基于虚拟正交源电压合成策略的直接AC-AC变换拓扑与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交交功率变换是电力电子学四大变换之一,是电力电子技术领域的主要研究应用方向。带有中间直流单元的整流——逆变形式交交变流器普遍存在储能元件价格昂贵、寿命短、功率密度低等缺点,因此研究无储能元件的直接交交变流器技术一直是本领域的研究热点。本论文对交交功率变换领域的诸多拓扑结构及其应用领域进行了广泛综述,针对直接交交斩波器拓扑难以实现任意给定电压输出的问题,提出了应用于该类拓扑的,实现任意给定频率、相位、幅值交流电压输出的虚拟正交源优化电压合成策略,进而拓展了该类拓扑的应用范围,在多个交交功率变换领域得到一系列高可靠的新型直接交交变流解决方案。
     首先,基于最简单的Buck型交流斩波器,推导得出采用时变占空比给定控制、输出电压零序分量对消方式,在三相交流斩波器拓扑中产生需要的基频正序分量,谐波频率正序分量和谐波频率负序分量,进而得到任意频率、相位、幅值的三相交流输出电压的虚拟正交源电压优化合成策略,同时有效解决控制过程中产生的额外谐波电压。通过采用以上策略,单相结构的交流斩波器可以有效克服其原有局限,其应用范围将推广至交交功率变换的大部分领域。通过分析得出结论,在简单Buck型交流斩波器上应用该新策略,其输出电压中存在额外不可控的基波分量,因此限制了其应用。进而总结和归纳出基于虚拟正交源电压优化合成策略的直接交交变流器拓扑所应具备的基本特征,为新拓扑的引入与研究提供了理论指导。
     其次,论文给出了一系列工频隔离的适用于虚拟正交源优化电压合成策略的直接交交变流器拓扑,从中并进一步推衍得到使用商业化半桥模块,并且使变压器高频损耗降低的改进型推挽正激拓扑。同时,针对在电机拖动领域输出极低频电压的要求,进一步给出了一系列高频隔离的适用于虚拟正交源优化电压合成策略的直接交交变流器拓扑,并分析了该类拓扑的高频变压器在新型控制策略下的励磁状态,为高频变压器的设计提供指导。论文同时对上述直接交交变流器拓扑进行建模,得到能够用于系统快速仿真的电路精确大信号模型。同时通过在模型中引入非线性的坐标变换,实现了虚拟正交源优化电压合成策略的数学建模。通过在控制中引入附加算子,进一步实现了使用优化电压合成策略的直接交交变流器控制和传统逆变器控制的等效,从而将针对传统逆变器类电路的闭环控制策略无缝移植到新技术中,加速对以上交交变流器控制方案和应用领域的研究,实现了新型直接交交变流控制技术研究和传统逆变器控制技术研究的有机统一。
     再者,论文针对多个交交功率变换应用领域设计了基于新型直接交交变换技术的解决方案。论文提出了一种直接交交动态电压恢复器,并提出了基于以上装置的一整套谐波检测和补偿电压生成算法,在交流斩波器结构的电压补偿装置中成功实现了补偿电网谐波电压的功能。接下来,论文将新方案应用于对交流负载供电的领域,并开发了针对不同负载的闭环控制算法,验证了其对多种交流负载供电,特别是应用于电机调速领域的可行性。再者,论文提出了一种直接交交潮流控制器,并开发了针对该方案的最小视在功率潮流控制算法,实现了以小容量的变流器对电网潮流的大幅度控制。论文还提出了一种直接交交串联型有源电力滤波器,解决非线性负载产生的谐波电流问题。其控制方案完全模拟经典的逆变器控制,实现了针对逆变器的控制算法的无缝移植。随着研究不断深入,基于以上新方案和新电路可以继续开发更多更实用的应用场合。
     论文通过在交流斩波器拓扑上提出实现任意频率,相位,幅值的三相交流电压输出的虚拟正交源优化电压合成策略,使该类电路突破其原有局限,进而能够被应用到交交功率变换的大部分领域。本研究拓展了电力电子学科的一个新研究方向,为电力电子技术理论和拓扑研究提供了新思路。论文基于采用新电压合成策略的直接交交拓扑,提出了一系列新型电力电子装置。以上装置的提出,为交交功率变换的多个领域提供了高可靠的替代解决方案。
     最后,论文介绍了使用FPGA+DSP联合控制的通用电力电子数字控制平台的研发。该平台实现了可靠的硬件设计以及强调移植性和通用性的软件设计。针对该平台,同时开发了一套完整的基于触摸屏的人机交互界面。基于平台开发了两套针对新型直接交交变换应用的实验装置。同时,该平台由于其通用性,也能够用于绝大多数电力电子变流器的产品开发和科学研究。
AC power conversion is the key technology in power electronics researches. Widely used inverter-type and the rectifier-type converters have several drawbacks such as high price, short lifetime and low power density due to the usage of large storage elements. As a result, the development of direct AC-AC converter which requires no storage elements is always one of research hotspots in this field. In this dissertation, a comprehensive review is taken to summarize the topology technologies and their applications in AC power conversion research field. Aimed to the crucial technical constraint of the direct AC-AC chopper that stops it to output arbitrary AC voltages, an Advanced Virtual Quadrature Sources (AVQS) voltage synthesis theory is proposed. It realizes AC voltage outputs with arbitrary frequency, phase and amplitude. With the help of this, The AC chopper topology can now be applied to most AC power application areas, a series of novel power electronics converters with high reliability are developed.
