石墨烯杂化材料在聚合物太阳能电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先研究了热退火对基于一种新型窄带隙聚合物作为有机太阳能电池给体材料时器件的光电性能的影响;然后重点介绍了三种石墨烯杂化材料的制备、性能表征和它们在聚合物太阳能电池中的应用;最后介绍了如何利用液晶小分子提高聚合物太阳能电池能量转换效率方面的工作。具体内容如下:
     1.窄带隙聚合物作为给体材料的工作
     一种新型的窄带隙聚合物:环戊烯并二噻吩/噻吩酰亚胺(简称P1)取代光敏层中常见的聚3-己基噻吩(P3HT)作为聚合物太阳能电池的电子给体材料,研究热退火对P1:PCBM (C60的衍生物)混合薄膜的影响,重点探讨了基于P1:PCBM为光敏层的电池器件在不同温度退火后电池的光电性能。研究表明不经过热退火处理的电池性能最优,能量转换效率(PCE)为2.01%,Jsc,Voc和FF分别是5.97mA/cm2,0.86V和39%。利用单载流子器件测量载流子的迁移率后发现,电池经过退火后,虽然电子和空穴的迁移率都上升,但是由于电子和空穴迁移率之间的不平衡性被进一步扩大,产生空间电荷区,所以退火之后虽然吸光强度增大但仍然导致短路电流下降。从电池的能带结构分析发现,由于给体材料P1的HOMO与PCBM的LUMO之间的能量差为1.3eV,所以电池能够得到0.86V的高开路电压。
     2.石墨烯杂化物作为受体材料的工作
     用简单的水热法制备了石墨烯/氧化锌的杂化材料(简称G-ZnO),对G-ZnO材料的形貌、成分组成、晶体结构、光、电学性质做了系统表征,并将其作为电子受体材料制备了聚合物太阳能电池。重点研究了电池性能与光敏层中G-ZnO含量的关系。随着光敏层中G-ZnO含量的增加,电池的PCE先增加后降低。当G-ZnO占光敏层总质量(G-ZnO的质量加上P3HT的质量)的15%时,P3HT的晶粒大小为16.6nm左右,满足激子扩散和分离的条件,电子迁移率达到1.32×10-5cm2V-1s-1,同时电池的串联电阻Rs也达到最小值,此时电池的PCE为0.98%,V。c为0.81V,Jsc为4.92mA/cm2。
     3.石墨烯杂化物作为空穴传输层的工作
     利用水热法制备了一种氧化石墨烯的衍生物——钼离子修饰的氧化石墨烯(GO-Mo),并对GO-Mo薄膜的成分、形貌、晶体结构、表面化学态、霍尔迁移特性做了系统表征。GO-Mo薄膜具有良好的透光性,在波长为400-800nm范围内透光率超过90%。Hall测试结果表明其为P型半导体,载流子浓度为~1013cm-3, GO-Mo薄膜的载流子迁移率达到10.8cm2V-1s-1。制备了GO-Mo作为空穴传输层(简称HTL)的聚合物太阳能电池,PCE能达到2.61%,Jsc,Voc和FF分别为9.02mA/cm2、0.59V和49%,与传统的PEDOT:PSS为HTL时的PCE相当。最后还研究了不同层数的GO-Mo薄膜对电池性能的影响,由于3层的GO-Mo薄膜能够形成连续的电荷传输通道,所以此时电池的PCE最大。
     4.石墨烯杂化物作为阳极的工作
     通过水热法制备了石墨烯(简称G)和ATO (SnO2:Sb)纳米颗粒的复合物ATO/Go讨论了退火温度和退火环境对ATO/G薄膜的透光性和导电性的影响,并用ATO/G薄膜取代ITO作为电池的阳极制备了聚合物太阳能电池。ATO/G薄膜具有良好的光学透光性,在300-800nm范围内的透光率超过了90%,但是方块电阻在兆欧以上,通过牺牲薄膜透光率的方式能够降低了薄膜的方块电阻。当ATO/G薄膜在热退火后,方块电阻有一定程度的下降,并且发现在空气中的退火效果要比在Ar气中的退火效果好。为了进一步降低薄膜的方块电阻,用磁控溅射的方法在ATO/G薄膜的表面镀上10nm厚的Au,最后利用ATO/G/Au薄膜作为阳极,制备了结构为ATO/G/Au/MoO3/P3HT:PCBM/Al的聚合物太阳能电池,PCE达到1.85%。
     5.利用液晶小分子修饰界面提高电池光电转换效率的工作
     为了提高电池的PCE,把一种盘状的液晶小分子材料——六丁氧苯并菲(简称HAT4)插入空穴传输层和光敏层之间,其中空穴传输层采用了三种不同的材料。当HTL为PEDOT:PSS时,PCE提高43%;当HTL为M003时,PCE提高43%;当HTL为NiO时,PCE提高35%。讨论了利用HAT4使电池PCE提高的微观物理机制,当电池经过150℃退火后,HAT4会形成有序的六角柱状相,柱内分子电子云的相互交叠形成了一个准一维的电荷传输通道,电荷沿着柱的轴线方向传递,有效地提高了电池中载流子的迁移率从而使Jsc上升,同时研究发现HAT4薄膜的厚度对器件的PCE也有着重要的影响。
Firstly, the thermal annealing effects on a novel low band-gap polymer and related polymer solar cells (PSCs) have been attentively investigated in this dissertation. Secondly, the synthetic methods of three graphene hybrid are introduced and the photoelectric properties and their applications on PSCs of these products are checked out and studied systematacially. Lastly, we introduced a method to improve the power conversion efficiency (PCE) of the PSCs by inserting a liquid crystal molecule thin layer.
     1. A novel low band-gap polymer as the donor in the PSCs
     A novel low band-gap polymer poly [(4,4-bis(2-ethyl)cyclopenta-[2,1-b:3,4-b'] dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-b]pyrrole-4,6-dione)-1,3-diyl](PCPDTTP D, P1) is used to replace P3HT as the donor material to blend with PCBM. The roles of the thermal annealing on the structure and properties of P1:PCBM films and the performances of the PSCs are investigated. The best performance is obtained in the device without annealing. The value of Jsc, Voc and FF is5.97mA/cm2,0.86V and39%respectively, resulting in the maximum PCE of2.01%. Hole and electron mobilities increase after heat treatment compared to those of devices without annealing. The values of Jsc of the cells decrease as a result of the unbalance enhancement in the charge conduction of the thermal annealed P1:PCBM layer. The energy level offset between the HOMO of P1and the LUMO of P3HT is1.3eV. Thus, a Voc as high as0.86V is obtained for this type of PSCs.
