粗硫酸铜净化除杂及电积法制备铜粉的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜粉是粉末冶金工业的基础原材料之一,也是我国大量生产和消费的有色金属粉末,在现代工业生产中发挥着不可替代的作用。以硫酸铜为原料,采用不溶阳极电积的方法制备铜粉具有原料成本低、工艺流程短、产品应用领域广等优点。但是在实际生产过程中,所采用的粗硫酸铜原料中As、Sb、Bi等杂质直接造成电积铜粉中杂质含量超标;同时,在不溶阳极电积过程中所使用的阳极为Pb-Ca-Sn合金阳极,阳极板性能的好坏,将直接影响铜粉中铅的含量。
     本论文采用氧化-中和-共沉淀法净化粗硫酸铜溶液,研究了硫酸铁与双氧水加入量、终点pH值、氧化时间等对净化效果的影响,确定了净化除杂最佳工艺条件。研究表明:室温下,控制mFe:mAs为13.5、V双氧水:V溶液为1/600、终点pH为3.8、氧化时间为5 min时,除杂效果最佳,原液中Fe脱除率为89.42%,As脱除率为98.03%,Sb脱除率为42.97%,Bi脱除率为35.36%,除杂后的电解液可以达到电积过程高品质铜粉制备的要求。系统研究了电积过程铜电解液组成以及工艺条件对电流效率和产品性能的影响。研究结果表明:Cu2+浓度、硫酸浓度、电解液温度的提高有利于降低槽电压,Cu2+浓度、电解液温度、刮粉周期的增加有利于提高电流效率,提高电流密度、高硫酸浓度、低Cu2+浓度有利于得到粒度小的铜粉;在最佳的工艺条件下,即Cu2+浓度15g/L,硫酸浓度140 g/L,电流密度为1800A/m2,温度为35℃,刮粉周期为30 min,循环流量为14 L/h,极距为4.5 cm,得到的产品质量达到了国家标准GB5246-2007的要求,粒度分布均匀且微观形貌呈树枝状。
     采用计时电位法(CP)、循环伏安(CV)、腐蚀速率、线性电位扫描(LSV)等电化学测试手段,研究了Pb-Ag-Ca, Pb-Sn-Ca, Pb-Sn-Sr, Pb-Sb合金阳极的阳极电位与耐腐蚀性能,优选出Pb-Ag-Ca为最佳阳极,为不溶阳极电积铜粉的工业生产提供了依据。
Copper powders play a vital role in modern industry, because it is not only one of the fundamental materials in powder metallurgy industry, but also has the largest yield and comsumption among the non-ferrous metal powders in China. But in the actural process, using copper sulfate as raw materials will directly lead the content of the impurities such as As, Sb, Bi and etc., higher than the standard in the production of copper powder by electro-deposition. In the meantime, the performance of the anode, which is now Pb-Ca-Sn in use, will directly affect the content of Pb in copper powders.
     In this study, we carried out the impurities removal experiments by oxidation-neutralization-coprecipitation method, and the optimum conditions were obtained. The results showed that, at room temperature, the removal efficiencies of Fe, As, Sb and Bi could reach 89.42%, 98.03%,42.97% and 35.36%, respectively, by controlling mFe:mAs=13.5 and VH2O2:Vsolution= 1/600 with oxidation 5 min and the solution final pH 3.8. The electrolytes after removal impurities can adapt to the electro-deposition process for high quality copper powders.
     The effects of compositions of electrolyte and process conditions on current efficiency and product performance were investigated. The results showed that, increasing Cu2+ concentration, H2SO4 concentration and electrolyte temperature helped to reduce cell voltage; the increase of Cu2+ concentration, electrolyte temperature and scraping interval helped to improve current efficiency; high current density, high H2SO4 concentration and low Cu2+ concentration were beneficial to obtain small particle size powders. The optimum conditions were Cu2+ concentration of 15 g/L, H2SO4 concentration of 140 g/L, current density of 1800 A/m2, electrolyte temperature of 35℃, scraping interval of 30 min, circulation rate of 14 L/h, and interpolar distance of 4.5 cm, respectively. Under the optimum conditions, the content of obtained copper powders could reach the requirement of GB5246-2007 in the national standard. The high quality copper powders were dendritic shape with normal distribution of particle size.