     Firstly, based on the simple Buck-type AC chopper topology, the method of how to generate fundamental positive sequence voltage, harmonic frequency positive sequence voltages and negative sequence voltages on chopper topologies are derived. Following this, the AVQS theory, which can synthesis AC voltage outputs with arbitrary frequency, phase and amplitude are proposed. At the same time, the byproduct harmonic voltages, which are generated following the modulation, are also effectively eliminated. Thus the single-phase based chopper topologies can theoretically be applied to most AC power application areas without the constraint. At the same time, the new constraint of the simple Buck-type AC chopper topology when applying the AVQS theory is addressed. Therefore, the basic characteristics of the direct AC-AC chopper topologies that are suitable for the AVQS are concluded. It offers a guideline for the selection and derivation of new available chopper topologies.
     Secondly, a series of line frequency isolated direct AC chopper topologies suitable for the AVQS theory is presented. Within these topologies, an improved Push-Pull forward AC chopper is proposed. Commercial bridge-type IGBT module can be implemented and the switching loss of the transformer is minimized. Then, in order to realize the extreme low frequency voltage output in electrical motor drive applications, a series of high frequency isolated direct AC chopper topologies suitable for the AVQS theory is presented. The magnetizing condition of the high frequency transformer applying the proposed control scheme is fully analyzed to guide the transformer design. After that, the precise large-signal circuit models for the above-mentioned topologies are derived to facilitate the system level simulation. Then, a nonlinear coordinate transformation is implemented to the circuit model to derive the mathematical model of the AVQS theory. At the same time, by employing an additional operator, the control of the AVQS-applied AC chopper can be equated to ones of traditional inverter circuit. Thus the well-developed closed-loop control strategy for inverter-type converter can be seamlessly transferred to the new technology to normalize the researches of control strategies for both technologies.
     Then, a series of novel high reliability power electronic converters based on the proposed technology for different application areas are developed. At first, a direct AC-AC based dynamic voltage restorer (DVR) is developed for the power distribution system. The algorithm for harmonics detection and compensation voltage generation is derived. The function of harmonic voltage compensation is realized by the direct AC-AC based DVR. Then, the new technology is employed as variable frequency ac supply and electrical AC motor drive. Closed-loop control schemes are developed for different types of load. The capability of the proposed solutions is verified. Again, a direct AC-AC based power flow controller (PFC) is proposed in the power transmission system. A minimum apparent power transfer control strategy is developed for the converter to realize maximum power flow control range while using the minimum volume of the converter. Finally, a direct AC-AC based series active power filter (SAPF) is proposed. The closed-loop control strategy is seamlessly transferred from the classic strategy for inverter-type converter, which shows the correctness of the developed model. Following further explorations, more potential application areas can be found for the new technology.
     In this dissertation, the AVQS voltage synthesis theory is proposed to enable the arbitrary AC voltage output on the AC chopper topologies. Thus the technical constraint of the AC chopper is overcome, which facilitate its applications to most AC power conversion areas. This piece of works extends a new research direction in power electronics technology, develops its theory system and provides new ideas for the topology researches. Based on a series of new AC chopper topologies applying the AVQS voltage synthesis theory, several novel power electronic converters are proposed. It offers alternative solutions with high reliability for many important AC power conversion areas.
     Finally, a development of FPGA+DSP based general purpose power electronics digital control platform is introduced. The platform has a robust hardware design, a high portability software design and a touch panel based human friendly user interface design. Two experimental prototypes for novel direct AC-AC power conversion technology based on the platform are designed. Due to the generality, this platform can also be implemented to the researches and products development for most types of power electronic converters.
引文
[1]BP Group. BP statistical review of world energy[R]. London:British Petroleum,2013.
    [2]BP Group. BP energy outlook 2030[R]. London:British Petroleum,2011.
    [3]USA Energy Information Administration. Annual energy review[R]. Washington, DC: Energy Information Administration, USA,2011.
    [4]Bose B K. Power Electronics and Motor Drives Recent Progress and Perspective[J]. Industrial Electronics, IEEE Transactions on.2009,56(2):581-588.
    [5]Strzelecki R M, Benysek G. Power electronics in smart electrical energy networks[M]. London:Springer,2008.
    [6]Friedli T, Kolar J W, Rodriguez J, Wheeler P W. Comparative Evaluation of Three-Phase AC-AC Matrix Converter and Voltage DC-Link Back-to-Back Converter Systems[J]. Industrial Electronics, IEEE Transactions on.2012,59(12):4487-4510.
    [7]Wu B. High-power converters and AC drives[M]. USA:Wiley, com,2006.
