单细胞技术在正链RNA病毒研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正链RNA病毒(Positive-stranded RNA viruses)是以RNA为遗传物质且病毒RNA可直接作为mRNA翻译产生病毒蛋白的一类病毒,其中许多成员是严重威胁与损害人类健康的病原体,或是造成经济动物患病死亡的致病因子,如丙型肝炎病毒、脊髓灰质炎病毒、SARS病毒、登革热病毒、口蹄疫病毒、牛病毒性腹泻-粘膜病病毒(简称牛腹泻病毒)等。目前,对这些危害较大的病毒基本上都缺乏快速有效的防治方法。病毒基因组的复制是病毒生存和繁殖的基础,是病毒生命周期不可或缺的重要环节,所以研究单股正链RNA病毒基因组的复制是防止相关致病因子(病原体)蔓延与传播的基础。
     口蹄疫病毒(Foot-and-mouth disease virus,FMDV)是一种单股正链RNA病毒,以负链RNA作为中间体进行复制,感染敏感细胞系(如仓鼠肾细胞系BHK-21或猪肾细胞系PK-15)会引发急性感染。为了更好地研究病毒感染,需要检测单个急性感染细胞中病毒RNA量而不仅仅检测群体细胞的病毒量。在本研究中,我们建立了一种链特异性的单细胞实时荧光定量RT-PCR技术,其技术包括显微操作分离单细胞、单细胞裂解与高灵敏度的实时荧光定量RT-PCR三部分。该技术用于检测FMDV基因组RNA,总计224个急性感染FMDV的单细胞样品被分离并进行定量检测,其中185个样品为阳性(阳性率为82.6%),阳性细胞中病毒载量从几十至几十万拷贝数不等,最高达约1000000拷贝数/细胞。结果表明,在FMDV感染过程中不是每个细胞都被病毒感染上,且群体细胞中单个细胞的病毒载量存在很大的差异。该技术实现了在单细胞水平上研究病毒的复制及其与宿主细胞的关系,为阐明病毒的复制机制和进化奠定了基础,也为病毒感染细胞生物学的深入研究提供一种新的方法。另外,分离细胞和裂解细胞的技术具有广泛适用性、能用于任何其他细胞(悬浮细胞与贴壁细胞)的分离与预处理,为在单细胞水平上进行的各种研究奠定基础。
     病毒基因组RNA起始复制的方式有两种:非引物依赖和引物依赖,口蹄疫病毒(FMDV)和脊髓灰质炎病毒(PV)属引物依赖,牛腹泻病毒(BVDV)是以非引物依赖起始复制。在本研究中,单细胞实时荧光定量RT-PCR技术被用于检测FMDV、PV、BVDV正链RNA与负链RNA以研究正链RNA病毒的复制规律。PV感染Vero细胞和FMDV感染BHK-21细胞、PK-15细胞的单细胞定量数据(+RNA与-RNA的对数)都具有较好的线性相关性,经过数学模型的推导分析发现一条负链可能是对应合成一条正链,只是起始+RNA量和用于合成负链的正链比例上存在一定的差异。而BVDV感染BKC细胞的单细胞定量数据表明,+RNA与-RNA的对数基本不具线性相关性,建模初步分析结果为一条负链可能是对应合成一条正链,但起始+RNA量和用于合成负链的正链比例上与FMDV和PV差异非常大。
     弱碱(如NH4Cl)进入酸性的胞内体中提高与细胞内吞作用相关的细胞器的pH值,阻止依赖于低pH值的蛋白质构象变化从而影响病毒基因组释放,降低病毒感染后的增殖量。本研究用NH4Cl维持培养感染FMDV的BHK-21细胞系,存活细胞经显微操作单细胞分离、单细胞克隆培养传代,共获得17株阳性克隆细胞株。随机选取一株阳性细胞(BHK-Op)常规传代,采用实时荧光定量RT-PCR,透射电子显微镜,western blot等方法研究病毒持感细胞特性。BHK-Op48细胞切片电镜观察,病毒粒子存在于细胞质中弥散的小囊泡结构内(每一个小囊泡内仅有几个病毒粒子),直径20-25nm,不同于急性感染细胞中病毒粒子的分布,后者主要位于近核膜的囊泡中(囊泡中存在大量病毒粒子);持感病毒感染其敏感细胞不能使之形成蚀斑但TCID50实验结果表明其毒力较野生型病毒强;序列比对结果显示,持感病毒基因组中有15个基因编码的蛋白突变全部位于非结构蛋白区,与之前的研究结果大相径庭,其中3C蛋白编码区两个保守位点的突变恰好位于其RNA结合结构域,与病毒复制相关,可能是其不能形成蚀斑的原因之一。体外持续感染的建立为研究病毒与细胞共进化以及病毒与受体相互作用提供有效模型。
The genome of positive-stranded RNA viruses is plus strand RNA, which can be used as mRNA to generate viral proteins. Many of the members are causative agents of highly contagious diseases in humans, plants and animals, e.g., HCV, poliovirus (PV), SARS virus, dengue virus, foot and mouth disease virus (FMDV), bovine viral diarrhea virus (BVDV). So far, there are no effective and rapid methods for prevention and cure of these harmful viruses. Viral genome replication is the basis of virus survival and multiplication, which is an indispensable process in virus life cycle. Studies on positive strand RNA viral replication play important roles in avoiding the spread of pathogens.
     Foot-and-mouth disease virus is a positive-sense, single-stranded RNA virus with a negative strand as its replication intermediate, which can cause severe acute infection in sensitive cell lines (BHK-21 cells and PK-15 cells). To investigate better the actual state of virus infection, there is a need to measure the amount of FMDV RNA in a single acutely infected cell rather than in a large number of cells. Therefore, in the present study, a strand-specific single-cell quantitative real-time RT-PCR was developed to analyze the RNA of FMDV. This new method includes three techniques: a technique for isolating single cells with micromanipulators, lyses of single-cell samples and sensitive quantitative real-time RT-PCR. In the assay of acute infection, 185 of 224 (82.6%) single-cell samples were positive and contained viral genome copies ranging from several to thousands, and up to 1000000 copies. However, not all cells were infected and there were differences in the number of viral RNA copies among cells. Virus replication as well as the relationship bewteen virus and host cell can be studied in single cells basing on the technique, which helps to clarify the mechnism of virus replication and virus evolution and also provides as a new method for further research on infectious cell biology. Besides, the methods for isolation and pre-treatment of single cells are universal and can be used in other cell lines (both suspended cells and adherent cells) whether inoculated with viruses or not, which are the basis of other analyses in single cell level.