     2. Graphene hybrid as the acceptor in the PSCs
     Graphene-Zinc Oxide (G-ZnO) nanocomposites are prepared through hydro thermal approach and used as the electron acceptors in poly-(3-hexylthiophene)(P3HT)-based bulk heterojunction OSCs. The morphology, chemical composition, crystal structure and photoelectric properties of G-ZnO are investigated. The blended film which is a mixture of different weight ratio of P3HT and G-ZnO is applied as the active layer in the OSCs device. The PCE increases first and then decreases with the increase of G-ZnO content in the blended active layer. The best PCE of the device reaches to0.98%, and Voc of0.81V and Jsc of4.92mA/cm are obtained in the device with15wt%G-ZnO content (ratio to P3HT). The average crystallite size is distinctly calculated to be16.6nm in the films corresponding to15wt%G-ZnO ratio of P3HT content. This condition is favor for the diffusion and separation of the most excitons. The electron mobility reaches to1.32×10-5cm2V-1s-1in the15wt%G-ZnO blended film and the Rs reaches the lowest value, so the PCE is the maximum.
     3. Graphene hybrid as the hole transport layer (HTL) in the PSCs
     A Mo6+cation modified graphene oxide (GO) derivative of GO-Mo is synthesized by a low-temperature solution method to replace PEDOT:PSS which posesses a strong acidic nature. The composition, morphology, crystal structure, surface chemical states and Hall carrier properties are investigated systematically. The transmittance of the GO-Mo films exceeds90%at the range from400to800nm. The GO-Mo films present a p-type property with a Hall measurement and the carrier concentration is about~1013cm-3. The hole mobility of the GO-Mo film with0.1g Mo-precursor is10.8cm2V-1s-1. The best performance is obtained in the device with the HTL prepared from0.10g Mo-precursor in GO solution, which is comparable to that of using conventional PEDOT:PSS. The value of Jsc, Voc and FF is9.02mA/cm2,0.59V and49%, respectively, resulting in the maximum PCE of2.61%. The effect of the GO-Mo layer number on the device's performance is also studied. When the layer number increases to3, the GO-Mo fragment may be enough to provide a continuous and complete interface and to form an effective charge transport pathway. Then, a great increase in the cell efficiency can be obtained.
     4. Graphene hybrid as the anode in the PSCs
     A simple and facile technique for the synthesis of ATO-graphene is proposed by using graphite oxide (GO) and ATO nanoparticles through a hydrothermal approach. The ATO/G films present good transmittance and electrical conductivity. The impact effects of different annealing temperature and atmospheres on the films are studied. The PSCs are fabricated when ATO/G is used as the anode. The transmittance of the ATO/G films exceeds92%at the range from300to800nm, but the sheet resistance is as high as MΩ. To decrease the sheet resistance, the transmittance is sacrificed. The properties of the films annealed in the air are better than that of the films annealed in Ar atmosphere. To further decrease the sheet resistance, a thin Au nanoparticle film is deposited on the surface of the ATO/G films by a magnetron sputtering system. The ATO/G films are used as the anode to fabricate the PSCs device with a structure as: ATO/G/Au/MoO3/P3HT:PCBM/Al, and the PCE reaches to1.85%.
     5. A liquid crystal molecule improvement the PCE of the PSCs
     A simple method to enhance PCE of OSCs is introduced by insertion of a discotic liquid crystalline molecule [2,3,6,7,10,11]-Hexabutoxytriphenylene (HAT4) between HTL and active layer (P3HT:PCBM). In order to further investigate how the HAT4improves the PCE of OSCs, three different p-type materials are deposited on the substrate as HTLs, including PEDOT:PSS, MoO3and NiO, respectively. Comparing with the devices without HAT4, PCE is increased by43%,43%and35%in the ones with HAT4for different HTL, respectively. The microscopic process during annealing, HAT4molecules distribute in the P3HT:PCBM blended layer changing from the discotic phase to a column phase after150℃annealing. Homeotropic alignment in columnar phases can provide a most efficient pathway for carriers along the columnar axis which is favorable for charge transport. HAT4molecules distribute in the active layer to improve the charge mobility as a result of the enhancement of Jsc. The thickness of the HAT4film takes an importance role in the performance of the cells.
引文
[1]赵宇.基于氧化石墨烯/P3HT有机太阳能电池研究[D];北京交通大学,2011.
    [2]DROZ C, VALLAT-SAUVAIN E, BAILAT J, et al. Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells [J]. Solar Energy Materials and Solar Cells,2004,81(1):61-71.
    [3]GRATZEL M. Photoelectrochemical cells [J]. Nature,2001,414(6861):338-44.
    [4]TIAN B Z, ZHENG X L, KEMPA T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J]. Nature,2007,449(7164):885-U8.
    [5]O'REGAN B, GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(6346):737-40.
    [6]GR TZEL M. Dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2003,4(2):145-53.
    [7]YOU J, DOU L, YOSHIMURA K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency [J]. Nat Commun,2013,4(1446).
    [8]YU Y, CHEN X, WEI Y, et al. CdSe Quantum Dots Enhance Electrical and Electrochemical Signals of Nanogap Devices for Bioanalysis [J]. Small,2012,8(21):3274-81.
    [9]ZHANG Y, QIN W, TANG H, et al. Efficient assembly of multi-walled carbon nanotube-CdSe/ZnS quantum dot hybrids with high biocompatibility and fluorescence property [J]. Colloids and Surfaces B:Biointerfaces,2011,87(2):346-52.
    [10]BRABEC C J, SARICIFTCI N S, HUMMELEN J C. Plastic solar cells [J]. Advanced Functional Materials,2001,11(1):15-26.
    [11]GUNES S, NEUGEBAUER H, SARICIFTCI N S. Conjugated polymer-based organic solar cells [J]. Chemical Reviews,2007,107(4):1324-38.