    [8]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.
    [9]Mancilla-David F. AC link Vector Switching Converters for power flow control and power quality:A review[C].Proc. IEEE NAPS'09.2009.
    [10]Abu-Rub H, Holtz J, Rodriguez J, Ge B. Medium-Voltage Multilevel Converters-State of the Art, Challenges, and Requirements in Industrial Applications[J]. Industrial Electronics, IEEE Transactions on.2010,57(8):2581-2596.
    [11]Rajabi-Ghahnavieh A, Fotuhi-Firuzabad M, Shahidehpour M, Feuillet R. UPFC for Enhancing Power System Reliability [J]. Power Delivery, IEEE Transactions on.2010, 25(4):2881-2890.
    [12]Noroozian M, Angquist L, Ghandhari M, Andersson G. Use of UPFC for optimal power flow control[J]. Power Delivery, IEEE Transactions on.1997,12(4):1629-1634.
    [13]Divan D, Johal H. Distributed FACTS-A New Concept for Realizing Grid Power Flow Control[J]. Power Electronics, IEEE Transactions on.2007,22(6):2253-2260.
    [14]Akagi H. Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC)[J]. Power Electronics, IEEE Transactions on.2011,26(11): 3119-3130.
    [15]Lee T L, Hu S H, Chan Y H. D-STATCOM With Positive-Sequence Admittance and Negative-Sequence Conductance to Mitigate Voltage Fluctuations in High-Level Penetration of Distributed-Generation Systems[J]. Industrial Electronics, IEEE Transactions on.2013,60(4):1417-1428.
    [16]Karanki S B, Geddada N, Mishra M K, Kumar B K. A DSTATCOM Topology With Reduced DC-Link Voltage Rating for Load Compensation With Nonstiff Source[J]. Power Electronics, IEEE Transactions on.2012,27(3):1201-1211.
    [17]Senturk O S, Hava A M. Performance Enhancement of the Single-Phase Series Active Filter by Employing the Load Voltage Waveform Reconstruction and Line Current Sampling Delay Reduction Methods[J]. Power Electronics, IEEE Transactions on.2011, 26(8):2210-2220.
    [18]Routimo M, Salo M, Tuusa H. Comparison of Voltage-Source and Current-Source Shunt Active Power Filters[J]. Power Electronics, IEEE Transactions on.2007,22(2):636-643.
    [19]El-Habrouk M, Darwish M K, Mehta P. Active power filters:a review[J]. Electric Power Applications, IEE Proceedings-.2000,147(5):403-413.
    [20]Nielsen J G, Blaabjerg F. A detailed comparison of system topologies for dynamic voltage restorers[J]. Industry Applications, IEEE Transactions on.2005,41(5):1272-1280.
    [21]Khadkikar V. Enhancing Electric Power Quality Using UPQC:A Comprehensive Overview[J]. Power Electronics, IEEE Transactions on.2012,27(5):2284-2297.
    [22]Khadkikar V, Chandra A. UPQC-S:A Novel Concept of Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Utilizing Series Inverter of UPQC[J]. Power Electronics, IEEE Transactions on.2011,26(9):2414-2425.
    [23]Bhattacharya S, Tiefu Z, Gangyao W, Dutta S, Seunghun B, Yu D, Parkhideh B, Xiaohu Z, Huang A Q. Design and development of Generation-I silicon based Solid State Transformer[C].Proc. IEEE APEC'10.2010.
    [24]Lai R, Wang F, Burgos R, Pei Y, Boroyevich D, Wang B, Lipo T A, Immanuel V D, Karimi K J. A Systematic Topology Evaluation Methodology for High-Density Three-Phase PWM AC-AC Converters[J]. Power Electronics, IEEE Transactions on. 2008,23(6):2665-2680.
    [25]Cornforth D, Moore T, Sayeef S. Challenges and opportunities for inverters in microgrids[C].Proc. IEEE IECON'11.2011.
    [26]Wang F, Duarte J L, Hendrix M A M. Grid-Interfacing Converter Systems With Enhanced Voltage Quality for Microgrid Application-Concept and Implementation[J]. Power Electronics, IEEE Transactions on.2011,26(12):3501-3513.
    [27]Sahan B, Araujo S V, Noding C, Zacharias P. Comparative Evaluation of Three-Phase Current Source Inverters for Grid Interfacing of Distributed and Renewable Energy Systems[J]. Power Electronics, IEEE Transactions on.2011,26(8):2304-2318.
    [28]Dasgupta S, Sahoo S K, Panda S K. Single-Phase Inverter Control Techniques for Interfacing Renewable Energy Sources With Microgrid-Part Ⅰ:Parallel-Connected Inverter Topology With Active and Reactive Power Flow Control Along With Grid Current Shaping[J]. Power Electronics, IEEE Transactions on.2011,26(3):717-731.