     In order to seek for the insoluble anode with low anode potential and corrosion rate, the electrochemistry performance of Pb-Ag-Ca, Pb-Sn-Ca, Pb-Sn-Sr, Pb-Sb by Chronopotentiometry(CP), Cyclic Voltammetry(CV) Corrosion Rate and Linear Sweep Valtammetry(LSV) were studied in this paper. Among these anodes, Pb-Ag-Ca alloy was prior to other alloy anode with lowest stable anode potential and corrosion rate for industry application of preparing copper powder.
引文
[1]王晓霞,叶红齐,苏周等.超细铜粉的制备与应用[J].材料导报,2004,18(3):140~142.
    [2]吴伟钦,何丽芳,李国明等.超细铜粉的研究现状与发展趋势[J].湖南有色金属,2006,22(1):34~37.
    [3]黄东,南海,吴鹤.纳米铜粉的制备进展[J].金属功能材料,2004,11(2):30~31.
    [4]王晔,李岚.我国铜粉的生产与消费现状[J].铜业工程,2003,4(3):48~50.
    [5]MOATS M, FREE M. A bright future for copper electrowinning[J]. JOM,2007, 59(10):34~36.
    [6]黄凌云,朱国才,池汝安,等.我国超细铜粉研究及生产现状[J].化学通报,2008,71(5):356~360.
    [7]万新梁.全球铜及铜合金粉末的生产现状及应用发展趋势[J].新材料产业,2009,11(4):28~35.
    [8]袁勇,王林山,元家钟.2007年我国铁粉、铜粉生产状况分析[J].粉末冶金工业,2008,18(6):17~20.
    [9]葛力强.当前我国铁粉、铜粉生产状况的分析[J].粉末冶金工,2006,16(3):
    [10]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.36~212
    [11]刘维平.采用改进型振动球磨机制备超细铜粉的研究[J].江西科学,2000,18(3):24~27.
    [12]Ding J, etal.. Ultrafine Cu Particles Prepared by Mechanochemical Process[J]. Journal of Alloys Andcompounds,1996,234(2):1~3.
    [13]戴煜,王利民,刘景如,柳红政.低松装密度雾化铜粉生产[J].粉末冶金工业,2000,10(4):27~29.
    [14]李占荣,汪礼敏,万新梁.低松装密度水雾化铜粉工艺的研究[J].粉末冶金工业,2003,13(1):5~7.
    [15]Wu S P, Meng S Y. Preparation of micron size copper powder with chemical reduction method[J]. Materials Letters,2006,60(20):2438~2442.
    [16]刘志杰,赵斌,张宗涛.以抗坏血酸为还原剂的超细铜粉的制备及其热稳定性[J].华东理工大学学报,1996,22(5):548~553.
    [17]廖戎.以甲醛为还原剂制备超细铜粉的研究[J].成都理工大学学报,2003,30(4):417~421.
    [18]张志梅,韩喜江,孙森窒.纳米级铜粉的制备[J].精细化工,2000,17(2):69~71.
    [19]Zhao B, Liu Z, Zhang Z. Improvement of Oxidation Resistance of Ultrafine Copper Powders by Phosphating Treatment[J]. Journal of Chemistry,1997,30(1): 157~160.
    [20]Lisiecki I, Billoudet F, Pileni M P. Syntheses of Copper Nanoparticles in Gelified Microemulsion and in Reverse Micelles[J]. J Molecular Liquids,1997, 72(1-3):251~252.
    [21]Zein El Abedin S, Saad A Y, Farag H K, etal. Electrodeposition of selenium, indium and copper in an air-and water-stable ionic liquid at variable temperatures[J]. Electrochimica Acta,2006,52(8):1275~1276.
    [22]何峰.制备超细金属粉末的新型电解法[J].粉末冶金技术,2001,19(2):80~82.
    [23]郑精武,姜力强.铜粉的电解制备工艺研究[J].粉末冶金工业,2001,11(6):26~29.
    [24]王菊香,赵询,潘进,尹新方.超声电解法制备超细金属粉的研究[J].材料科学与工程,2000,18(4):70~74.