    [12]KIM J Y, LEE K, COATES N E, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing [J]. Science,2007,317(5835):222-5.
    [13]LI G, SHROTRIYA V, HUANG J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nature materials,2005,4(11):864-8.
    [14]MA W L, YANG C Y, GONG X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Advanced Functional Materials,2005,15(10):1617-22.
    [15]李卫民.聚合物太阳能电池机理及实验研究[D];华中科技大学,2009.
    [16]REN G, SCHLENKER C W, AHMED E, et al. Photoinduced Hole Transfer Becomes Suppressed with Diminished Driving Force in Polymer-Fullerene Solar Cells While Electron Transfer Remains Active [J]. Advanced Functional Materials,2013,23(10):1238-49.
    [17]LI W, HENDRIKS K H, ROELOFS W S C, et al. Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Films [J]. Advanced Materials,2013, n/a-n/a.
    [18]KALLMANN H, POPE M. Photovoltaic Effect in Organic Crystals [J]. The Journal of Chemical Physics,1959,30(2):585.
    [19]TANG C W. Two-layer organic photovoltaic cell [J]. Applied Physics Letters,1986, 48(2):183.
    [20]BEAUJUGE P M, FR CHET J M J. Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications [J]. Journal of the American Chemical Society,2011,133(50):20009-29.
    [21]ZHANG M, WANG H, TANG C W. Hole-transport limited S-shaped I-V curves in planar heterojunction organic photovoltaic cells [J]. Applied Physics Letters,2011,99(21): 213506.
    [22]RAUH D, DEIBEL C, DYAKONOV V. Charge Density Dependent Nongeminate Recombination in Organic Bulk Heterojunction Solar Cells [J]. Advanced Functional Materials, 2012,22(16):3371-77.
    [23]YU M, LONG Y-Z, SUN B, et al. Recent advances in solar cells based on one-dimensional nanostructure arrays [J]. Nanoscale,2012,4(9):2783.
    [24]KUMAR P, CHAND S. Recent progress and future aspects of organic solar cells [J]. Progress in Photovoltaics:Research and Applications,2012,20(4):377-415.
    [25]JIANG L, LI A, DENG X, et al. Effects of cathode modification using spin-coated lithium acetate on the performances of polymer bulk-heterojunction solar cells [J]. Applied Physics Letters,2013,102(1):013303.
    [26]CHEN X, YANG J, HALEY L Y X C, et al. Towards high efficiency solution processable inverted bulk heterojunction polymer solar cells using modified indium tin oxide cathode [J]. Organic Electronics,2010,11(12):1942-6.
    [27]PARK H J, KANG M G, AHN S H, et al. A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performances [J]. Adv Mater,2010,22(35):E247-53.
    [28]ABDELLAH A, VIRDI K S, MEIER R, et al. Successive Spray Deposition of P3HT/PCBM Organic Photoactive Layers:Material Composition and Device Characteristics [J]. Advanced Functional Materials,2012,22(19):4078-86.
    [29]沈亮.新型结构异质结太阳能电池的研究[D];吉林大学,2009.
    [30]宋明辉.聚光多结太阳能电池的设计、制备及可靠性研究[D];华中科技大学,2012.
    [31]WETZELAER G-J A H, KUIK M, BLOM P W M. Identifying the Nature of Charge Recombination in Organic Solar Cells from Charge-Transfer State Electroluminescence [J]. Advanced Energy Materials,2012,2(10):1232-7.
    [32]杜海亮.活性层掺杂及阴极修饰在聚合物太阳能电池中的应用[D];北京交通大学,2012.
    [33]乔芬.基于聚合物的有机太阳能电池的研制与表征[D];大连理工大学,2010.
    [34]XU Y-X, CHUEH C-C, YIP H-L, et al. Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer Solar Cells [J]. Advanced Materials,2012,24(47):6356-61.
    [35]LI Y, ZOU Y. Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility [J]. Advanced Materials,2008,20(15):2952-8.
    [36]JIN Y, FENG J, ZHANG X-L, et al. Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode [J]. Applied Physics Letters, 2012,101(16):163303.
    [37]XU P, SHEN L, MENG F, et al. The role of Ag nanoparticles in inverted polymer solar cells:Surface plasmon resonance and backscattering centers [J]. Applied Physics Letters,2013, 102(12):123301.
    [38]MOGHE D, YU P, KANIMOZHI C, et al. Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends:Implications for organic solar cell efficiency [J]. Applied Physics Letters,2011,99(23):233307.
    [39]SHAW P E, RUSECKAS A, SAMUEL I D W. Exciton Diffusion Measurements in Poly(3-hexylthiophene) [J]. Advanced Materials,2008,20(18):3516-20.
    [40]PIGANI L, FOCA G, IONESCU K, et al. Amperometric sensors based on poly(3,4-ethylenedioxythiophene)-modified electrodes:discrimination of white wines [J]. Analytica chimica acta,2008,614(2):213-22.
    [41]SOMMER M, LINDNER S M, THELAKKAT M. Microphase-Separated Donor-Acceptor Diblock Copolymers:Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells [J]. Advanced Functional Materials,2007,17(9):1493-500.
    [42]CHANG Y-T, HSU S-L, SU M-H, et al. Intramolecular Donor-Acceptor Regioregular Poly(hexylphenanthrenyl-imidazole thiophene) Exhibits Enhanced Hole Mobility for Heterojunction Solar Cell Applications [J]. Advanced Materials,2009,21(20):2093-7.
    [43]DEIBEL C, WAGENPFAHL A, DYAKONOV V. Influence of charge carrier mobility on the performance of organic solar cells [J]. physica status solidi (RRL)-Rapid Research Letters, 2008,2(4):175-7.
    [44]REYES-REYES M, KIM K, DEWALD J, et al. Meso-structure formation for enhanced organic photovoltaic cells [J]. Organic letters,2005,7(26):5749-52.
    [45]GADISA A, MAMMO W, ANDERSSON L M, et al. A New Donor-Acceptor-Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility [J]. Advanced Functional Materials,2007,17(18):3836-42.
    [46]SALINAS J-F, YIP H-L, CHUEH C-C, et al. Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells [J]. Advanced Materials,2012,24(47):6362-7.
