnetic in a type-2 superconductor. Appl. Phys. Lett. 1966,8,6.
    [127]Schmucker, R.; Brandt, E. H. Flux pinning by point pinning center in type-2 superconductors. Phys. Stat. Sol.(b) 1977,79,479-487.
    [128]Brandt, E. H. The flux-line lattice in superconductors. Rep. Prog. Phys.1995,58, 1465-1594.
    [129]Oral, A.; Barnard, J. C.; Bending, S. J.; Ooi, S.; Taoka, H.; Tamegai, T. Disorder-driven intermediate state in the lattice melting transition of Bi2Sr2CaCu2Os+δ single crystals. Phy. Rev. B 1997,56, R14295-R14298.
    [130]Mikitik, G. P.; Brandt, E. H. Effect of pinning on the vortex-lattice melting line in type-II superconductors. Phy. Rev. B 2003,68,054509.
    [131]Olsson, P.; Teitel, S. Disorder driven melting of the vortex line lattice. Phys. Rev. Lett.2001,87,137001.
    [132]Lin, J.-X.; Reichhardt, C.; Nussinov, Z.; Pryadko, L. P.; Olson Reichhardt, C. J. Heterogeneities and topological defects in two-dimensional pinned liquids. Phys. Rev. E 2006,73,061401.
    [133]Pertsinidis A.; Ling X. S. Statics and dynamics of 2D colloidal crystals in a random pinning potential. Phys. Rev. Lett.2008,100,028303.
    [134]Olson Reichhardt, C. J.; Groopman, E.; Nussinov, Z.; Reichhardt, C. Jamming in systems with quenched disorder. Phys. Rev. E 2012,86,061301.
    [135]Berthier, L.; Kob, W. Static point-to-set correlations in glass-forming liquids. Phys. Rev. E 2012,85,011102.
    [136]Herrera-Velarde, S.; von Grunberg, H. H. Disorder-induced vs temperature-induced melting of two-dimensional colloidal crystals. Soft Matter 2009,5,391.
    [137]Sheng, H.W.; Luo, W. K.; Alamgir, F. M.; Bai, J. M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature (London) 2006,439,419.
    [138]Brenskelle, L. A.; McCoy, B. J. Cluster kinetics of pressure-induced glass formation. J. Chem. Phys.2006,124,084502.
    [139]Puertas, A. M.; Zaccarelli, E.; Sciortino, F. Viscoelastic properties of attractive and repulsive colloidal glasses. J. Phys.:Condens. Matter 2005,17,271-277.
    [140]Watanabe, K.; Kawasaki, T.; Tanaka, H. Structural origin of enhanced slow dynamics near a wall in glass-forming systems. Nature Mater.2011,10,512-520.
    [141]Binder, K.; Kob, W. Glassy materials and disordered solids. World Scientific, Singapore,2011.
    [142]Fuchs, M. MCT results for a simple liquid at the glass transition.Transp. Theory Stat. Phys.1995,24,855-880.
    [143]Angell, C. A. Perspective on the glass transition. J. Phys. Chem. Solids 1988,49, 863-871.
    [144]Kob, W.; Berthier, L. Probing a liquid to glass transition in equilibrium. Phys. Rev. Lett.2013,110,245702.
    [145]Yunker, P.; Zhang, Z. X.; Yodh, A. G. Observation of the disorder-induced crystal-to-glass transition. Phys. Rev. Lett.2010,104,015701.
    [146]Kawasaki, T.; Araki, T.; Tanaka, H. Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids. Phys. Rev. Lett.2007, 99,215701.
    [147]Berthier, L.; Biroli, G.; Bouchaud, J.-P.; Cipelletti, L.; El Masri, D.; L'Hote, D.; Ladieu, F.; Pierno, M. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 2005,310,1797-1801.
    [148]Dillmann, P.; Maret, G.; Keim, P. Comparison of 2D melting criteria in a colloidal system. J. Phys.:Condens. Matter 2012,24,464118.
    [149]Han, Y.; Ha, N. Y.; Alsayed, A. M.; Yodh, A. G Melting of two-dimensional tunable-diameter colloidal crystals. Phys. Rev. E 2008,77,041406.
    [150]Candelier, R.; Dauchot, O.; Biroli, G. Building blocks of dynamical heterogeneities in dense granular media. Phys. Rev. Lett.2009,102,088001.
    [151]Miguez, H.; Meseguer, F.; Lopez, C.; Mifsud, A.; Moya, J. S.; Vazquez. L. Evidence of FCC crystallization of SiO2 nanospheres. Langmuir 1997,13,6009.
    [152]Xia, Y. N.; Yin, Y. D.; Lu, Y.; McLellan, J. Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv. Funct. Matter.2003, 13,907-918.
    [153]Yin, Y. D.; Xia, Y. N. self-assembly of spherical colloids into helical chains with well-controlled handedness. J. Am. Chem. Soc.2003,125,2048-2049.
    [154]Savage, J. R.; Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett.2009,102,198302.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.