     There are two mechanisms by which viral replication can be initiated:primer independent or de novo, and primer dependent. FMDV and PV belong to primer dependent while BVDV belongs to primer independent. In this study, single cell quantitative real-time RT-PCR assays were carried out for quantitation of both positive strands and negative strands of FMDV, PV and BVDV to investigate the replication of positive-stranded RNA viruses. Results showed that experimental data (Log10+RNA and Log10-RNA) of Vero cells infected with PV and BHK-21 cells/PK-15 cells infected with FMDV had good linear correlations. Mathematical modeling analysis of our data indicated that one-RNA may be used to generate one +RNA and initial+RNA copies as well as the rate of+RNAs for replication were different in two viruses (FMDV and PV). However, quantitation data of BKC cells infected with BVDV showed almost no linear correlations. Results of mathematical modeling analysis indicated that one-RNA may be used to generate one+RNA and initial+RNA copies as well as the rate of+RNAs for replication were totally different from the other two viruses.
     The weak bases (ammonium chloride), which diffuse into acidic endosomes and raise the pH of endocytic organelles, prevent the required low pH-dependent proteins conformational changes leading to virus genome release, can reduce the yield of FMDV after infection. In this study, baby hamster kidney cell line (BHK-21) infected with FMDV serotype O was maintained in medium with NH4Cl weak base. Survived cells were isolated using micromanipulator to form single-cell clones,17 positive-cloned cell strains were obtained. One cell strain (BHK-Op) was selected randomly and cultured as usual for analysis with quantitative real-time RT-PCR, western blotting, transmission electron microscope. FMDV particles were observed successfully in BHK-Op48 cells, which dispersed in the cytoplasm and loacted in some small endosomes (not more than 10, usually 2 or 3) with a diameter of 20-25nm. Virions in acutely infected cells mainly located in endosomes close to the nucleus in large quantities. Infection of the persistent viruses could not form plaques in host cells but virulence was enhanced. Basing on analysis and comparison of cDNA sequences of resident viruses and wild type viruses,15 amine acid mutations were found, all of which located in nonstructural proteins rather than in structural proteins, which was inconsistent with previous studies. Two conservative amino acid mutations in 3C protein located exactly in the RNA binding domain and were relevant to virus replication, which is likely to be one of the reasons for lost plaques. The establishment of persistent infections in vitro provides an effect model for studying coevolutions of virus and host cell as well as interactions of virus and receptors. Besides, microarray experiments are underway to attempt to search host cell proteins or factors pertaining to FMDV persistence in BHK-21 cells.
引文
金奇.医学分子病毒学[M].2001,第一版,科学出版社。
    刘光清、刘在新、谢庆阁.口蹄疫病毒持续性感染形成原因的探讨。中国兽医科技,2003,33:35-40.
    萨姆布鲁克.J.,拉塞尔.D.W.分子克隆实验指南[M].2002,第三版,科学出版社。
    沈萍,范秀容,李广武.微生物学实验[M].1999,第三版,高等教育出版社。
    熊杰、夏照帆、韩玲.单细胞逆转录PCR研究方法及其应用。第二军医大学学报,2007,28:332-334.
    殷震,刘景华.动物病毒学[M].1997,第二版,科学出版社,。
    Ackermann, S., Padmanabhan, R. De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J. Biol. Chem.2001,276:39926-39937.
    Adami, C., Pooley, J., Glomb, J., Stecker, E., Fazal, F., Fleming, J.O. Evolution of mouse hepatitis virus(MHV) during chronic infection:quasispecies nature of the persisting MHV RNA. Virology 1995,209:337-346.
    Agapov, E.V., Murray, C.L., Frolov, I., Qu, L., Myers, T.M., Rice, C.M. Uncleaved NS23 is required for production of infectious bovine viral diarrhea virus. J. Virol. 2004,78:2424-2425.
    Ahmed, R., Morrison, L.A., Knipe, D.M. Persistence of viruses,1996,3rd ed., vol.1, In:Virology, Fields, B.N., et al., (eds). Lippincott-Raven, Philadelphia. pp. 219-249.
    Ahlquist, P., Noueiry, A.O., Lee, W., Kushner, D.B., Dye, B.T. Host factors in positive-strand RNA virus genome replication. J. Virol.2003,77:8181-8186.
    Alexandersen, S., Mowat, G.N. Foot-and-mouth disease:host range and pathogenesis. Cur. Top. Microbiol. Immunol.2005,288:9-42.
    Alexandersen, S., Zhang, Z., Donaldson, A.I., Garland, A.J. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol.2003,129:1-36.
    Alsbo, C.W., Wrang, M.L., Moller, F., Diemer, N.H. Is the AMPA receptor subunit GluR2 mRNA an early indicator of cell fate after ischemia? A quantitative single cell RT-PCR study. Brain Res.2001,894:101-108.
    Bachrach, H. L., Callis, J.J., Hess, W.R., Patty, R.E. A plaque assay for foot-and-mouth disease virus and kinetics of virus reproduction. Virology 1957,4 (2):224-236.
    Bachrach, H. L. Foot-and-mouth disease. Annu. Rev. Microbiol.1968,22:201-244.
    Baxt, B. Effect of lysosomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res.1987.7 (3):257-271.
    Beck, E., St. rohamaier, K. Subtyping of European foot-and-mouth disease virus strains by nucleotide sequence determination. J. Virol.1987,61:1621-1629.
    Belsham, G.J., Bostock, C.J. Studies on the infectivity of foot-and-mouth disease virus RNA using microinjection. J.Gen.Virol.1988,69:265-274.
    Belsham, G.J. Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo.EMBO J.1992,11:1105-1110.
    Belsham, G.J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family:aspects of virus protein synthesis, protein processing and structure. Prog. Biophys. Mol. Bio.1993,60(3):241-260.
    Belsham, G.J., Sonenberg, N. RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol. Rev.1996,60:499-511.
    Belsham, G.J., Jackson, R.J. Translation initiation on picornavirus RNA,2000. In: "Translation control of gene expression" Monograph 39. Eds. Sonenberg, N., Hershey, J.W.B., Mathews, M.B., pp869-900. Cold spring harbor laboratory press, cold spring harbor, NY.
    Belsham, G.J., McInerney, G.M., Ross-Smith, N. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J. Virol.2000,74:272-280.
    Belsham, G.J. Translation and replication of FMDV RNA. Curr. Top. Microbiol. 2005,288:43-70.
    Bienz, K., Egger, D., Troxler, M., Pasamontes, L. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J.Virol.1990,64:1156-1163.
    Borzakian, S., Couderc, T., Barbier, Y., Attal, G., Pelletier, I., Colbere-Garapin, F. Persistent poliovirus infection:establishment and maintenace involve distinct mechansim. Virology 1992,186:398-408.
    Brahic, M., Stroop, W.G. Theiler's virus persists in glial cells during demyelinating disease. Cell 1981,26:123-128.
    Brown, C.C., Piccone, M.E., Mason, P.W., McKenna, T.S.C., Grubman, M.J. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J. Virol.1996,70:5638-5641.