    [47]ARLINDO E P S, LUCINDO J A, BASTOS C M O, et al. Electrical and Optical Properties of Conductive and Transparent ITO@PMMA Nanocomposites [J]. The Journal of Physical Chemistry C,2012,120531065423004.
    [48]裴佳宁.聚合物体异质结太阳能电池的器件优化及光伏性能研究[D];吉林大学,2011.
    [49]PARK S H, ROY A, BEAUPR S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J]. Nature Photonics,2009,3(5):297-302.
    [50]HUO L, ZHANG S, GUO X, et al. Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers [J]. Angewandte Chemie,2011,123(41):9871-6.
    [51]LI Y, WANG M, HUANG H, et al. Influence on open-circuit voltage by optical heterogeneity in three-dimensional organic photovoltaics [J]. Physical Review B,2011,84(8): 085206.
    [52]OLSON D C, SHAHEEN S E, WHITE M S, et al. Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer-Oxide Hybrid Solar Cells [J]. Advanced Functional Materials,2007,17(2):264-9.
    [53]SHIAN S, DIEBOLD R M, MCNAMARA A, et al. Highly compliant transparent electrodes [J]. Applied Physics Letters,2012,101(6):061101.
    [54]WANG Y, TONG S W, XU X F, et al. Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells [J]. Advanced Materials,2011, 23(13):1514-8.
    [55]WALSH A, CATLOW C R A. Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory [J]. Journal of Materials Chemistry,2010,20(46):10438.
    [56]ZHANG F J, ZHAO D W, ZHUO Z L, et al. Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified Ag as anode [J]. Solar Energy Materials and Solar Cells,2010,94(12):2416-21.
    [57]ZHANG F, CEDER M, INGAN S O. Enhancing the Photovoltage of Polymer Solar Cells by Using a Modified Cathode [J]. Advanced Materials,2007,19(14):1835-8.
    [58]LIU Y-F, FENG J, CUI H-F, et al. Highly flexible inverted organic solar cells with improved performance by using an ultrasmooth Ag cathode [J]. Applied Physics Letters,2012, 101(13):133303.
    [59]LEE K, KIM J Y, PARK S H, et al. Air-Stable Polymer Electronic Devices [J]. Advanced Materials,2007,19(18):2445-9.
    [60]PIVRIKAS A, SARICIFTCI N S, JUSKA G, et al. A review of charge transport and recombination in polymer/fullerene organic solar cells [J]. Progress in Photovoltaics:Research and Applications,2007,15(8):677-96.
    [61]RIEDEL I, DYAKONOV V. Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices [J]. physica status solidi (a),2004,201(6):1332-41.
    [62]LEE Y-J, Y1 J, GAO G F, et al. Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices [J]. Advanced Energy Materials,2012,2(10):1193-7.
    [63]QIN P, FANG G, HE Q, et al. Nitrogen doped amorphous chromium oxide:Stability improvement and application for the hole-transporting layer of organic solar cells [J]. Solar Energy Materials and Solar Cells,2011,95(3):1005-10.
    [64]ZHANG Y, PANDEY A K, TAO C, et al. Spectral response tuning using an optical spacer in broad-band organic solar cells [J]. Applied Physics Letters,2013,102(1):013302.
    [65]KIM J Y, KIM S H, LEE H H, et al. New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer [J]. Advanced Materials,2006,18(5):572-6.
    [66]LEE J K, COATES N R, CHO S, et al. Efficacy of TiO[sub x] optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol [J]. Applied Physics Letters,2008, 92(24):243308.
    [67]CHEN Z, SANTOSO I, WANG R, et al. Surface transfer hole doping of epitaxial graphene using MoO3 thin film [J]. Applied Physics Letters,2010,96(21):213104.
    [68]STEIRER K X, CHESIN J P, WIDJONARKO N E, et al. Solution deposited NiO thin-films as hole transport layers in organic photovoltaics [J]. Organic Electronics,2010,11(8): 1414-8.
    [69]VOSGUERITCHIAN M, LIPOMI D J, BAO Z. Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes [J]. Advanced Functional Materials,2012,22(2):421-8.
    [70]TIAN H, XIE D, YANG Y, et al. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic, ultrathin, and transparent sound-emitting device [J]. Applied Physics Letters,2011,99(23):233503.
    [71]LEE M, KIM Y, LEE S, et al. Improvement in power conversion efficiency by blending of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) into poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester active layer [J]. Applied Physics Letters,2012,100(22):223901.
    [72]ZHANG J, ZHANG Y, ZHANG F, et al. Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) [J]. Applied Physics Letters, 2013,102(1):013501.
    [73]STEIRER K X, NDIONE P F, WIDJONARKO N E, et al. Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers [J]. Advanced Energy Materials,2011,1(5):813-20.
    [74]MURASE S, YANG Y. Solution Processed MoO3 Interfacial Layer for Organic Photovoltaics Prepared by a Facile Synthesis Method [J]. Advanced Materials,2012,24(18): 2459-62.
    [75]STEIM R, KOGLER F R, BRABEC C J. Interface materials for organic solar cells [J]. Journal of Materials Chemistry,2010,20(13):2499.
    [76]PIRIS J, KOPIDAKIS N, OLSON D C, et al. The Locus of Free Charge-Carrier Generation in Solution-Cast Znl-xMgxO/Poly(3-hexylthiophene) Bilayers for Photovoltaic Applications [J]. Advanced Functional Materials,2007,17(18):3849-57.
    [77]HUNG L S, TANG C W, MASON M G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode [J]. Applied Physics Letters,1997,70(2): 152.
    [78]MORSLI M, BERREDJEM Y, DRICI A, et al. Influence of Alq3and/or A12O31ayers at the C60/aluminum interface on theⅠ-Ⅴcharacteristics of CuPc/C60-based solar cells [J]. physica status solidi (a),2008,205(5):1226-32.
    [79]SUNG Y-H, LIAO W-P, CHEN D-W, et al. Room-Temperature Tailoring of Vertical ZnO Nanoarchitecture Morphology for Efficient Hybrid Polymer Solar Cells [J]. Advanced Functional Materials,2012,22(18):3838-14.