    [25]李森,喻建胜,蒋渝等.超声电沉积制备纳米铜粉末的机理研究[J].材料开发与应用,2004,19(3):12~15.
    [26]杨海兰.铜电解过程中的杂质走向[J].有色金属(冶炼部分).2001,53(06):16~18.
    [27]Cifuentes, L., Castro, J. M., Casas, J. M., etal. Modelling a copper electro-winning cell based on reactive electro-dialysis[J]. Applied Mathematical Modelling,2007,31(7):1308~1320.
    [28]易克俊.砷在铜冶炼过程的分布及其控制[J].湖南有色金属,2001,17(1):1~16.
    [29]吴继烈.铋在铜冶炼过程中的分配及脱除[J].有色冶炼,2000,29(1):6~11.
    [30]张源,高大银,张胜树,等.金隆铜业公司阴极铜杂质分布的调查[J].矿冶,1999,8(3):45~48.
    [31]鲁道荣,林建新.铋对阴极铜沉积微观结构的影响[J].合肥工业大学学报(自然科学版),1997,20(6):72~76.
    [32]郑金旺.铜电解精炼过程中砷、锑、铋的危害及脱除方式的进展[J].铜业工程,2002,3(2):17~20.
    [33]曹应科.高砷锑粗铜电解沉积物的表面质量控制[J].湖南有色金属,2005,21(4):14~54.
    [34]Zhu Z W, Zhu D, Qu N S. Synthesis of smooth copper deposits by simultaneous electroforming and polishing process[J]. Materials Letters,2008,62(8-9):1283 ~1286.
    [35]鲁道容,李学良,何健波,等.杂质离子对铜沉积微观结构的影响[J].哈尔滨工业大学学报,2003,35(10):1205~1208.
    [36]Kravchenko T. A., Yu M.. Chayka, Konev D. V., L. N. Polyanskiy, etal. The influence of the ion-exchange groups nature and the degree of chemical activation by silver on the process of copper electrodeposition into the ion exchanger[J]. Electrochimica Acta,2007,53(2):330~336.
    [37]Cifuentes L., Grageda M., Crisostomo G.. Electrowinning of copper in two-and three-compartment reactive electrodialysis cells[J]. Chemical Engineering Science,2006,61(11):3623~3631.
    [38]郑金旺.铜电解精炼时砷、锑、铋的分配行为及其应用研究:[硕士学位论文].长沙:中南大学,2005.
    [39]王学文.铜电解过程砷锑酸的形成及作用机理研究:[博士学位论文].长沙:中南大学,2003.
    [40]Petkova E. N.. Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper[J]. Hydrometallurgy,1997,46(3):277~286.
    [41]Wang X W, Chen Q Y, Yin Z L, etal. Identification of arsenato antimonates in copper anode slimes[J]. Hydrometallurgy,2006,84(3-4):211~217.
    [42]鲁道荣.杂质在铜电解精炼中的电化学行为[J].有色金属,2002,54(4):51~62.
    [43]陈少华,鲁道荣.As3+浓度对阴极铜稳态极化曲线平衡电位的影响[J].安徽化工,2005,31(6):39~40.
    [44]陈白珍,仇勇海,梅显芝.铜电积过程中砷的电化学行为[J].中南工业大学学报,1997,28(4):347~350.
    [45]陈白珍,仇勇海,梅显芝.电积法脱铜脱砷的现状与进展[J].有色金属(冶炼部分),1998,50(03):29~31.
    [46]仇勇海,陈白珍.砷化氢的毒性及在铜净液中的防治[J].有色冶炼,2001,30(2):36~38.
    [47]仇勇海,唐仁衡,陈白珍.砷化氢析出电势的探讨[J].中国有色金属学报,2000,10(1):101~104.
    [48]丁昆,华宏全.铜电解净液过程中砷的脱除[J].有色冶炼,2003,32(5):30~61.
    [49]左永伟,余守明.金昌冶炼厂电解液净化系统的改造[J].中国有色冶金,2004,33(3):12~25.
    [50]姚素平.诱导法脱砷技术在铜电解液净化系统中的应用[J].有色金属(冶炼部分),1996,48(1):11~16.