    Brown, F., Newman, J., Stott, J., Porter, A., Frisby, D., Newton, C., Carey, N., Fellner, P. Poly(C) in animal viral RNAs. Nature 1974,251:342-344.
    Buckwold, V.E., Beer, B.E., Donis, R.O. Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents. Antiviral. Res. 2003,60:1-5.
    Callahan, J.D., Brown, F., Osorio, F.A., Sur, J.H., Kramer, E., Long, G.W., Lubroth, J., Ellis, S.J., Shoulars, K.S., Gaffney, K.L., Rock, D.L., Nelson, W.M. Use of a portable real-time reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease virus. J. Am. Vet. Med. Assoc.2002,220: 1636-1642.
    Canning, W.M., Fields, B.N. Ammonium chloride prevents lytic growth of reovirus and helps to establish persistent infection in mouse L cells. Science 1983,219 (4587):987-988.
    Cao, W., Oldstone, M.B., de la Torre, J.C. Viral persistent infection affects both transcriptional and posttranscriptional regulation of neuron-specific molecule GAP43. Virology 1997,230:147-154.
    Cao, X., Bergmann, I.E., Fullkrug, R., Beck, E. Functional analysis of the two alternative translation initiation sites of foot-and-mouth disease virus. J Virol.1995, 69:560-563.
    Carp, R.I. Persistent infection of human lymphoid cells with poliovirus and development of temperature sensitive mutants. Intervirology 1981,15:49-56.
    Carrillo, E.C., Giachetti, C., Campos, R.H. Early steps in FMDV replication:further analysis on the effects of chloroquine. Virology 1985,147(1):118-125.
    Carrillo, C., Tulman, E.R., Delhon, G., Lu, Z., Carreno, A., Vagnozzi, A., Kutish, G.F., Rock, D.L. Comparative genomics of foot-and-mouth disease virus. J. Virol. 2005,79(10):6487-6504.
    Chen, W., Baric, R.S. Molecular anatomy of mouse hepatits virus persistence: coevolution of increased host cell resistance and virus virulence. J. Virol.1996,70: 3947-3960.
    Chow, M., Newman, J. F., Filman, D., Hogle, J. M., Rowlands, D. J., Brown, F. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 1987,327:482-486.
    Clarke, B. E., Brown, A. L., Currey, K. M., et al. Potential secondary and tertiary structure in the genome RNA of foot-and-mouth disease virus. Nucleic Acids Res. 1987,15(17):7067-7079.
    Cleaves, G.R., Ryan, T.E., Schlesinger, R.W. Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology 1981,111:73-83.
    Colbere-Garapin, F., Christodoulou, C., Crainic, R., Pelletier, I. Persistent poliovirus infection of human neuroblastoma cells. Proc. Natl. Acad. Sci. USA 1989,86: 7590-7594.
    Colett, M.S., Larson, R., Gold, C., Strick, D., Anderson, D.K., Purchio, A.F. Molecular cloning and nucleotide sequence of the pesti virus bovine viral diarrhea virus. Virology 1988,165:191-199.
    Curry, S., Abrams, C.C., Fry, E., Crowther, J.C., Belsham, G.J., Stuart, D.I., King, A.M. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J. Virol.1995,69 (1):430-438.
    Dabydeen, S.A., Meneses, P.I. The role of NH4Cl and cysteine proteases in Human Papillomavirus type 16 infection. Virol. J.2009,6:109.
    de la Torre, J.C., Davila, M., Sobrino, F., Ortin, J., Domingo, E. Establishment of cell lines persistently infected with foot-and-mouth disease virus. Virology 1985,145 (1):24-35.
    de la Torre, J.C., Martinez-salas, E., Diez, J., Villaverde, A., Gebauer, F., Rocha, E., Davila, M., Domingo, E. Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. J. Virol.1988,62 (6):2050-2058.
    de la Torre, J.C., Oldstone, M.B.A. Anatomy of viral persistence:mechnisms of persistence and associated disease. Adv. Virus Res.1996,46:311-343.
    Dermody, T.S., Nibert, M.L., Wetzel, J.D., Tong, X., Fields, B.N. Cells and viruses with mutations affecting viral entry are selected during persistent infections of L cells with mammalian reoviruses. J. Virol.1993,67 (4):2055-2063.
    Destombes, J., Couderc, T., Thiesson, D., Girard, S., Wilt, S.G., Blondel, B. Persistent poliovirus infection in mouse motoneurons. J. Virol.1997,71:1621-1628.
    Doedens, J.R., Kirkegaard, K. Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J.1995,14:894-907.
    Donnelly, M.L., Gani, D., Flint, M., Monaghan, S., Ryan, M.D. The cleavage activities of apthovirus and cardiovirus 2A proteins. J. Gen. Virol.1997,78:13-21.
    Domingo, E., Escarmis, C., Baranowski, E., Ruiz-Jarabo, C.M., Carrillo, E., Nun-ez, J.I., Sobrino, F. Evolution of foot-and-mouth disease virus. Virus Research 2003, 91:47-63.
    Dryga, S.A., Dryga, O.A., Schlesinger, S. Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK-21 cells:the importance of a mutation in the nsP2 gene. Virology 1997,228:74-83.
    Egger, D., Wolk, B., Gosert, R., Bianchi, L., Blum, H.E., Moradpour, D., Bienz, K. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol.2002,76:5974-5984.
    Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z., Goldstein, S.R., Weiss, R.A., Liotta, L.A. Laser capture microdissection. Science 1996,274 (5289):998-1001.
    Escarmis, C., Toja, M., Medina, M., Domingo, E. Modifications of the 5'untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture. Virus Res.1992,26:113-125.
    Escarmis, C., Gomez-Mariano, G., Davila, M., Domingo, E. Resistance to extinction of low fitness virus subject to plaque-to-plaque transfers:diversification by mutation clustering. J. Mol. Biol.2002,315:647-661.
    Evans, C.F., Borrow, P., de la Torre, J.C., Oldstone, M.B.A.Virus-induced immunosuppression:kinetic analysis of the selection of a mutation associated with viral persistence. J. Virol.1994,68:7367-7373.
    Falk, M. M., Sobrino, F., Beck, E. Vpg gene amplification correlates with infective particle formation in foot-and-mouth disease virus. J Virol.1992,66:2251-2260.
    Fernandez-Miragall, O., Martinez-Salas, F. Structrued organization of a viral IRES depends on the integrity of the GNRA motif. RNA 2003,9:1333-1344.
    Ferrer-Orta, C., Arias, A., Escarmis, C., Verdaguer, N. A comparsion of viral RNA-dependent RNA polymerases. Curr. Opin. Struct. Biol.2006,14:4-9.
    Ferrer-Orta, C., Agudo, R., Domingo, E., Verdaguer, N. Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Curr. Opin. Struct. Biol.2009,19:752-758.