    [29]Dasgupta S, Sahoo S K, Panda S K, Amaratunga G A J. Single-Phase Inverter-Control Techniques for Interfacing Renewable Energy Sources With Microgrid-Part Ⅱ: Series-Connected Inverter Topology to Mitigate Voltage-Related Problems Along With Active Power Flow Control[J]. Power Electronics, IEEE Transactions on.2011,26(3): 732-746.
    [30]Song Y, Wang B. Survey on Reliability of Power Electronic Systems[J]. Power Electronics, IEEE Transactions on.2013,28(1):591-604.
    [31]Prasai A, Sastry J, Divan D. Dynamic Capacitor (D-CAP):An Integrated Approach to Reactive and Harmonic Compensation[J]. Industry Applications, IEEE Transactions on. 2010,PP(99):1.
    [32]日本松下公司.铝电解电容器2012. url:http://www.panasonic.net/id/ctlg/data/pdf/ABA0000/ABA0000CE22.pdf.
    [33]Akagi H, Watanabe E H, Aredes M. Instantaneous power theory and applications to power conditioning[M]. USA:Wiley.com,2007.
    [34]Akagi H, Kanazawa Y, Nabae A. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components[J]. Industry Applications, IEEE Transactions on.1984, IA-20(3):625-630.
    [35]Seo G S, Lee K C, Cho B H. A New DC Anti-Islanding Technique of Electrolytic Capacitor-Less Photovoltaic Interface in DC Distribution Systems[J]. Power Electronics, IEEE Transactions on.2013,28(4):1632-1641.
    [36]Chen X, Kazerani M. Space Vector Modulation Control of an AC-DC-AC Converter With a Front-End Diode Rectifier and Reduced DC-link Capacitor[J]. Power Electronics, IEEE Transactions on.2006,21(5):1470-1478.
    [37]Sood P K, Lipo T A. Power conversion distribution system using a high-frequency AC link[J]. Industry Applications, IEEE Transactions on.1988,24(2):288-300.
    [38]Espelage P M, Bose B K. High-Frequency Link Power Conversion[J]. Industry Applications, IEEE Transactions on.1977, IA-13(5):387-394.
    [39]Amirabadi M, Balakrishnan A, Toliyat H, Alexander W. High Frequency ac-Link PV Inverter[J]. Industrial Electronics, IEEE Transactions on.2013, PP(99):1.
    [40]Amirabadi M, Toliyat H A, Alexander W C. A Multi-Port ac Link PV Inverter with Reduced Size and Weight for Stand-alone Application[J]. Industry Applications, IEEE Transactions on.2013, PP(99):1.
    [41]Amirabadi M, Toliyat H A, Alexander W C. Partial resonant AC link converter:A highly reliable variable frequency drive[C].Proc. IEEEIECON'12.2012.
    [42]Wijekoon T, Klumpner C, Zanchetta P, Wheeler P W. Implementation of a Hybrid AC-AC Direct Power Converter With Unity Voltage Transfer[J]. Power Electronics, IEEE Transactions on.2008,23(4):1918-1926.
    [43]Toliyat H A, Balakrishnan A, Amirabadi M, Alexander W. Soft switched ac-link AC/AC and AC/DC buck-boost converter[C].Proc. IEEE PESC'08.2008.
    [44]Gyo-Bum C. High frequency AC link converter as a phase shifter in a power transmission system[C].Proc. IEEE APEC'95.1995.
    [45]Joohn-Sheok K, Seung-Ki S. Resonant link bidirectional power converter. II. Application to bidirectional AC motor drive without electrolytic capacitor[J]. Power Electronics, IEEE Transactions on.1995,10(4):485-493.
    [46]Keyhani H, Toliyat H A, Todorovic M H, Lai R, Datta R. Isolated soft-switching HFAC-link 3-phase AC AC converter using a single-phase HF transformer [C].Proc. IEEE IECON'12.2012.
    [47]张杰.基于双向开关型的电力电子变换器研究[D].[博士学位论文].武汉:华中科技大学,2008.
    [48]Wheeler P W, Rodriguez J, Clare J C, Empringham L, Weinstein A. Matrix converters:a technology review[J]. Industrial Electronics, IEEE Transactions on.2002,49(2):276-288.
    [49]日本安川电机公司.kaepc71063600b_1_0产品手册,2007url:http://www.e-mechatronics.com/en/product/inverter/ac/.
    [50]Venturini M. A new sine wave in sine wave out, conversion technique which eliminates reactive elements[C].Proc. POWERCON 7.1980.
    [51]Venturini M, Alesina A. The generalized transformer:A new bidirectional sinusoidal waveform frequency converter with continuously adjustable input power factor[C].Proc. IEEE PESC'80.1980.
    [52]Kolar J W, Friedli T, Rodriguez J, Wheeler P W. Review of Three-Phase PWM AC-AC Converter Topologies[J]. Industrial Electronics, IEEE Transactions on.2011,58(11): 4988-5006.
    [53]Rodriguez J. A new control technique for AC-AC converters[C].Proc. IFAC Control in Power Electronics and Electrical Drives Conf. Lausanne, Switzerland:1983.
