宿主microRNA-181抑制猪繁殖与呼吸综合征病毒复制的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪繁殖与呼吸综合征(Porcine reproductive and respiratory syndrome, PRRS),俗称蓝耳病,是由猪繁殖与呼吸综合征病毒(PRRS virus, PRRSV)引起的猪传染性疾病,近年来给我国乃至全世界养猪业造成了巨大的经济损失。最近研究表明,在病毒感染过程中宿主microRNAs (miRNAs)可以靶向病毒基因组RNA而导致病毒的复制受到抑制,这种作用方式被人们视为一种潜在的宿主抗病毒防御机制。然而宿主miRNAs是否可以靶向PRRSV的基因组RNA并抑制PRRSV复制的问题并不是很清楚,本论文针对这一问题进行了一定的研究。
     基于已经鉴定的猪miRNAs数目很少,本文首先通过分子克隆和高通量测序技术鉴定了猪肺泡巨噬细胞(Porcine alveolar macrophages, PAMs)中miRNA表达谱,并分析了PAMs在感染PRRSV前后miRNAs表达的差异。初步结果显示PAMs可以表达800多种miRNAs,且PRRSV感染后几乎所有miRNAs的表达均呈现下降趋势。通过生物信息学软件(RegRNA和ViTa)对PRRSV的基因组RNA进行miRNA靶位点预测,结果显示microRNA-181(miR-181)可能通过种子区(seed region)碱基配对的方式靶向PRRSV JXwn06基因组RNA上的13684-13692位点,而且这个位点在美洲株(属于type2)中的保守性非常高,可达96%以上。体外过表达miR-181的相关实验结果表明,在PAMs和Marc-145细胞中miR-181的确可以抑制PRRSV病毒基因的表达和病毒粒子的产生。有意思的是,miR-181家族的四个成员(a、b、c和d)都可以抑制PRRSV复制。通过分析病毒在PAMs中的生长曲线后发现,过表达miR-181家族可以持续地抑制PRRSV在PAMs中生长复制,且miR-181c抑制PRRSV复制的能力最强。荧光素酶报告基因系统分析miR-181靶位点的实验结果表明,miR-181的确可以直接靶向PRRSV基因组RNA上的特定序列来抑制病毒复制。实验结果还表明,病毒RNA可以与荧光素酶报告载体上miR-181靶位点竞争结合miR-181,导致miR-181对荧光素酶活性的抑制受到削弱,间接证明了PRRSV的RNA可以与miR-181相互结合。RNA免疫共沉淀(RNA-IP)的实验结果显示,miR-181可以特异性地与PRRSV基因组RNA结合在miRISC复合体上,为证明miR-181可以直接靶向PRRSV基因组RNA提供了更有力的证据。检测和比较不同原代细胞(包括PAMs、外周血单核细胞、小胶质细胞和腹腔巨噬细胞)和不同组织中的miRNAs后还发现,不易感染PRRSV的细胞或组织中的miR-181和其他潜在靶向PRRSV miRNAs(如miR-206)的表达量显著高于易感染PRRSV的细胞或组织。最后,动物体内实验的结果表明,在感染高致病性PRRSV的猪中滴鼻给药miR-181c可以降低动物血液中的病毒载量并缓解PRRSV引起的发烧症状,证明了miR-181也可以在动物体内抑制PRRSV的复制。
     以上结果表明,宿主miR-181的确可以通过直接靶向病毒基因组RNA来抑制PRRSV复制,并且在不同细胞中miR-181的表达与PRRSV感染能力或复制能力呈负相关性。这些发现暗示了宿主miRNAs在调控PRRSV的感染复制和致病机理中具有重要作用,同时也为宿主miRNAs作为抗病毒治疗工具提供了理论依据。
Porcine reproductive and respiratory syndrome (PRRS) also known as blue-ear pig disease is caused by PRRS virus (PRRSV) which continuously caused huge economic losses in our country or even throughout the world. Emerging evidence indicates that host microRNAs (miRNAs) can target viral RNAs during infections, resulting in inhibition of virus replication, which has been regarded as a new antiviral defense. Whether host miRNAs can target PRRSV RNA and be used to inhibit virus infection has not been well characterized. This dissertation work was focused on this question.