    Fosgate, GT., Tavornpanich, S., Hunter, D., Pugh, R., Sterle, J.A., Schumann, K.R., Eberling, A.J., Beckham, T.R., Martin, B.M., Clarke, N.P., Adams, L.G. Diagnostic specificity of a real-time RT-PCR in cattle for foot-and-mouth disease and swine for foot-and-mouth disease and classical swine fever based on non-invasive specimen collection. Vet. Microbiol.2008,132:158-164.
    Gamarnik, A. V., Andino, R. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev.1998,12:2293-2304.
    Gingras, A.C., Raught, B., Sonenberg, N. eIF4 initiation factors:effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem.1999, 68:913-963.
    Glaser, W., Cencic, R., Skern, T. Foot-and-mouth-disease virus Leader proteinase: involvement of C-terminal residues in self-processing and cleavage of eIF4GI. J. Biol. Chem.2001,276:35473-35481.
    Gong, Y., Trowbridge, R., Macnaughton, T.B., Westaway, E.G., Shannon, A.D., Gowans, E.J. Characterization of RNA synthesis during a one-step growth curve and of the replication mechanism of bovine viral diarrhea virus. J. Gen. Virol.1998, 77:2729-2736.
    Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J.W., Barclay, W., Evan, D.J. Identification of a cis-acting replication element within the poliovirus coding region. J. Virol.2000,74:4590-4600.
    Goris, N., Vandenbussche, F., Herr, C., Villers, J., Van de Stede, Y., De Clercq, K. Validation of two real-time RT-PCR methods for foot-and-mouth disease diagnosis: RNA-extraction, matrix effect, uncertainty of measurement and precision. J. Virol. Methods 2009,160:157-162.
    Gradi, A., Foeger, N., Strong, R., Svitkin, Y.V., Sonenberg, N., Skern, T., Belsham, G. J. Cleavage of enkaryotic translation initiation factor 4GII within foot-and-mouth disease virus-effected cells:identification of the L-protease cleavage site in vitro. J. Virol.2004,78:3271-3278.
    Gray, E.W., Nettleton, P.F. The ultrastructure of cell cultuers infected with border disease and bovine viral diarrhea virus. J. Gen. Virol.1987,68:2339-2346.
    Gromeier, M., Wimmer, E., Gorbalenya, A.E., Domingo, E., Webster, R.G., Holland, J.J.S. Origin and evolution of viruses.1999, San Diego, Academic Press, pp.287-343.
    Groppelli, E., Tuthill, T.J., Rowlands, D.J. Cell entry of the Aphthovirus equine rhinitis A virus is dependent on endosome acidification. J. Virol.2010, epub ahead of print.
    Grubman, M.J., Zellner, M., Bablanian, G., Mason, P.W., Piccone, M.E. Identification of the active-site residues of the 3C proteinase of foot-and-mouth disease virus. Virology 1995,213:581-589.
    Grubman, M.J., Baxt, B. Foot-and-Mouth disease. Clin. Microbiol. Rev.2004,17 (2): 465-493.
    Gu, C.J., Zheng, C.Y., Zhang, Q., Shi, L.L., Li, Y., Qu, S.F. An antiviral mechanism investigated with ribavirin as an RNA virus mutagen for foot-and-mouth disease virus. J. Biochem. Mol. Biol.2006,39 (1):9-15.
    Gu, C.J., Zheng, C.Y., Shi, L.L., Zhang, Q., Li, Y., Lu, B., Xiong, Y., Qu, S.F., Shao, J., Chang, H.Y. Plus-and minus-stranded foot-and-mouth disease virus RNA quantified simultaneously using a novel real-time RT-PCR. Virus Genes 2007,34: 2461-2469.
    Gu, C., Zeng, T., Li, Y., Xu, Z., Mo, Z., Zheng, C. Structure-function analysis of mutant RNA-dependent RNA polymerase complexes with VPg. Biochemistry (Mosc) 2009,74:1132-1141.
    Hagen, M., Tiley, L., Chung, T.D. Y., Krystal, M. The role of template-primer interactions in cleavage and initiation by the influenza virus polymerase. J. Gen. Virol.1995,76:603-611.
    Hahn, S., Zhong, X.Y, Troeger, C., Burgemeister, R., Gloning, K., Holzgreve, W. Current applications of single-cell PCR. Cell. Mol. Life. Sci.2000,57:96-105.
    Hartshorn, C., Anshelevich, A., Wangh, L.J. Rapid, single-tube method for quantitative preparation and analysis of RNA and DNA in samples as small as one cell. BMC Biotechnol.2005,5:2.
    Hartshorn, C., Eckert, J.J., Hartung, O., Wangh, L.J. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos. BMC Biotechnol.2005,7:87.
    Herrera, M., Grande-Perez, A., Perales, C., Domingo, E. Persistence of foot-and-mouth disease virus in cell culture revisited:implications for contingency in evolution. J. Gen. Virol.2008,89:232-244.
    Herold, J., Andino, R. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol. Cell 2001,7:581-591.
    Hillman, K.L., Knudson, C.A., Carr, P.A., Doze, V.A., Porter, J.E. Adrenergic receptor characterization of CA1 hippocampal neurons using real time single cell RT-PCR. Mol. Brain. Res.2005,139:267-276.
    Hinton, T.M., Li, F., Crabb, B.S. Internal ribosomal entry site-mediated translation initiation in equine rhinitis A virus:similarities to and differences from that of foot-and-mouth disease virus. J. Virol.2000,74:11708-11716.
    Hinton, T., Ross-Smith, N., Warner, S., Belsham, G.J., Crabb, B.S. Conservation of L and 3C proteinase activities across distantly related aphthoviruses. J. Gen. Virol. 2002,83:3111-3121.
    Hirrlinger, J., Moeller, H., Kirchhoff, F., Dringen, R. Expression of multidrug resistance proteins (Mrps) in astrocytes of the mouse brain:a single cell RT-PCR study. Neurochem. Res.2005,30:1237-1244.
    Hobson, S.D., Rosenblum, E.S., Richards, O.C., Richmond, K., Kirkegaard, K., Schultz, S.C. Oligomeric structures of poliovirus polymerase are important for function. EMBO J.2001,20:1153-1163.
    Hohler, T., Gerken, G., Notghi, A., Knolle, P., Lubjuhn, R., Taheri, H. MHC class Ⅱ genes influence the susceptibility to chronic active hepatitis C. J. Hepatol.1997,27: 259-264.
    Huang, X., Li, Y, Zheng, C. A novel single-cell quantitative real-time RT-PCR method for quantifying foot-and-mouth disease viral RNA. J. Virol. Methods 2009, 155 (2):150-156.
    Imataka, H., Gradi, A., Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J.1998,17:7480-7489.