    [80]BOLISETTY S, ADAMCIK J, HEIER J, et al. Amyloid Directed Synthesis of Titanium Dioxide Nanowires and Their Applications in Hybrid Photovoltaic Devices [J]. Advanced Functional Materials,2012,22(16):3424-8.
    [81]LIU Z, YAN F, HINTZEN H. The Application of Bismuth-Based Oxides in Organic-Inorganic Hybrid Photovoltaic Devices [J]. Journal of the American Ceramic Society, 2012,95(6):1944-8.
    [82]HUANG Y, GUO X, LIU F, et al. Improving the Ordering and Photovoltaic Properties by Extending π-Conjugated Area of Electron-Donating Units in Polymers with D-A Structure [J]. Advanced Materials,2012,24(25):3393-9.
    [83]温善鹏.聚合物太阳能电池材料的设计、合成及性质研究[D];吉林大学,2009.
    [84]ZHOU N, GUO X, ORTIZ R P, et al. Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells [J]. Advanced Materials,2012, n/a-n/a.
    [85]Ultrasonic-Assisted Nanodimensional Self-Assembly of Poly-3-hexylthiophe for Organic Photovoltaic Cells [J].
    [86]KIM K, LIU J, NAMBOOTHIRY M A G, et al. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics [J]. Applied Physics Letters,2007,90(16):163511.
    [87]REYES-REYES M, KIM K, CARROLL D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-l-phenyl-(6,6)C[sub 61] blends [J]. Applied Physics Letters,2005,87(8):083506.
    [88]WANG T, PEARSON A J, DUNBAR A D F, et al. Correlating Structure with Function in Thermally Annealed PCDTBT:PC70BM Photovoltaic Blends [J]. Advanced Functional Materials,2012,22(7):1399-408.
    [89]DUAN R, YE L, GUO X, et al. Application of Two-Dimensional Conjugated Benzo[1,2-b:4,5-b']dithiophene in Quinoxaline-Based Photovoltaic Polymers [J]. Macromolecules, 2012,45(7):3032-8.
    [90]MICHINOBU T, OSAKO H, SHIGEHARA K. Synthesis and Properties of Conjugated Poly(1,8-carbazole)s [J]. Macromolecules,2009,42(21):8172-80.
    [91]KIM K W, NA H, SO W W, et al. Synthesis and Characterization of Conjugated Low Band-Gap Terpolymers Incorporating Carbazole for Photovoltaic Application [J]. Journal of Nanoscience and Nanotechnology,2012,12(5):4279-83.
    [92]XIE H M, ZHANG K, DUAN C H, et al. New acceptor-pended conjugated polymers based on 3,6-and 2,7-carbazole for polymer solar cells [J]. Polymer,2012,53(25):5675-83.
    [93]LI W W, HAN Y, CHEN Y L, et al. Polythiophenes with Carbazole Side Chains:Design, Synthesis and Their Application in Organic Solar Cells [J]. Macromolecular Chemistry and Physics,2010,211(8):948-55.
    [94]KOUMURA N, HARA K. Development of Carbazole Dyes for Efficient Molecular Photovoltaics [J]. Journal of Synthetic Organic Chemistry Japan,2010,68(4):399-408.
    [95]赵巍.基于2,7-咔唑的新型窄带隙共轭聚合物的合成及光伏性质研究[D];华南理工大学,2010.
    [96]WAKIM S, AICH B R, TAO Y, et al. Charge transport, photovoltaic, and thermoelectric properties of poly(2,7-carbazole) and poly(indolo 3,2-b carbazole) derivatives [J]. Polymer Reviews,2008,48(3):432-62.
    [97]ZHOU Y, TAIMA T, MIYADERA T, et al. Phase separation of co-evaporated ZnPc:C60 blend film for highly efficient organic photovoltaics [J]. Applied Physics Letters,2012,100(23): 233302.
    [98]SCHULZE K, UHRICH C, SCH PPEL R, et al. Efficient Vacuum-Deposited Organic Solar Cells Based on a New Low-Bandgap Oligothiophene and Fullerene C60 [J]. Advanced Materials,2006,18(21):2872-5.
    [99]JO J, KIM S-S, NA S-I, et al. Time-Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells [J]. Advanced Functional Materials,2009, 19(6):866-74.
    [100]XU Z, CHEN L-M, YANG G, et al. Vertical Phase Separation in Poly(3-hexylthiophene):Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells [J]. Advanced Functional Materials,2009,19(8):1227-34.
    [101]BERSON S, DEBETTIGNIES R, BAILLY S, et al. Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells [J]. Advanced Functional Materials, 2007,17(16):3363-70.
    [102]ZHAO G, HE Y, LI Y.6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization [J]. Advanced Materials,2010,22(39):4355-8.
    [103]GUO X, CUI C, ZHANG M, et al. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive [J]. Energy & Environmental Science,2012,5(7):7943-9.
    [104]ZHAO G, HE Y, PENG B, et al. Effect of Device Fabrication Conditions on Photovoltaic Performance of Polymer Solar Cells Based on Poly(3-hexylthiophene) and Indene-C70 Bisadduct [J]. Chinese Journal of Chemistry,2012,30(1):19-22.
    [105]SUN Y, CUI C, WANG H, et al. Efficiency Enhancement of Polymer Solar Cells Based on Poly(3-hexylthiophene)/Indene-C70 Bisadduct via Methylthiophene Additive [J]. Advanced Energy Materials,2011,1(6):1058-61.
    [106]SAKAI J, KAWANO K, YAMANARI T, et al. Efficient organic photovoltaic tandem cells with poly (3-hexylthiophene):Fullerene active layers and transparent conductive oxide interlayer; proceedings of the Photovoltaic Specialists Conference (PVSC),2009 34th IEEE, F 7-12 June 2009,2009 [C].
    [107]BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes [J]. Nat Nano,2010,5(8):574-8.
    [108]ROBERT F. SERVICE, Outlook Brightens for Plastic Solar Cells [J]. Science,2011, 332:293.
    [109]SHROTRIYA V, LI G, YAO Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells [J]. Applied Physics Letters,2006,88(7):073508.
    [110]LI X, CHOY W C H, HUO L, et al. Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells [J]. Advanced Materials,2012,24(22):3046-52.