    [51]仇勇海,陈白珍,梅显芝,等.控制阴极电势电积法新工艺及其应用[J].中南工业大学学报,1999,30(5):501~504.
    [52]Navarro P., Alguacil F. J.. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon[J]. Hydrometallurgy,2002,66(1-3): 101~105.
    [53]Wang X W, Chen Q Y, Yin Z L, etal. Removal of impurities from copper electrolyte with adsorbent containing antimony[J]. Hydrometallurgy,2003,69(1-3):39~44.
    [54]陈启元,王学文,尹周澜.砷锑酸盐在铜电解液净化中的应用[A].中国有色金属学会第五届学术年会论文集,北京:中国有色金属学会,2003.156~180.
    [55]陈永康.铜电解液还原净化脱砷工艺研究[J].有色金属(冶炼部分),1998,50(1):8~12.
    [56]王学文,肖炳瑞,张帆.铜电解液碳酸钡脱铋新工艺[J].中国有色金属学报,2006,16(7):1296~1299.
    [57]Xiao F X, Zheng Y J, Wang Y, etal. Novel technology of purification of copper electrolyte[J]. Transactions of Nonferrous Metals Society of China,2007,17(5): 1067~1074.
    [58]Raghavan R, Bhatt C V. Comparative study of certain ion-exchange resins for application in copper-bearing process solutions[J]. Hydrometallurgy,1998,50(2): 169~183.
    [59]何万年,赵旺盛,何思郏.交换吸附法净化铜电解液中的锑和铋研究[J].有色金属(冶炼部分),1998,50(3):26~35.
    [60]Alam M.S., Tanaka M., Koyama K., etal. Electrolyte purification in energy-saving monovalent copper electrowinning processes[J]. Hydrometallurgy,2007, 87(1-2):36~44.
    [61]李坚,段一新,彭大龙.用溶剂萃取除去铜电解液中砷的研究[J].有色矿冶,1998,14(2):32~37.
    [62]韩文利,崔秉懿.溶剂萃取法从铜电解液中萃除铋、锑的工艺研究[J].有色金属(冶炼部分),1994,46(1):12~20.
    [63]Navarro P., Simpson J., Alguacil F. J.. Removal of antimony(III) from copper in sulphuric acid solutions by solvent extraction with LIX 1104SM[J]. Hydrometallurgy,1999,53(2):121~131.
    [64]Gupta B., Begum I Z.. Separation and removal of arsenic from metallurgical solutions using bis(2,4,4-trimethylpentyl)dithiophosphinic acid as extractant[J]. Separation and Purification Technology,2008,63(1):77~85.
    [65]徐瑞东,盘茂森,郭忠诚.锌电积用惰性阳极材料的研究现状[J].电镀与环保,2005,25(1):4~7.
    [66]梁海河.铅及铅合金在硫酸溶液中生长阳极Pb(Ⅱ)氧化物膜的机理的研究:[硕士学位论文].上海:复旦大学,2001.
    [67]Sadoway D. R.. A Materials Systems Approach to Selection and Testing of Nonconsumable Anode for the Hall Cell[J]. Light Metals,1990,10(5):403~407.
    [68]张招贤,赵国鹏,胡耀红.应用电极学[M].北京:冶金工业出版社,2005,146~326.
    [69]梁镇海,王森,张彦平等.硫酸中Pb/PbO2:阳极的电催化性能[J].有色金属,1996,48(1):42~48.
    [70]Petrova M., Noncheva Z., Dobrev Ts., etc. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc I. Behaviour of Pb-Ag, Pb-Ca and PB-Ag-Ca alloys[J]. Hydrometallurgy,1996,40(3):293~318.
    [71]Cachet C., Rerolle C., Wiart R.. Kinetics of Pb and Pb-Ag anodes for Zinc electrowinning-Ⅱ. Oxygen evolution at high polarization[J]. Electrochimica Acia, 1996,41(1):83~90.
    [72]张冬,郭忠诚.锌电积用惰性阳极材料的研究现状[J].云南冶金,2008,37(6):48~53.