    Jarousse, N., Grant, R.A., Hogle, J.M., Zhang, L., Senkowski, A., Roos, R.P. A single amino acid change determines persistence of a chimeric Theiler's virus. J. Virol. 1994,68:3364-3368.
    Jemiolo, B., Trappe, S. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise. Biochem. Biophys. Res. Commun. 2004,320:1043-1050.
    Jeffreys, A.J., Wilson,V., Neumann,R., Keytel, J. Amplification of human minisatellites by the polymerase chain reaction:towards DNA fingerprinting of single cells. Nucleic. Acids. Res.1988,16:10953-10971.
    Johns, H.L., Berryman, S., Monaghan, P., Belsham, G.J., Jackson, T. A dominant-negative mutant of rab5 inhibits infection of cells by foot-and-mouth disease virus:implications for virus entry. J. Virol.2009,83 (12):6247-6256.
    Joly, E., Mucke, L., Oldstone, M.B.A. Viral persistence in neurons explained by lack of major histocompatibility class Ⅰ expression. Science 1991,253:1283-1285.
    Jubelt, B., Meagher, J.B. Poliovirus infection of cyclophosphamide-treated mice results in persistence and late paralysis. I. Virologic studies. Neurology 1984,34: 486-493.
    Kaminski, A., Howell, M.T., Jackson, R.J. Initiation of encephalomyocarditis virus RNA translation:the authentic initiation site is not selected by a scanning mechnism. EMBO J.1990,9:3753-3759.
    Kao, C.C., Singh, P., Ecker, D.J. De novo initiation of viral RNA-dependent RNA synthesis. Virology 2001,287:251-260.
    Krapf, R., Solioz, M. Na/H antiporter mRNA expression in single nephron segments of rat kidney cortex. J. Clin. Invest.1991,88:783-788.
    King, A. M. Q., Sanger, D. V., Harris, T. J. R. Heterogeneity of the genome-linked protein of foot-and-mouth disease virus. J Virol.1980,34:627-634.
    Kirchweger, R., Ziegler, E., Lamphear, B. J., Waters, D., Liebig, H. D., Sommergruber, W., Sobrino, F., Hohenadl, C., Blaas, D., Rhoads, R. E. Foot-and-mouth disease virus leader proteinase:purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol.1994,68:5677-5684.
    Kolupaeva, V.G., Hellen, C.U.T., Shatsky, I.N. Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. RNA 1996,2: 1199-1212.
    Kristensson, K., Norrby, E. Persistence of RNA viruses in the central nervous system. Ann. Rev. Microbiol.1986,40:159-184.
    Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonak, J., Lind, K., Sindelka, R., Sjoback, R., Sjogreen, B., Strombom, L., Stahlberg, A., Zoric, N. The real-time polymerase chain reaction. Mol. Aspects Med.2006,27:95-125.
    Kuhn, R., Luz, N., Beck, E. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J Virol.1990,64:4625-4631.
    Kullberg, M., Nilsson, M.A., Arnason, U., Harley, E.H., Janke, A. Housekeeping genes for phylogenetic analysis of Eutherian relationships. Mol. Biol. Evol.2006, 23:1493-1503.
    Kurokawa, M., Furukawa, H., Yabe, T., Matsui, T., et al. Frequency of clonally expanded Tcells evaluated by PCR from a single cell. J. Immunol. Methods 1999, 224:203-208.
    Lawrence, P., Rieder, E. Identification of RNA helicase A as a new factor in the replication cycle of foot-and-mouth disease virus. J. Virol.2009,83:11356-11366.
    Lefebvre, S., Hubert, B., Tekaia, F., Brahic, M., Bureau, J.F. Isolation from human brain of six previously unreported cDNAs related to the reverse transcriptase of human endogenous retroviruses. AIDS Res. Hum. Retroviruses 1995,11:231-237.
    Levine, B., Hardwick, J.M., Griffin, D.E. Persistence of alphaviruses in vertebrate hosts. Trends Microbiol.1994,2:25-28.
    Li, W., Ross-Smith, N., Proud, C.G., Belsham, G.J. Cleavage of translation initiation factor 4AI(eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: determination of the eIF4AI cleavage site. FEBS Lett.2001,507:1-5.
    Li, Y., Huang, X., Xia, B., Zheng, C. Development and validation of a duplex quantitative real-time RT-PCR assay for simultaneous detection and quantitation of foot-and-mouth disease viral positive-stranded RNAs and negative-stranded RNAs. J. Virol. Methods 2009,161(1):161-167.
    Li, Y., Jousset, F. X., Giraud, C., Rolling, F., Quiot, J. M., Bergoin, M. A titration procedure of the Junonia coenia denso virus and quantitation of transfection by its cloned genomic DNA in four lepidopteran cell lines. J. Virol. Methods 1996,57(1): 47-60.
    Liu, B., Naoki, H., Jiang, B., Yasuhisa, N., Zhang, N., Wu, B., Kaori, K., Megumi, T., Hiroko, M., Chiyoko, I. Single cell RT-PCR demonstrates differential expression of GABAc receptor p subunits in rat hippocampal pyramidal and granule cells. Mol. Brain Res.2004,123:1-6.
    Lloyd, R.E., Bovee, M. Persistent infection of human erythroblastoid cells by poliovirus. Virology 1993,194:200-209.
    Logan J, Edwards K, Saunders N. Real-Time PCR:Current Technology and Applications.2009, Caister Academic Press. ISBN 978-1-904455-39-4.
    Lopez de Quinto, S., Lafuente, E., Martinez-Salas, E. IRES interaction with translation initiation factors:functional characterization of novel RNA contact s with eIF3, eIF4B, and eIF4GII. RNA 2001,7(9):1213-1226.
    Lopez de Quinto, S., Saiz, M., de la Morena, D., Sobrino, F., Martinez-Salas, E. IRES-driven translation is stimulated separately by the FMDV 3'NCR and poly(A) sequences. Nucl. Acids Res.2002,30:4398-4405.
    Lyles, D.S. Cytopathogenesis and inhibition of host gene expression by RNA viruses. Microbiol. Mol. Biol. R.2000,64 (4):709-724.
    Lwoff, A., Dulbecco, R., Vogt, M., Lwoff, M. Kinetics of the release of poliomyelitis virus from single cells. Virology 1955,1:128-139.
    Madshus, I.H., Olsnes, S., Sandvig, K. Requirements for entry of poliovirus RNA into cells at low pH. EMBO J.1984,3 (9):1945-1950.
    Martin-Acebes, M.A., Rincon, V., Armas-Portela, R., Mateu, M.G, Sobrino, F. A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid lability and confer resistance to acid-dependent uncoating inhibition. J. Virol.2010,84:2902-12.
    Martinez-Azorin, F., Remacha, M., Martinez-Salas, E., Ballesta, J.P. Internal translation initiation on the foot-and-mouth disease virus IRES is affected by ribosomal stalk conformation. FEBS Lett.2008,582:3029-3032.