    [111]KIM K, CARROLL D L. Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C[sub 60] bulk heterojunction photovoltaic devices [J]. Applied Physics Letters,2005,87(20):203113.
    [112]J RGENSEN M, NORRMAN K, GEVORGYAN S A, et al. Stability of Polymer Solar Cells [J]. Advanced Materials,2012,24(5):580-612.
    [113]KREBS F C. Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes [J]. Solar Energy Materials and Solar Cells,2008,92(7):715-26.
    [114]STRANGE M, PLACKETT D, KAASGAARD M, et al. Biodegradable polymer solar cells [J]. Solar Energy Materials and Solar Cells,2008,92(7):805-13.
    [115]KREBS F C, NORRMAN K. Analysis of the failure mechanism for a stable organic photovoltaic during 100 00 h of testing [J]. Progress in Photovoltaics:Research and Applications,2007,15(8):697-712.
    [116]TAN Z A, QIAN D, ZHANG W, et al. Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer [J]. Journal of Materials Chemistry A, 2013,1(3):657.
    [117]TAN Z A, ZHANG W, ZHANG Z, et al. High-Performance Inverted Polymer Solar Cells with Solution-Processed Titanium Chelate as Electron-Collecting Layer on ITO Electrode [J]. Advanced Materials,2012,24(11):1476-81.
    [118]HE Z, ZHONG C, SU S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure [J]. Nat Photon,2012,6(9):591-5.
    [119]SCHROEDER B C, HUANG Z, ASHRAF R S, et al. Silaindacenodithiophene-Based Low Band Gap Polymers-The Effect of Fluorine Substitution on Device Performances and Film Morphologies [J]. Advanced Functional Materials,2012,22(8): 1663-70.
    [120]TANAKA H, ABE Y, MATSUO Y, et al. An Amorphous Mesophase Generated by Thermal Annealing for High-Performance Organic Photovoltaic Devices [J]. Advanced Materials, 2012,24(26):3521-5.
    [121]WILKE A, ENDRES J, HORMANN U, et al. Correlation between interface energetics and open circuit voltage in organic photovoltaic cells [J]. Applied Physics Letters,2012, 101(23):233301.
    [122]YANG Q D, NG T-W, LO M-F, et al. Effect of Water and Oxygen on the Electronic Structure of the Organic Photovoltaic [J]. The Journal of Physical Chemistry C,2012,116(20): 10982-5.
    [123]NIKIFOROV M P, STRZALKA J, DARLING S B. Delineation of the effects of water and oxygen on the degradation of organic photovoltaic devices [J]. Solar Energy Materials and Solar Cells,2013,110(36-42).
    [124]RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene:The New Two-Dimensional Nanomaterial [J]. Angewandte Chemie International Edition,2009,48(42): 7752-77.
    [125]BATZILL M. The surface science of graphene:Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects [J]. Surface Science Reports,2012,67(3-4): 83-115.
    [126]L K, ZHAO G, WANG X. A brief review of graphene-based material synthesis and its application in environmental pollution management [J]. Chinese Science Bulletin,2012, 57(11):1223-34.
    [127]HUANG X, YIN Z, WU S, et al. Graphene-Based Materials:Synthesis, Characterization, Properties, and Applications [J]. Small,2011,7(14):1876-902.
    [128]刘智勇.基于氧化石墨烯/聚合物光伏特性的研究[D];北京交通大学,2011.
    [129]GONG X, TONG M, BRUNETTI F G, et al. Bulk Heterojunction Solar Cells with Large Open-Circuit Voltage:Electron Transfer with Small Donor-Acceptor Energy Offset [J]. Advanced Materials,2011,23(20):2272-7.
    [130]LIANG Y, XU Z, XIA J, et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Advanced Materials,2010,22(20): E135-E8.
    [131]CHEN D, NAKAHARA A, WEI D, et al. P3HT/PCBM Bulk Heterojunction Organic Photovoltaics:Correlating Efficiency and Morphology [J]. Nano Letters,2011,11(2): 561-7.
    [132]CHANG L, LADEMANN H W A, BONEKAMP J-B, et al. Effect of Trace Solvent on the Morphology of P3HT:PCBM Bulk Heterojunction Solar Cells [J]. Advanced Functional Materials,2011,21(10):1779-87.
    [133]MAURANO A, HAMILTON R, SHUTTLE C G, et al. Recombination Dynamics as a Key Determinant of Open Circuit Voltage in Organic Bulk Heterojunction Solar Cells:A Comparison of Four Different Donor Polymers [J]. Advanced Materials,2010,22(44):4987-92.
    [134]BRABEC C J, GOWRISANKER S, HALLS J J M, et al. Polymer-Fullerene Bulk-Heterojunction Solar Cells [J]. Advanced Materials,2010,22(34):3839-56.
    [135]M HLBACHER D, SCHARBER M, MORANA M, et al. High Photovoltaic Performance of a Low-Bandgap Polymer [J]. Advanced Materials,2006,18(21):2884-9.
    [136]SAVENIJE T J, KROEZE J E, YANG X, et al. The effect of thermal treatment on the morphology and charge carrier dynamics in a polytiophene-fullerene bulk heterojunction [J]. Advanced Functional Materials,2005,15(8):1260-6.
    [137]CHIRVASE D, PARISI J, et al. Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites [J]. Nanotechnology,2004,15(9):1317-23.
    [138]MACNEILL C M, PETERSON E D, NOFTLE R E, et al. A cyclopentadithiophene/thienopyrroledione-based donor-acceptor copolymer for organic solar cells [J]. Synthetic Metals,2011,161(11-12):1137-40.
    [139]ERB T, ZHOKHAVETS U, HOPPE H, et al. Absorption and crystallinity of poly(3-hexylthiophene)/fullerene blends in dependence on annealing temperature [J]. Thin Solid Films,2006,511-512(483-5).
    [140]WANG T, PEARSON A J, LIDZEY D G, et al. Evolution of Structure, Optoelectronic Properties, and Device Performance of Polythiophene:Fullerene Solar Cells During Thermal Annealing [J]. Advanced Functional Materials,2011,21(8):1383-90.
    [141]KIM Y, COOK S, TULADHAR S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells [J]. Nature materials,2006,5(3):197-203.