    [73]Liu H T, Yang C X, Liang H H,etc. The mechanisms for the growth of the anodic Pb(Ⅱ) oxides films formed on Pb-Sb and Pb-Sn alloys in sulfuric acid solution[J]. Journal of Power Sources,2002,103(2):173~179.
    [74]Hrussanova A., Mirkova L., Dobrev TS.. Electrochemical properties of Pb-Sb, Pb-Ca-Sn and Pb-Co3O4 anodes in copper electrowinning[J]. Journal of Applied Electrochemistry.2002,32(5):505~512.
    [75]潘君益,郭忠诚.锌电积用惰性阳极材料的研究现状[J].云南冶金,2004,33(6):31~35.
    [76]Newnham R H. Corrosion Rates of Lead Based Anodes for Zinc Electrowinning at High Current Densities[J]. J Appl Electrcchem,1992,22(2):116~118.
    [77]单维林.锌电解能耗分析及节能对策[J].有色金属(冶炼部分),1989,41(6):29~32.
    [78]Felder A, Prengaman R D. Lead Alloys for permanent anode in the nonferrous metals industry[J]. JOM,2006,58(10):28~31.
    [79]陈康宁.金属阳极[M].上海:华东师范大学出版社,1989,195~991.
    [80]朱军,刘漫博,陈超,赵亮.电锌阳极板材料的研究现状[J].有色矿冶,2007,23(6):36~38.
    [81]姚允斌.物理化学手册[M].上海:上海科学技术出版社,1985.1~1125.
    [82]聂静.硫酸生产中含砷废水处理方法[J].水处理技术,2005,31(12):5~7.
    [83]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986.12~324
    [84]李狄.电化学原理[M].北京:北京航空航天大学出版社,2006.78~452
    [85]查全性.电极过程动力学导论[M].北京:科学出版社,1987.24~156
    [86]吕鸣祥.化学电源[M].天津:天津大学出版社,1992.36~561
    [87]李坚,王达建,樊雪萍.铜电解液物理化学性质之三:电解液的电导率[J].有色矿冶,2003,19(5):30~33.
    [88]Maksimovic VM, Pavlovit LjJ, Pavlovic MG, etc. Characterization of copper powder particles obtained by electrodeposition as function of different current densities[J]. J Appl Electrochem,2009,39(12):2545~2552.
    [89]Gladysz O, Los P, Krzyzak E. Influence of concentrations of copper, leveling agents and temperature on the diffusion coefficient of cupric ions in industrial electro-refining electrolytes[J]. J Appl Electrochem,2007,37(10):1093~1097.
    [90]中华人民共和国国家技术监督局.GB/T 5246-2007.中华人民共和国国家标准-电解铜粉.北京:中国标准出版社,2007-11-01
    [91]苏向东,罗宏,李鹏,等.电积铜用惰性Pb基合金阳极的工业试验[J].有色金属(冶炼部分),2002,54(4):43~45.
    [92]赵天从.重金属冶金学(下)[M].北京:冶金工业出版社,1981:201~205.
    [93]Cai W B, Liu H T, Zhou W F. Analysis of the oxidation process of anodic Pb(Ⅱ) films on lead in sulfuric acid solution[J]. Journal of Power Sources,1996,63(1): 131~135.
    [94]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169~171.
    [95]Guo Y L, Niu L, Zhang S Y, etal. The electrochemical behavior of PbSO4 with different structures on Pb[J]. Journal of Power Sources,2000,85(1):38~43.
    [96]周彦葆,马敏,张新华等.铅铋合金上生长的阳极Pb(Ⅱ)膜的性质[J].电源技术,2003,27(6):528~531.
    [97]Liu H T, Wang Q Z, Zhou W F. Reconsideration of some fundamental aspects of anodic Pb(Ⅱ) films on lead and its alloys in sulfuric acid solution[J]. Journal of Power Sources.1999,84(1):107~113.
    [98]陈体衔.实验电化学[M].厦门:厦门大学出版社,1993.84~97
    [99]衷水平.锌电积用铅基多孔节能阳极的制备、表征与工程化试验.[博士学位论文].长沙:中南大学.2009.
    [100]衷水平,赖延清,蒋良兴等.锌电积用Pb-Ag-Bi阳极的电化学行为[J].过程工程学报,2008,8(z1):289~293.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.