    Martin Hernandez, A.M., Carrillo, E.C., Sevilla, N., Domingo, E. Rapid cell variation can determine the establishment of a persistent viral infection. Proc. Natl. Acad. Sci. USA 1994,91 (9):3705-3709.
    Martinez, M.A., Verdagaer, N., Matea, M.G., Domingo, E. Evolution subverting essentiality dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc.Natl. Acad. Sci. USA 1997,94: 6798-6802.
    Mason, P. W., Bezborodova, S. V., Henry, T. M. Identification and characterization of a cis-acting replication element (cre) adjacent to the internal ribosome entry site of foot-and-mouth disease virus. J Virol.2002,76:9686-9694.
    Mason, P.W., Grubman, M.J., Baxt, B. Molecular basis of pathogenesis of FMDV. Virus Res.2003,91 (1):9-32.
    Mateo, R., Mateu, M.G. Deterministic, compensatory mutational events in the capsid of foot-and-mouth disease virus in response to the introduction of mutations found in viruses from persistent infections. J. Virol.2007,81 (4):1879-1887.
    Matsumura, M., Ijichi, M., Shiratori, Y., Togo, G., Hikiba, G., Inoued, K., Kohara, M., Omata, M. Simple quantitative assay of alpha-fetoprotein mRNA in liver tissue using the real-time detection polymerase chain reaction assay --its application for clinical use. Hepatology Research 2001,20:84-96.
    Mattano, L.A., Jr., Moss, T.J., Emerson, S.J. Sensitive detection of rare circulating neuroblastoma cells by the reverse transcriptase polymerase chain reaction. Cancer. Res.1992,52:4701-4705.
    Maynell, L.A., Kirkegaard, K., Klymkowsky, M.W. Inhibition of poliovirus RNA synthesis by brefeldin A. J. Virol.1992,66:1985-1994.
    McClure, W.R. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem.1985,54:171-204.
    McKnight, K.L., Lemon, S.M. The rhinovirus type 14 genome contains and internally located RNA structure that is required for viral replication. RNA 1998,4: 1569-1584.
    Medina, M., Domingo, E., Brangwyn, J.K. The two species of the foot-and-mouth disease virus leader protein expressed individually exhibit same activities. Virology 1993,194:355-359.
    Meerovitch, K., Sonenberg, N. Internal initiation of picornavirus RNA translation. Semin. Virol.1993,4:217-227.
    Meyer, B.J., Southern, P.J. A novel type of defective viral genome suggests a unique strategy to establish and maintain persistent lymphocytic choriomeningitis virus infections. J. Virol.1997,71:6757-6764.
    Meyer, K., Petersen, A., Niepmann, M., Beck, E. Interaction of eukaryotic initiation factor eIF-4B with a picornavirus internal translation initiation site. J Virol.1995, 69:2819-2824.
    Miller, L.C., Blakemore, W., Sheppard, D., Atakilit, A., King, A.M.Q., Jackson, T. Role of the cytoplasmic domain of the β-subunit of integrin avP6 in infection by foot-and-mouth disease virus. J. Virol.2001,75:4158-4164.
    Moonen, P., Schrijver, R. Carriers of foot-and-mouth disease virus:a review. Vet. Q. 2000,22(4):193-197.
    Muir, P. The assciation of enteroviruses persistence with chronic heart disease. Rev. Med.Virol.1992,2:9-18.
    Muller, J.D., Wilkins, M., Foord, A J., Dolezal, O., Yu, M., Heine, H.G., Wang, L.F. Improvement of a recombinant antibody-based serological assay for foot-and-mouth disease virus. J. Immunol. Methods 2010,352:81-88.
    Murphy, C., Bashiruddin, J.B., Quan, M., Zhang, Z., Alexandersen, S. Foot-and-mouth disease virus loads in pigs in the early, acute stage of disease. Vet. Rec.2010,166:10-14.
    Murray, K.E., Roberts, A.W., Barton, D.J. Poly(rC) binding proteins mediate poliovirus mRNA stability. RNA 2001,7:1126-1141.
    Nakamura, N., Ruebei, K., Jin, L., Qian, X., Zhang, H., Lloyd, R.V. Laser Capture Microdissection for Analysis of Single Cells. Methods in molecular medicine 2007, 132:11-18.
    Nayak, A., Goodfellow, I.G., Woolaway, K.E., Birtley, J., Curry, S., Belsham, G.J. Role of RNA structure and RNA binding activity of Foot-and-Mouth disease virus 3C protein in VPg uridylylation and virus replication. J. Virol.2006,80 (19): 9865-9875.
    Neubauer, C., Frasel, L., Kuechler, E., Blaas, D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 1987,158 (1):255-258.
    Neuman, H., Cavalie, A., Jenne, D.E., Weckerle, H. Induction of MHC class I genes in neurons. Science 1995,269:549-552.
    Nissant, A., Lourdel, S., Baillet, S., et al. Heterogeneous distribution of chloride channels along the distal convoluted tubule probed by single-cell RT-PCR and patch clamp. Am. J. Physiol. Renal. Physiol.2004,287:1233-1243.
    O'Donnell, V.K., Pacheco, J.M., Henry, T.M., Mason, P.W. Subcellular distribution of the foot-and-mouth disease virus 3 A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology 2001,287: 151-162.
    Pacheco, A., Reigadas, S., Martinez-Salas, E. Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. Proteomics 2008,8:4782-4790.
    Pantaleo, G., Fauci, A.S. Immunopathogenesis of HIV infection. Ann. Rev. Microbiol. 1996,50:825-854.
    Parhar, I.S., Ogawa, S., Hamada, T., Sakuma, Y. Single-cell real-time quantitative polymerase chain reaction of immunofluorescently identified neurons of gonadotropin-releasing hormone subtypes in cichlid fish. Endocrinology 2003,144: 3297-3300.
    Parsley, T.B., Towner, J.S., Blyn, L.B., Ehrenfeld, E., Semler, B.L. Poly(rC) binding protein 2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 1997,3:1124-1134.
    Pata, J.D., Schultz, S.C., Kirkegaard, K. Functional oligomerization of poliovirus RNA-dependent RNA polymerase. RNA 1995,1:466-477.
    Paul, A., van Boom, J.H., Fillippov, D., Wimmer, E. Protein primed RNA synthesis by purified RNA polymerase. Nature 1998,393:280-284.
    Paul, A.V., Rieder, E., Kim, D.W., van Boom, J.H., Wimmer, E. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J. Virol.2000,74:10359-10307.
    Pause, A., Belsham, G.J.,Gingras, A-C., Donze, O., Lin, T-A., Lawrence, J.C.Jr., Sonenberg, N. Insulin dependent stimulation of protein synthesis by Phosphorylation of a novel regulator of 5'-cap function. Nature (London) 1994a, 371:762-767.