    [142]JUNG J W, JO W H. Annealing-Free High Efficiency and Large Area Polymer Solar Cells Fabricated by a Roller Painting Process [J]. Advanced Functional Materials,2010, 20(14):2355-63.
    [143]P RAND B, et al. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells [J]. physical Review B,2007, 75(11):115327.
    [144]MIHAILETCHI V D, XIE H X, DEBOER B, et al. Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene):Methanofullerene Bulk-Heterojunction Solar Cells [J]. Advanced Functional Materials,2006,16(5):699-708.
    [145]MIHAILETCHI V, WILDEMAN J, BLOM P. Space-Charge Limited Photocurrent [J]. Physical Review Letters,2005,94(12):126602.
    [146]LIU Q, LIU Z, ZHANG X, et al. Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT [J]. Advanced Functional Materials,2009,19(6): 894-904.
    [147]HE Z, ZHONG C, HUANG X, et al. Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells [J]. Advanced Materials,2011,23(40):4636-43.
    [148]LIU Z, LIU Q, HUANG Y, et al. Organic Photovoltaic Devices Based on a Novel Acceptor Material:Graphene [J]. Advanced Materials,2008,20(20):3924-30.
    [149]BACKER S A, SIVULA K, KAVULAK D F, et al. High Efficiency Organic Photovoltaics Incorporating a New Family of Soluble Fullerene Derivatives [J]. Chemistry of Materials,2007,19(12):2927-9.
    [150]YANG Y, LIU T. Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid [J]. Applied Surface Science,2011,257(21):8950-4.
    [151]YU D, PARK K, DURSTOCK M, et al. Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices [J]. The Journal of Physical Chemistry Letters, 2011,2(10):1113-8.
    [152]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306(5696):666-9.
    [153]LIU Z, HE D, WANG Y, et al. Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells [J]. Solar Energy Materials and Solar Cells,2010, 94(7):1196-200.
    [154]ALVER U, ZHOU W, BELAY A B, et al. Optical and structural properties of ZnO nanorods grown on graphene oxide and reduced graphene oxide film by hydrothermal method [J]. Applied Surface Science,2012,258(7):3109-14.
    [155]LEE J M, PYUN Y B, YI J, et al. ZnO Nanorod-Graphene Hybrid Architectures for Multifunctional Conductors [J]. The Journal of Physical Chemistry C,2009,113(44):19134-8.
    [156]ZHANG Y, LI H, PAN L, et al. Capacitive behavior of graphene-ZnO composite film for supercapacitors [J]. Journal of Electroanalytical Chemistry,2009,634(1):68-71.
    [157]ZHENG W T, HO Y M, TIAN H W, et al. Field Emission from a Composite of Graphene Sheets and ZnO Nanowires [J]. The Journal of Physical Chemistry C,2009,113(21): 9164-8.
    [158]OLSON D C, LEE Y-J, WHITE M S, et al. Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices [J]. The Journal of Physical Chemistry C,2007,111(44):16640-5.
    [159]MONSON T C, LLOYD M T, OLSON D C, et al. Photocurrent Enhancement in Polythiophene-and Alkanethiol-Modified ZnO Solar Cells [J]. Advanced Materials,2008,20(24): 4755-9.
    [160]OLSON D C, LEE Y-J, WHITE M S, et al. Effect of ZnO Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells [J]. The Journal of Physical Chemistry C, 2008,112(26):9544-7.
    [161]OLSON D C, PIRIS J, COLLINS R T, et al. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites [J]. Thin Solid Films,2006,496(1):26-9.
    [162]STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-65.
    [163]VADUKUMPULLY S, PAUL J, VALIYAVEETTIL S. Cationic surfactant mediated exfoliation of graphite into graphene flakes [J]. Carbon,2009,47(14):3288-94.
    [164]O'NEILL A, KHAN U, NIRMALRAJ P N, et al. Graphene Dispersion and Exfoliation in Low Boiling Point Solvents [J]. The Journal of Physical Chemistry C,2011, 115(13):5422-8.
    [165]SARKAR S, BEKYAROVA E, NIYOGI S, et al. Diels-Alder Chemistry of Graphite and Graphene:Graphene as Diene and Dienophile [J]. Journal of the American Chemical Society,2011,133(10):3324-7.
    [166]ALIM K A, FONOBEROV V A, SHAMSA M, et al. Micro-Raman investigation of optical phonons in ZnO nanocrystals [J]. Journal of Applied Physics,2005,97(12):124313.
    [167]ZHANG Y, JIA H, WANG R, et al. Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate [J]. Applied Physics Letters,2003, 83(22):4631.
    [168]DENG S, FAN H M, ZHANG X, et al. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array [J]. Nanotechnology,2009, 20(17):175705.
    [169]GLEIZE J, CHIKOIDZE E, DUMONT Y, et al. Resonant Raman scattering in Mn:ZnO dilute magnetic semiconductors [J]. Superlattices and Microstructures,2007,42(1-6): 242-5.
    [170]邹文斌.几种无机纳米粒子/(氧化)/石墨烯复合材料的制备及性能研究[D];南京理工大学,2011.
    [171]ZHU Y, MURALI S, CAI W, et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications [J]. Advanced Materials,2010,22(35):3906-24.
    [172]KIM B-G, KIM M-S, KIM J. Ultrasonic-Assisted Nanodimensional Self-Assembly of Poly-3-hexylthiophene for Organic Photovoltaic Cells [J]. ACS Nano,2010,4(4):2160-6.
    [173]XUE J, UCHIDA S, RAND B P, et al.4.2% efficient organic photovoltaic cells with low series resistances [J]. Applied Physics Letters,2004,84(16):3013.
    [174]WANG M, LI Y, HUANG H, et al. Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices [J]. Applied Physics Letters,2011, 98(10):103305-3.
    [175]ZHENG Q, FANG G, BAI W, et al. Efficiency improvement in organic solar cells by inserting a discotic liquid crystal [J]. Solar Energy Materials and Solar Cells,2011,95(8): 2200-5.
    [176]FAN X, CUI C, FANG G, et al. Efficient Polymer Solar Cells Based on Poly(3-hexylthiophene):Indene-C70 Bisadduct with a M0O3 Buffer Layer [J]. Advanced Functional Materials,2012,22(3):585-90.