    [54]Holtz J, Boelkens U. Direct frequency convertor with sinusoidal line currents for speed-variable AC motors[J]. Industrial Electronics, IEEE Transactions on.1989,36(4): 475-479.
    [55]Ziogas P D, Kang Y G, Stefanovic V R. Rectifier-Inverter Frequency Changers with Suppressed DC Link Components[J]. Industry Applications, IEEE Transactions on.1986, IA-22(6):1027-1036.
    [56]Rodriguez J, Rivera M, Kolar J W, Wheeler P W. A Review of Control and Modulation Methods for Matrix Converters[J]. Industrial Electronics, IEEE Transactions on.2012, 59(1):58-70.
    [57]齐琛,陈希有.一种可靠换流的双级矩阵变换器载波调制策略[J].电工技术学报.2013,28(6):184-191.
    [58]何必,乔鸣忠,林桦,佘宏武,王兴伟.矩阵变换器占空比矢量理论及调制策略[J].电工技术学报.2011(S1):56-64.
    [59]Siyoung K, Seung-Ki S, Lipo T A. AC to AC power conversion based on matrix converter topology with unidirectional switches[C].Proc. Applied Power Electronics Conference and Exposition,1998. APEC'98. Conference Proceedings 1998., Thirteenth Annual. Anaheim, CA:1998.
    [60]Lixiang W, Lipo T A, Ho C. Matrix converter topologies with reduced number of switches[C].Proc. Power Electronics Specialists Conference,2002. pesc 02.2002 IEEE 33rd Annual.2002.
    [61]Kolar J W, Baumann M, Schafmeister F, Ertl H. Novel three-phase AC-DC-AC sparse matrix converter[C].Proc. Applied Power Electronics Conference and Exposition,2002. APEC 2002. Seventeenth Annual IEEE. Dallas, TX:2002.
    [62]Ziegler M, Domes D, Hofmann W, El-Barbari S. A new rectifier based topology for electrical drives:S-A-X -converter[C].Proc. Power Electronics Specialists Conference, 2004. PESC 04.2004 IEEE 35th Annual.2004.
    [63]Meng Y L, Wheeler P, Klumpner C. Space-Vector Modulated Multilevel Matrix Converter [J]. Industrial Electronics, IEEE Transactions on.2010,57(10):3385-3394.
    [64]Meng Y L, Wheeler P, Klumpner C. A New Modulation Method for the Three-Level-Output-Stage Matrix Converter[C].Proc. Power Conversion Conference Nagoya,2007. PCC'07. Nagoya:2007.
    [65]Kolar J W, Schafmeister F, Round S D, Ertl H. Novel Three-Phase AC–AC Sparse Matrix Converters[J]. Power Electronics, IEEE Transactions on.2007,22(5): 1649-1661.
    [66]Yong S, Xu Y, Qun H, Zhaoan W. Research on a novel capacitor clamped multilevel matrix converter[J]. Power Electronics, IEEE Transactions on.2005,20(5):1055-1065.
    [67]Jiacheng W, Bin W, Dewei X, Zargari N R. Multimodular Matrix Converters With Sinusoidal Input and Output Waveforms[J]. Industrial Electronics, IEEE Transactions on. 2012,59(1):17-26.
    [68]Wang J, Wu B, Xu D, Zargari N. Indirect Space Vector Based Modulation Techniques for High-Power Multi-Modular Matrix Converters[J]. Industrial Electronics, IEEE Transactions on.2012, PP(99):1.
    [69]Jiacheng W, Bin W, Zargari N R. High-power multi-modular matrix converters with sinusoidal input/output waveforms[C].Proc. Industrial Electronics,2009. IECON'09.35th Annual Conference of IEEE.2009.
    [70]Klumpner C. Hybrid Direct Power Converters with Increased/Higher than Unity Voltage Transfer Ratio and Improved Robustness against Voltage Supply Disturbances[C].Proc. Power Electronics Specialists Conference,2005. PESC'05. IEEE 36th. Recife:IEEE, 2005.
    [71]Klumpner C, Pitic C. Hybrid matrix converter topologies:An exploration of benefits[C].Proc. Power Electronics Specialists Conference,2008. PESC 2008. IEEE. Rhodes:IEEE,2008.
    [72]Mino K, Okuma Y, Kuroki K. Direct-linked-type frequency changer based on DC-clamped bilateral switching circuit topology [J]. Industry Applications, IEEE Transactions on.1998,34(6):1309-1317.
    [73]Xiong L, Peng W, Poh C L, Blaabjerg F. A Compact Three-Phase Single-Input/Dual-Output Matrix Converter[J]. Industrial Electronics, IEEE Transactions on.2012,59(1):6-16.
    [74]Nguyen T D, Lee H H. Dual Three-Phase Indirect Matrix Converter With Carrier-Based PWM Method[J]. Power Electronics, IEEE Transactions on.2014,29(2):569-581.
    [75]Fan Y, Wheeler P W, Clare J C. A Novel Four-leg Matrix Converter[C].Proc. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on.2006.
    [76]Baoming G, Qin L, Wei Q, Fang Z P. A Family of Z-Source Matrix Converters[J]. Industrial Electronics, IEEE Transactions on.2012,59(1):35-46.