    Pelletier, J., Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature(London)1988, 334:320-325.
    Pelletier, I., Couderc, T., Borzakian, S., Wyckoff, E., Crainic, R., Ehrenfeld, E. Characterization of persistent polio virus mutants selected in human neuroblastoma cells. Virology 1991,180:729-737.
    Pelletier, I., Duncan, G., Pavio, N., Colbere-Garapin, F. Molecular mechanisms of poliovirus persistence:key role of capsid determinants during the establishment phase. Cell. Mol. Life Sci.1998,54:1385-1402.
    Perron, H., Garson, J.A., Bedin, F., Beseme, F., Paranhos-Baccala, G., Komurian-Pradel, F. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 1997,94:7538-7588.
    Peterhans, E., Jungi, T.W., Schweizer, M. BVDV and innate immunity. Biologicals 2003,31:107-112.
    Pezeshkpour, G.H., Dalakas, M.C. Long-term changes in the spinal cords of patients with old poliomyelitis. Arch. Neurol.1988,45:505-508.
    Piccininni, S., Varaklioti, A., Nardelli, M., Dave, B., Raney, K.D., McCarthy, J.E. Modulation of the hepatitis C virus RNA dependent RNA polymerase activity by the nonstructural(NS) 3 helicase and the NS4B membrane protein. J. Biol. Chem. 2002,277:45670-45679.
    Piccone, M. E., Reder, E., Mason, P. W., Grubman, M. J. The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. J. Virol.1995,69: 5376-5382.
    Pierce, K.E., Rice, J.E., Sanchez, J.A., Wangh, L.J. QuantiLyse:reliable DNA amplification from single cells. BioTechniques 2002,32:1106-1111.
    Pierce, K.E., Rice, J.E., Sanchez, J.A., Wangh, L.J. Detection of cystic fibrosis alleles from single cells using molecular beacons and a novel method of asymmetric real-time PCR. Mol. Hum. Reprod.2003,9:815-820.
    Pierce, K.E., Mistry, R., Reid, S.M., Bharya, S., Dukes, J.P., Hartshorn, C., King, D.P., Wangh, L.J. Design and optimization of a noval reverse transcription linear-after-the-exponential PCR for the detection of foot-and-mouth disease virus. J. Appl. Microbiol.2009 (Epub ahead of print).
    Pilipenko, E. V., Pestova, T. V., Kolupaeva, V. G., Khitrina, E. V., Poperechnaya, A. N., Agol, V. I., Hellen, C. U. A cell cycle dependent protein serves as a template-specific translation initiation factor. Gen. Dev.2000,14:2028-2045.
    Ponnaiya, B., Baker, G. J., Pherson, G R., Geard, C. R. Quantifying a bystander response following microbeam irradiation using single-cell RT-PCR analyses. Exp. Hematol.2007,35:64-68.
    Prato Murphy, M.L., Meyer, R.F., Mebus, C., Schudel, A.A., Rodriguez, M. Analysis of foot and mouth disease virus persistence in carrier cattle via the polymerase chain reaction. Arch. Virol.1994,136:299-307.
    Qu, L., McMullan, L.K., Rice, C.M. Isolation and characterization of noncytopathic pestivirus mutants reveals a role for nonstructural protein NS4B in viral cytopathogenicity. J. Virol.2001,75:10651-10662.
    Ramos, R., Martinez-Salas, E. Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site(IRES). RNA 1999,5: 1374-1383.
    Regoes, R.R., Crotty, S., Antia, R., Tanaka, M.M. Optimal replication of poliovirus within cells. Am. Nat.2005,165:364-373.
    Ridpath, J.F., Bolin, S.R., Dubovi, E.J. Segregation of bovine viral diarrhea virus into genotypes. Virology 1994,205:66-74.
    Rieder, E., Bunch, T., Brown, F., Mason, P.W. Genetically-engineered foot-and-mouth disease virus with poly(C) tracts of 2 nucleotides are virulent in mice. J. Virol.1993, 67:5139-5145.
    Roberts, L. O., Seamons, R. A., Belsham, G J. Recognition of picornavirus IRES within cells influence cellular and viral products. RNA 1998,4(5):520-529.
    Robertson, M.E., Seamons, R.A., Belsham, G.J. A selection system for functional internal ribosome entry site(IRES) elements:analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 1999,5: 1167-1179.
    Ron, D., Tal, J. Coevolution of cells and virus as a mechnism for the persistence of lymphotropic minute virus of mice in L cells. J. Virol.1985,55:424-430.
    Rice, J.E., Sanchez, J.A., Pierce, K.E., Wangh, L.J. Real-time PCR with molecular beacons provides a highly accurate assay for detection of Tay-Sachs alleles in single cells. Prenat. Diagn.2002,22:1130-1134.
    Rowe, C.L., Baker, S.C., Nathan, M.J., Fleming, J.O. Evolution of mouse hepatitis virus:detection and characterization of spike deletion variants during persistent infection. J. Virol.1997,71:2959-2969.
    Saiz, M., Gomez, S., Martinez-Salas E., et al. Deletion or substitution of the aphthovirus 3'NCR abrogates infectivity and virus replication. J. Gen. Virol.2001, 82:93-101.
    Salas, M. Protein-priming of DNA replication. Annu. Rev. Biochem.1991,60:39-71.
    Salvato, M., Borrow, P., Shimomaye, E., Oldstone, M.B.A. Molecular basis of viral persistence:a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J. Virol.1991,65: 1863-1869.
    Sangar, D. V., Newton, S. E., Rowlands, D. J., Clarke, B. E. All foot-and-mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucl. Acids Res.1987,15:3305-3315.
    Saunders, K., King, A.M.Q. Guanidine-resistant mutants of aphthovirus induce the synthesis of an altered non-structural polypeptide, p34. J. Virol.1982,42:389-394.
    Semler, B.L., Wimmer, E. Molecular biology of picornaviruses.2002. ASM.
    Serrano, P., Ramajo, J., Martinez-Salas, E. Rescue of internal initiation of translation by RNA complementation provides evidence for a distribution of functions between individual IRES domains. Virology 2009,388:221-229.
    Schmidt-Mende, J., Bieck, E., Hugle, T., Penin, F., Rice, C.M., Blum, H.E., Moradpour, D. Determinants for membrane association of the hepatitis C virus RNA dependent RNA polymerase. J. Biol. Chem.2001,276:44052-44063.
    Sharara, A.I. Chronic hepatitis C. South. Med. J.1997,90:872-877.
    Sobrino, F., Saiz, M., Jimenez-Clavero, M.A., Nunez, J.I., Rosas, M.F., Baranowski, E., Ley, V. Foot-and-mouth disease virus:a long known virus, but a current threat. Vet. Res.2001,32(1):1-30.