    [177]SUN N, FANG G, QIN P, et al. Efficient flexible organic solar cells with room temperature sputtered and highly conductive NiO as hole-transporting layer [J]. Journal of Physics D:Applied Physics,2010,43(44):445101.
    [178]EL-KADY M F, STRONG V, DUBIN S, et al. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J]. Science,2012,335(6074):1326-30.
    [179]SAHOO N G, PAN Y, LI L, et al. Graphene-Based Materials for Energy Conversion [J]. Advanced Materials,2012,24(30):4203-10.
    [180]GAO Y, YIP H-L, CHEN K-S, et al. Surface Doping of Conjugated Polymers by Graphene Oxide and Its Application for Organic Electronic Devices [J]. Advanced Materials,2011, 23(16):1903-8.
    [181]GAN S, ZHONG L, WU T, et al. Spontaneous and Fast Growth of Large-Area Graphene Nanofilms Facilitated by Oil/Water Interfaces [J]. Advanced Materials,2012,24(29): 3958-64.
    [182]LUO B, LIU S, ZHI L. Chemical Approaches toward Graphene-Based Nanomaterials and their Applications in Energy-Related Areas [J]. Small,2012,8(5):630-46.
    [183]BOUKHVALOV D W, KATSNELSON M I. Chemical functionalization of graphene [J]. Journal of Physics:Condensed Matter,2009,21(34):344205.
    [184]XUE Y, CHEN H, YU D, et al. Oxidizing metal ions with graphene oxide:the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications [J]. Chemical Communications,2011,47(42):11689.
    [185]KANG S M, PARK S, KIM D, et al. Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel-Inspired Chemistry [J]. Advanced Functional Materials,2011,21(1):108-12.
    [186]COMPTON O C, NGUYEN S T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene:Versatile Building Blocks for Carbon-Based Materials [J]. Small,2010,6(6): 711-23.
    [187]GREINER M T, CHAI L, HELANDER M G, et al. Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3 [J]. Advanced Functional Materials,2013,23(6):215-26.
    [188]PAN R, WU Y, LI L, et al. Synthesis of indium tin oxide nanorods by a facile process with ethylene glycol as solvent [J]. Materials Science and Engineering:B,2010,175(1): 70-4.
    [189]WANG D H, LEE H K, CHOI D-G, et al. Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyI C[sub 61]-butyric acidmethyl ester concentration graded bilayers [J]. Applied Physics Letters,2009,95(4):043505.
    [190]ZHANG C, TONG S W, JIANG C, et al. Efficient multilayer organic solar cells using the optical interference peak [J]. Applied Physics Letters,2008,93(4):043307.
    [191]KUMAR A, LI G, HONG Z, et al. High efficiency polymer solar cells with vertically modulated nanoscale morphology [J]. Nanotechnology,2009,20(16):165202.
    [192]BUSHBY R J, EVANS S D, LOZMAN O R, et al. Enhanced charge conduction in discotic liquid crystals [J]. Journal of Materials Chemistry,2001,11(8):1982-4.
    [193]SCHMIDT-MENDE L, FECHTENKOTTER A, MULLEN K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics [J]. Science,2001,293(5532): 1119-22.
    [194]YILMAZ CANLI N, G NES S, PIVRIKAS A, et al. Chiral (S)-5-octyloxy-2-[{4-(2-methylbuthoxy)-phenylimino}-methyl]-phenol liquid crystalline compound as additive into polymer solar cells [J]. Solar Energy Materials and Solar Cells,2010, 94(6):1089-99.
    [195]GRELET E, DARDEL S, BOCK H, et al. Morphology of open films of discotic hexagonal columnar liquid crystals as probed by grazing incidence X-ray diffraction [J]. The European physical journal E, Soft matter,2010,31(4):343-9.
    [196]LI J, WANG J, HE Z, et al. Organic photovoltaic devices from discotic materials [J]. Solid State Lighting and Solar Energy Technologies,2007,6841(68411I-I-7).
    [197]THIBAULT-MAHEU O, GALSTIAN T, BESSETTE A, et al. Light-configured mesogenic azopolymer stabilized liquid crystals [J]. Applied Physics Letters,2010,97(15): 153301.
    [198]BUSHBY R J, BODEN N, KILNER C A, et al. Helical geometry and liquid crystalline properties of 2,3,6,7,10,11-hexaalkoxy-l-nitrotriphenylenes [J]. Journal of Materials Chemistry,2003,13(3):470-4.
    [199]IINO H, HANNA J-I, BUSHBY R J, et al. Hopping conduction in the columnar liquid crystal phase of a dipolar discogen [J]. Journal of Applied Physics,2006,100(4):043716.
    [200]孔翔飞.盘状液晶苯并菲类光电材料的合成及表征[D];北京交通大学,2011.
    [201]张春秀.苯并菲类盘状液晶的合成以及应用研究[D];北京交通大学,2009.
    [202]ZHENG Y-Y, LI Q-Y, ZHANG B-Y, et al. Synthesis and mesomorphic properties of side-chain cholesteric liquid-crystalline polysiloxanes [J]. Journal of Applied Polymer Science, 2005,97(6):2392-8.
    [203]KUMAR S, BISOYI H K. Aligned Carbon Nanotubes in the Supramolecular Order of Discotic Liquid Crystals [J]. Angewandte Chemie,2007,119(9):1523-5.
    [204]KUMAR S. Self-organization of disc-like molecules:chemical aspects [J]. Chemical Society reviews,2006,35(1):83-109.
    [205]SCHMIDT-MENDE L, FECHTENKOTTER A, MULLEN K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics [J]. Science,2001,293(5532): 1119-22.
    [206]LEMAUR V, DA SILVA FILHO D A, COROPCEANU V, et al. Charge transport properties in discotic liquid crystals:A quantum-chemical insight into structure-property relationships [J]. Journal of the American Chemical Society,2004,126(10):3271-9.
    [207]SERGEYEV S, PISULA W, GEERTS Y H. Discotic liquid crystals:A new generation of organic semiconductors [J]. Chemical Society reviews,2007,36(12):1902-29.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.