    [77]Mohapatra K K, Mohan N. Open-End Winding Induction Motor Driven With Matrix Converter For Common-Mode Elimination[C].Proc. Power Electronics, Drives and Energy Systems,2006. PEDES'06. International Conference on.2006.
    [78]Gupta R K, Mohapatra K K, Somani A, Mohan N. Direct-Matrix-Converter-Based Drive for a Three-Phase Open-End-Winding AC Machine With Advanced Features[J]. Industrial Electronics, IEEE Transactions on.2010,57(12):4032-4042.
    [79]Kobravi K, Iravani R, Kojori H A. Three-Leg/Four-Leg Matrix Converter Generalized Modulation Strategy—Part Ⅰ:A New Formulation[J]. Industrial Electronics, IEEE Transactions on.2013,60(3):848-859.
    [80]Kobravi K, Iravani R, Kojori H A. Three-Leg/Four-Leg Matrix Converter Generalized Modulation Strategy—Part Ⅱ:Implementation and Verification[J]. Industrial Electronics, IEEE Transactions on.2013,60(3):860-872.
    [81]Heris A A, Babaei E, Hosseini S H. A new shunt active power filter based on indirect matrix converter[C].Proc. ICEE'12.2012.
    [82]Itoh J, Tamada S. A novel engine generator system with active filter and UPS functions using a matrix converter[C].Proc. IET EPE'07.2007.
    [83]Dasgupta A, Sensarma P. Voltage sag mitigation using a direct Matrix Converter[C].Proc. IET PEMD'12.2012.
    [84]Monteiro J, Silva J F, Pinto S F, Palma J. Matrix Converter-Based Unified Power-Flow Controllers:Advanced Direct Power Control Method[J]. Power Delivery, IEEE Transactions on.2011,26(1):420-430.
    [85]Norouzizadeh R, Dastfan A, Rafiei S M R, Amirahmadi A. Design and simulation of unified power flow controllers using matrix converters[C].Proc. IEEE ISIE'10.2010.
    [86]Monteiro J, Silva J F, Pinto S F, Palma J. Direct power control of matrix converter based unified power flow controllers[C].Proc. IEEE IECON'09.2009.
    [87]Sobczyk T J, Borkowski D. Application of Matrix Converter for Power Flow Control in a Transmission Line[C].Proc. IEEE Power Tech,'07.2007.
    [88]Itoh J I, Iida T, Odaka A. Realization of High Efficiency AC link Converter System based on AC/AC Direct Conversion Techniques with RB-IGBT[C].Proc. IEEE IECON'06. 2006.
    [89]Basu K, Gupta R K, Nath S, Castelino G F, Mohapatra K K, Mohan N. Research in matrix-converter based three-phase power-electronic transformers[C].Proc. IEEE IPEC 10.2010.
    [90]Manjrekar M D, Kieferndorf R, Venkataramanan G. Power electronic transformers for utility applications[C].Proc. IEEE IAC'00.2000.
    [91]Divan D M, Sastry J. Voltage Synthesis Using Dual Virtual Quadrature Sources-A New Concept in AC Power Conversion[J]. Power Electronics, IEEE Transactions on.2008, 23(6):3004-3013.
    [92]余伟福.一种单相交流斩波变换器的研究[D].[硕士学位论文].武汉:华中科技大学,2008.
    [93]蔡鹏.基于简单拓扑的单相直接AC/AC变换器研究[D].[硕士学位论文].南京:南京航空航天大学,2006.
    [94]陈道炼.AC-AC变换技术[M].北京:科学出版社,2009.
    [95]Sastry J. Direct AC control of grid assets[D].[博士学位论文].Altanta:Georgia Institute of Technology,2011.
    [96]Kwon B H, Min B D, Kim J H. Novel topologies of AC choppers[J]. Electric Power Applications, IEE Proceedings-.1996,143(4):323-330.
    [97]Srinivasan S, Venkataramanan G. Comparative evaluation of PWM AC-AC converters[C].Proc. IEEE PESC'95.1995.
    [98]Fang Z P, Lihua C, Fan Z. Simple topologies of PWM AC-AC converters[J]. Power Electronics Letters, IEEE.2003,1(1):10-13.
    [99]Rosas-Caro J C, Mancilla-David F, Gonzalez-Lopez J M, Ramirez-Arredondo J M, Gonzalez-Rodriguez A, Salas-Cabrera N, Gomez-Garcia M, Cisneros-Villegas H. A review of AC choppers[C].Proc. IEEE CONIELECOMP'10.2010.
    [100]Minh-Khai N, Young-Cheol L, Yong-Jae K. A Modified Single-Phase Quasi-Z-Source AC-AC Converter[J]. Power Electronics, IEEE Transactions on.2012,27(1):201-210.
    [101]Xu P F, Zhao M Q, Fang Z P. Single-phase Z-source PWM AC-AC converters[J]. Power Electronics Letters, IEEE.2005,3(4):121-124.