    Solden, S.S., Betri, R., Salem, N., Secchiero, P., Flamand, L., Calabresi, P.A. Association of human herpes virus 6(HHV-6) with multiple sclerosis:increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nature Med.1997,3:1394-1397.
    Spector, D.H., Baltimore, D. Requirement of 3'terminal polyadenylic acid for the infectivity of poliovirus RNA. Proc. Natl. Acad. Sci. USA 1974,71:2983-2987.
    Stassinopoulos, I.A., Belsham, GJ. A novel protein-RNA binding assay:functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. RNA 2001,7:114-122.
    Strebel, K., Beck, E. A second protease of foot-and-mouth disease virus. J. Virol. 1986,58:893-899.
    Svitkin, Y.V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G, Belsham, GJ., Sonenberg, N. The requirement for eukaryotic initiation factor 4A(eIF4A) in translation is directly proportional to the degree of mRNA 5'secondary structure. RNA 2001a,7,382-394.
    Svitkin, Y.V., Imataka, H., Khaleghpour, K., Kahvejian, A., Liebig, H.D., Sonenberg, N. Poly(A)-binding protein interaction with eIF4G stimulates picornarvirus IRES-dependent translation. RNA 2001b,7:1743-52.
    Tam, S., Clavijo, A., Engelhard, E.K., Thurmond, M.C. Fluorescence-based multiplex real-time RT-PCR arrays for the detection and serotype determination of foot-and-mouth disease virus. J. Virol. Methods 2009,161:183-191.
    Thornhill, A.R., McGrath, J.A., Eady, R.A.J., Braude, P.R., Handyside, A.H. A comparison of different lysis buffers to assess allele dropout from single cells for preimplantation genetic diagnosis. Prenat. Diagn.2001,21:490-497.
    Tiley, L., King, A.M.Q., Belsham, G.J. The foot-and-mouth disease virus cis-acting replication(cre) can be complemented in trans within infected cells. J.Virol.2003, 77:2243-2246.
    Toja, M., Escarmis, C., Domingo, E. Genomic nucleotide sequence of a FMDV clone and its persistent derivatives:implications for the evolution of viral quasispecies during a persistent infection. Virus Res.1999,64:161-167.
    Tuthill, T.J., Harlos, K., Walter, T.S., Knowles, N.J., Groppelli, E., Rowlands, D.J., Stuart, D.I., Fry, E.E. Equine rhinitis A virus and its low pH empty particle:clues towards an aphthovirus entry mechanism? Plos Pathog.2009,5:e1000620.
    van Bekkum, J.G, Frenkel, H.S., Frederiks, H.H.J., Frenkel, S. Observations on the carrier state of cattle exposed to foot and mouth disease virus. Tijdschr. Diergeneeskd.1959,84:1159-1164.
    van Dijk, A.A., Makeyev, E.V., Bamford, D.H. Initiation of viral RNA-dependent RNA polymerization. J. Gen. Virol.2004,85:1077-1093.
    van Kuppeveld, F. J., Melchers, W. J., Kirkegaard, K., Doedens, J. R. Structure-function analysis of coxsackie B3 virus protein 2B. Virology 1997,227: 111-118.
    Van Leuven, F., Cassiman, J.J., Van Den Berghe, H. Primary amines inhibit recycling of alpha 2M receptors in fibroblasts. Cell 1980,20:37-43.
    Verheyden, B., Lauwers, S., Rombaut, B. Quantitative RT-PCR ELISA to determine the amount and ratio of positive-and negative-strand viral RNA synthesis and the effect of guanidine in poliovirus infected cells. J. Pharm. Biomed. Anal.2003,33: 303-308.
    Wacker, M.J., Tehel, M.M., Gallagher, P.M. Technique for quantitative RT-PCR analysis directly from single muscle fibers. J. Appl. Physiol.2008,105:308-315.
    Wagatsuma, A., Sadamoto, H., Kitahashi, T., Lukowiak, K., Urano, A., Ito. E. Determination of the exact copy numbers of particular mRNAs in a single cell by quantitative real-time RT-PCR. J. Exp. Biol.2005,208:2389-2398.
    Walter, B.L., Nguyen, J.H., Ehrenfeld, E., Semler, B.L. Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 1999,5:1570-1585.
    Weiskircher, E., Aligo, J., Ning, G, Konan, K.V. Bovine viral diarrhea virus NS4B protein is an integral membrane protein associated with Golgi markers and rearranged host membranes. Virol. J.2009,6:185.
    Wetzel, J.D., Wilson, GJ., Baer, GS., Dunnigan, L.R., Wright, J.P., Tang, D.S.H., Dermody, T.S. Reovirus variants selected during persistent infections of L cells contain mutations in the viral S1 and S4 genes and are altered in viral disassembly. J.Virol.1997,71(2):1362-1369.
    Whitton, L.J., Oldstone, M.B.A. Immune response to virus.1996, In:Virology,3rd ed., vol.1, pp.345-374. Knipe, D.M., Howley, P.M., Fields, B.N., eds. Lippincott-Raven, Philadelphia.
    Yamakawa, M., Furuichi, Y., Nakashima, K., La Fiandra, A.J., Shatkin, A.J. Excess synthesis of viral mRNA 5-terminal oligonucleotides by reovirus transcriptase. J. Biol. Chem.1981,256:6507-6514.
    Yoon, J.W., Onodera, T., Jenson, A.B., Notkins, A.L. Virus-induced diabetes mellitus. XI. Replication of coxsackievirus B3 virus in human pancreatic beta cell cultures. Diabetes 1978,27:778-781.
    Zarate, S., Novella, I.S. Vesicular stomatitis virus evolution during alternation between persistent infection in insect cells and acute infection in mammalian cells in dominated by the persistence phase. J. Virol.2004,78 (22):12236-12242.
    Zhang, J., Timoney, P.J., MacLachlan, J., McCollum, W.H., Balasuriya, U.B.R. Persistent equine arteritis virus infection in HeLa cells. J. Virol.2008,82 (17): 8456-8464.
    Zhang, Z., Bashiruddin, J.B. Quantitative analysis of foot-and-mouth disease virus RNA duration in tissue of experimentally infected pigs. Vet. J.2009,180:130-132.
    Zhong, W., Ferrari, E., Lesburg, C.A., Maag, D., Gosh, A.K.B., Cameron, C.E., Lau, J.Y.N., Hong, Z. Template-primer requirements and single-nucleotide incorporation by hepatitis C virus nonstructural protein 5B polymerase. J. Virol.2000,74: 9134-9143.
    Yu, H., Grassmann, C.W., Behrens, S.E. Sequence and structural elements at the 3' terminus of bovine viral diarrhea virus genomic RNA:functional role during RNA replication. J. Virol.1999,73:3638-3648.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.