    [102]Andersen R L, Lazzarin T B, Barbi I. A 1-kW Step-Up/Step-Down Switched-Capacitor AC-AC Converter[J]. Power Electronics, IEEE Transactions on.2013,28(7):3329-3340.
    [103]Lazzarin T B, Andersen R L, Martins G B, Barbi I. A 600-W Switched-Capacitor AC-AC Converter for 220 V/110 V and 110 V/220 V Applications[J]. Power Electronics, IEEE Transactions on.2012,27(12):4821-4826.
    [104]Li L, Tang D. Cascade Three-Level AC/AC Direct Converter[J]. Industrial Electronics, IEEE Transactions on.2012,59(1):27-34.
    [105]Li L, Yang J, Zhong Q. Novel Family of Single-Stage Three-Level AC Choppers[J]. Power Electronics, IEEE Transactions on.2011,26(2):504-511.
    [106]李俊杰,李磊,都洪基,章茜.改进型Zeta式三电平AC/AC变换器[J].电力自动化设备.2010,30(1):84-87.
    [107]Safaee A, Yazdani D, Bakhshai A, Jain P K. Multiblock Soft-Switched Bidirectional AC-AC Converter Using a Single Loss-Less Active Snubber Block[J]. Power Electronics, IEEE Transactions on.2012,27(5):2260-2272.
    [108]Wang C, Lin C, Su C, Chang S. A Novel Single-Phase Soft-Switching AC Chopper Without Auxiliary Switches[J]. Power Electronics, IEEE Transactions on.2011,26(7): 2041-2048.
    [109]de Vicuna L G, Castilla M, Miret J, Matas J, Guerrero J M. Sliding-Mode Control for a Single-Phase AC/AC Quantum Resonant Converter[J]. Industrial Electronics, IEEE Transactions on.2009,56(9):3496-3504.
    [110]Hao L L, Hu A P, Covic G A. A Direct AC-AC Converter for Inductive Power-Transfer Systems[J]. Power Electronics, IEEE Transactions on.2012,27(2):661-668.
    [111]Al Gali O M, Mancilla-David F. Realization of an AC-link pulse width modulated shunt converter for STATCOM applications[C].Proc. IEEE NAPS'12.2012.
    [112]Perez J, Cardenas V, Miranda H, Alvarez R. Compensation of voltage sags and swells using a single-phase AC-AC converter[C].Proc. IEEE IECON'04.2004.
    [113]Soeiro T B, Petry C A, Dos S. Fagundes J C, Barbi I. Direct AC-AC Converters Using Commercial Power Modules Applied to Voltage Restorers[J]. Industrial Electronics, IEEE Transactions on.2011,58(1):278-288.
    [114]Chen D, Chen Y. Step-up AC Voltage Regulators with High-Frequency Link[J]. Power Electronics, IEEE Transactions on.2013,28(1):390-397.
    [115]陈道炼,陈艳慧.三类高频链AC-AC变换器比较研究[J].电工电能新技术.2010,29(2):1-4,47.
    [116]李磊.高频交流环节AC/AC变换器研究[D].[博士学位论文].南京:南京航空航天大学,2004.
    [117]刘剑.交-交型高频环节AC/AC变换器研究[D].[硕士学位论文].南京:南京航空航天大学,2004.
    [118]Krishnaswami H, Ramanarayanan V. Control of high-frequency AC link electronic transformer[J]. Electric Power Applications, IEE Proceedings-.2005,152(3):509-516.
    [119]Lee D, Habetler T G, Harley R G, Keister T L, Rostron J R. A Voltage Sag Supporter Utilizing a PWM-Switched Autotransformer[J]. Power Electronics, IEEE Transactions on. 2007,22(2):626-635.
    [120]Sen K K, Mey L S. Comparison of the "Sen" transformer with the unified power flow controller[J]. Power Delivery, IEEE Transactions on.2003,18(4):1523-1533.
    [121]Santoyo Anaya M A, Moreno Goytia E L, Rodriguez J R. The DVR-AC, a novel structure for mitigating large voltage sags and swells using voltage re-injection[C].Proc. IEEE NAPS'11.2011.
    [122]Subramanian S, Mishra M K. Interphase AC-AC Topology for Voltage Sag Supporter[J]. Power Electronics, IEEE Transactions on.2010,25(2):514-518.
    [123]Vazquez N, Velazquez A, Hernandez C. AC Voltage Regulator Based on the AC-AC Buck-Boost Converter[C].Proc. IEEE ISIE'07.2007.
    [124]Venkataramanan G, Johnson B K, Sundaram A. An AC-AC power converter for custom power applications[J]. Power Delivery, IEEE Transactions on.1996,11(3):1666-1671.
    [125]董军.非接触电能传输系统AC/AC变换器的研究[D].[硕士学位论文].重庆:重庆大学,2009.
    [126]Divan D, Sastry J, Prasai A, Johal H. Thin AC converters—A new approach for making existing grid assets smart and controllable[C].Proc. IEEE PESC'08.2008.
    [127]Rogers D J, Divan D M, Green T C. Modelling and optimal switching pattern generation for AC to AC power converters[C].Proc. IEEE PESGM'10.2010.
    [128]Prasai A. Direct dynamic control of impedance for VAR and harmonic compensation[D]. [博士学位论文]. Altanta:Georgia Institute of Technology,2011.
    [129]Prasai A, Divan D. Control of Dynamic Capacitor [J]. Industry Applications, IEEE Transactions on.2011,47(1):161-168.
    [130]Divan D, Sastry J. Inverter-Less Active Filters-A New Concept in Harmonic and VAR Compensation[C].Proc. IEEE PESC'07.2007.
    [131]Liu Q, Deng Y, He X. Boost-type inverter-less shunt active power filter for VAR and harmonic compensation [J]. Power Electronics, IET.2013,6(3):535-542.
    [132]Liu Q, Deng Y, He X. A novel AC-AC shunt active power filter without large energy storage elements[C].Proc. IET EPE'11.2011.
    [133]Divan D, Sastry J. Inverter-less STATCOMs[C].Proc. IEEE PESC'08.2008.
    [134]Das D. Dynamic control of grid power flow using controllable network transformers[D]. [博士学位论文]. Altanta:Georgia Institute of Technology,2011.
    [135]Das D, Divan D, Harley R G. Increasing inter-area available transfer capacity using controllable network transformers[C].Proc. IEEE ECCE'10.2010.
    [136]Wang B. A series compensator based on AC-AC power converters with virtual quadrature modulation[C].Proc. IEEE PEDG'10.2010.
    [137]Das D, Divan D M, Harley R G. Power Flow Control in Networks Using Controllable Network Transformers[J]. Power Electronics, IEEE Transactions on.2010,25(7): 1753-1760.
    [138]Divan D, Sastry J. Controllable Network Transformers[C].Proc. IEEE PESC'08.2008.
    [139]Das D, Kandula R P, Harley R, Divan D, Schatz J, Munoz J. Design and testing of a medium voltage Controllable Network Transformer Prototype with an integrated hybrid active filter[C].Proc. IEEE ECCE'11.2011.
    [140]Prasai A, Divan D. Active AC snubber for direct AC/AC power converters[C].Proc. IEEE ECCE'11.2011.
    [141]Prasai A, Divan D. Scaling the Dynamic Capacitor (D-CAP) to medium voltages[C].Proc. IEEE ECCE'10.2010.
    [142]Divan D, Sastry J. Control of multilevel direct AC converters[C].Proc. IEEE ECCE'09. 2009.
    [143]熊信银,张步涵.电气工程基础[M].武汉:华中科技大学出版社,2009.
    [144]徐德鸿,马皓,汪槱生.电力电子技术[M].北京:科学出版社,2006.
    [145]Erickson R W, Maksimovic D. Fundamentals of power electronics[M]. USA:Springer, 2001.
    [146]Trentin A, Zanchetta P, Clare J, Wheeler P. Automated Optimal Design of Input Filters for Direct AC/AC Matrix Converters[J]. Industrial Electronics, IEEE Transactions on.2012, 59(7):2811-2823.
    [147]Casadei D, Clare J, Lee E, Serra G, Tani A, Trentin A, Wheeler P, Zarri L. Large-Signal Model for the Stability Analysis of Matrix Converters[J]. Industrial Electronics, IEEE Transactions on.2007,54(2):939-950.
    [148]Chen D. Novel Current-Mode AC/AC Converters With High-Frequency AC Link[J]. Industrial Electronics, IEEE Transactions on.2008,55(1):30-37.
    [149]Chen D. The Uni-polarity Phase-shifted Controlled Buck Mode AC/AC Converters with High Frequency Link[C].Proc. IEEE PESC'07.2007.
    [150]赵修科.开关电源中磁性元器件2004. url:http://wenku.baidu.com/view/8a6ddb0bde80d4d8d15a4f43.html.
    [151]林渭勋.现代电力电子电路[M].浙江:浙江大学出版社,2002.
    [152]Asiminoaei L, Blaabjerg F, Hansen S. Detection is key-Harmonic detection methods for active power filter applications[J]. Industry Applications Magazine, IEEE.2007,13(4): 22-33.
    [153]Gupta R K, Mohapatra K K, Somani A, Mohan N. Direct-Matrix-Converter-Based Drive for a Three-Phase Open-End-Winding AC Machine With Advanced Features[J]. Industrial Electronics, IEEE Transactions on.2010,57(12):4032-4042.
    [154]Wu J, Wu H, Li C, Li W, He X, Xia C. Advanced Four-Pair Architecture With Input Current Balance Function for Power Over Ethernet (PoE) System[J]. IEEE Transactions on Power Electronics.2013,28(5):2343-2355.
    [155]Miret J, Castilla M, Matas J, Guerrero J M, Vasquez J C. Selective Harmonic-Compensation Control for Single-Phase Active Power Filter With High Harmonic Rejection[J]. Industrial Electronics, IEEE Transactions on.2009,56(8): 3117-3127.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.