     As only a few of pig miRNAs have been identified, the miRNA expression profilings of porcine alveolar macrophages (PAMs) when infected with or without PRRSV were identified first by molecular cloning and deep sequencing. The results showed that PAMs could express over800distinct miRNAs, and most of them were down-regulated by PRRSV. The analysis of miRNA target prediction in PRRSV genomic RNA by two bioinformatic softwares (RegRNA and ViTa) showed that microRNA-181(miR-181) could target the site (nt13684to13692) in PRRSV JXwn06genomic RNA through seed base-pairing, and the target site was highly conserved (over96%) in type2PRRSV. Then our results showed that overexpressed miR-181indeed inhibited viral gene expression and PRRSV production in PAMs or Marc-145cells. Interestingly, all the four members of miR-181family (a, b, c and d) could inhibit PRRSV replication. Analysis of dynamics of PRRSV growth indicated that overexpressed miR-181could steadily inhibit PRRSV replication in PAMs and miR-181c was the strongest inhibitor of PRRSV. Direct targeting of the PRRSV genomic RNA by miR-181was then identified by luciferase reporter assays. Meanwhile, the viral RNA could compete with miR-181target site in luciferase vector to bind to miR-181, resulting in less inhibition of luciferase activity, which further demonstrated the specific interaction between miR-181and PRRSV RNA. Moreover, physical interaction of miR-181with viral genomic RNA in the miRNA-induced silencing complex (miRISC) was then tested by RNA immunoprecipitation (RNA-IP) assay, which provided stronger evidence for this model. Detection of miRNAs from different primary cells (including PAMs, peripheral blood mononuclear cells, microglia and peritoneal macrophages) and different tissues showed that miR-181and other potential PRRSV-targeting miRNAs (such as miR-206) were expressed much more abundantly in minimally permissive cells or tissues than in highly permissive cells or tissues. Finally, highly pathogenic PRRSV-infected pigs treated with miR-181c showed substantially decreased viral loads in blood and relief from PRRSV-induced fever, supporting that miR-181could inhibit PRRSV replication in vivo.
     Taken together, these results indicate that miR-181can inhibit PRRSV replication by directly targeting viral genomic RNA and the expression of miR-181is negatively correlated with viral replication capacity. These findings suggest an important role of host miRNAs in modulating PRRSV infection and replication, and viral pathogenesis. They also support the idea that host miRNAs could be useful for antiviral therapeutic strategies.
引文
Aliyari, R., and Ding, S.W. (2009). RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol. Rev.227,176-188.
    Alvarez-Garcia, I., and Miska, E.A. (2005). MicroRNA functions in animal development and human disease. Development 132,4653-4662.
    Androulidaki, A., Iliopoulos, D., Arranz, A., Doxaki, C., Schworer, S., Zacharioudaki, V., Margioris, A.N., Tsichlis, P.N., and Tsatsanis, C. (2009). The kinase Aktl controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31,220-231.
    Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P. (2008). The impact of microRNAs on protein output. Nature 455,64-71.
    Barnes, D., Kunitomi, M., Vignuzzi, M., Saksela, K., and Andino, R. (2008). Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 4,239-248.
    Bartel, D.P. (2009). MicroRNAs:target recognition and regulatory functions. Cell 136,215-233.
    Bautista, E.M., Faaberg, K.S., Mickelson, D., and McGruder, E.D. (2002). Functional properties of the predicted helicase of porcine reproductive and respiratory syndrome virus. Virology 298,258-270.
    Beerens, N., Selisko, B., Ricagno, S., Imbert, I., van der Zanden, L., Snijder, E.J., and Canard, B. (2007). De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J. Virol. 81,8384-8395.
    Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., and Izaurralde, E. (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.20,1885-1898.
    Beura, L.K., Sarkar, S.N., Kwon, B., Subramaniam, S., Jones, C., Pattnaik, A.K., and Osorio, F.A. (2010). Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation. J. Virol.84,1574-1584.
    Bitko, V., Musiyenko, A., Shulyayeva, O., and Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med.11,50-55.
    Boden, D., Pusch, O., Lee, F., Tucker, L., and Ramratnam, B. (2003). Human immunodeficiency virus type 1 escape from RNA interference. J. Virol.77,11531-11535.
    Boldin, M.P., Taganov, K.D., Rao, D.S., Yang, L., Zhao, J.L., Kalwani, M., Garcia-Flores, Y., Luong, M., Devrekanli, A., and Xu, J. (2011). miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med.208,1189-1201.
    Braun, J.E., Huntzinger, E., Fauser, M., and Izaurralde, E. (2011). GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44,120-133.
    Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol.3, e85.
    Buddaert, W., Van Reeth, K., and Pensaert, M. (1998). In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV). Adv. Exp. Med. Biol.440, 461-467.
    Calzada-Nova, G., Schnitzlein, W.M., Husmann, R.J., and Zuckermann, F.A. (2011). North American porcine reproductive and respiratory syndrome viruses inhibit type I interferon production by plasmacytoid dendritic cells. J. Virol.85,2703-2713.
    Carthew, R.W., and Sontheimer, E.J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell 136,642-655.
    Cavanagh, D. (1997). Nidovirales:a new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 142,629-633.
    Chang, H.W., Jeng, C.R., Liu, J.J., Lin, T.L., Chang, C.C., Chia, M.Y., Tsai, Y.C., and Pang, V.F. (2005). Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha. Vet. Microbiol.108,167-177.
    Chekulaeva, M., Mathys, H., Zipprich, J.T., Attig, J., Colic, M., Parker, R., and Filipowicz, W. (2011). miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol.18,1218-1226.
    Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303,83-86.
    Chen, Y., Chen, J., Wang, H., Shi, J., Wu, K., Liu, S., Liu, Y., and Wu, J. (2013). HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog.9, e1003248.
    Chen, Y., Shen, A., Rider, P.J., Yu, Y., Wu, K., Mu, Y., Hao, Q., Liu, Y., Gong, H., and Zhu, Y. (2011). A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J.25,4511-4521.
    Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460,479-486.
    Christopher-Hennings, J., Holler, L.D., Benfield, D.A., and Nelson, E.A. (2001). Detection and duration of porcine reproductive and respiratory syndrome virus in semen, serum, peripheral blood mononuclear cells, and tissues from Yorkshire, Hampshire, and Landrace boars. J. Vet. Diagn. Invest.13,133-142.
    Cichocki, F., Felices, M., McCullar, V., Presnell, S.R., Al-Artar, A., Lutz, C.T., and Miller, J.S. (2011). Cutting edge:microRNA-181 promotes human NK cell development by regulating Notch signaling. J. Immunol.187,6171-6175.
    Cloonan, N., Wani, S., Xu, Q., Gu, J., Lea, K., Heater, S., Barbacioru, C, Steptoe, A.L., Martin, H.C., and Nourbakhsh, E. (2011). MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol.12, R126.
    Cohen, T.S., and Prince, A.S. (2013). Bacterial pathogens activate a common inflammatory pathway through IFNlambda regulation of PDCD4. PLoS Pathog.9, e1003682.
    Costinean, S., Sandhu, S.K., Pedersen, I.M., Tili, E., Trotta, R., Perrotti, D., Ciarlariello, D., Neviani, P., Harb, J., and Kauffman, L.R. (2009). Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 114,1374-1382.
    Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N., and Croce, C.M. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl. Acad. Sci. USA 103,7024-7029.
    Cullen, B.R. (2006). Viruses and microRNAs. Nat. Genet.38 Suppl, S25-S30.
    Das, A.T., Brummelkamp, T.R., Westerhout, E.M., Vink, M., Madiredjo, M., Bernards, R., and Berkhout, B. (2004). Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol.78,2601-2605.
    Das, P.B., Dinh, P.X., Ansari, I.H., de Lima, M., Osorio, F.A., and Pattnaik, A.K. (2010). The minor envelope glycoproteins GP2a and GP4 of porcine reproductive and respiratory syndrome virus interact with the receptor CD 163. J. Virol.84,1731-1740.
    Davidson, B.L., and McCray, P.J. (2011). Current prospects for RNA interference-based therapies. Nat. Rev. Genet.12,329-340.
    Delputte, P.L., Costers, S., and Nauwynck, H.J. (2005). Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization:distinctive roles for heparan sulphate and sialoadhesin. J. Gen. Virol.86,1441-1445.
    Delputte, P.L., Vanderheijden, N., Nauwynck, H.J., and Pensaert, M.B. (2002). Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J. Virol.76,4312-4320.
    Diaz, I., Darwich, L., Pappaterra, G., Pujols, J., and Mateu, E. (2005). Immune responses of pigs after experimental infection with a European strain of Porcine reproductive and respiratory syndrome virus. J. Gen. Virol.86,1943-1951.
    Duan, X., Nauwynck, H.J., and Pensaert, M.B. (1997). Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch. Virol.142,2483-2497.
    Easow, G., Teleman, A.A., and Cohen, S.M. (2007). Isolation of microRNA targets by miRNP immunopurification. Rna 13,1198-1204.
    Fabian, M.R., Cieplak, M.K., Frank, F., Morita, M., Green, J., Srikumar, T., Nagar, B., Yamamoto, T., Raught, B., and Duchaine, T.F. (2011). miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat. Struct. Mol. Biol.18, 1211-1217.
    Fang, Y., Fang, L., Wang, Y., Lei, Y., Luo, R., Wang, D., Chen, H., and Xiao, S. (2012b). Porcine reproductive and respiratory syndrome virus nonstructural protein 2 contributes to NF-kappaB activation. Virol. J.9,83.
    Fang, Y., Treffers, E.E., Li, Y., Tas, A., Sun, Z., van der Meer, Y., de Ru, A.H., van Veelen, P.A., Atkins, J.F., and Snijder, E.J. (2012a). Efficient-2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. USA 109, E2920-E2928.
    Fang, Y., and Snijder, E.J. (2010). The PRRSV replicase:exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res.154,61-76.
    Feng, W., Laster, S.M., Tompkins, M., Brown, T., Xu, J.S., Altier, C., Gomez, W., Benfield, D., and McCaw, M.B. (2001). In utero infection by porcine reproductive and respiratory syndrome virus is sufficient to increase susceptibility of piglets to challenge by Streptococcus suis type Ⅱ. J. Virol. 75,4889-4895.
    Firth, A.E., Zevenhoven-Dobbe, J.C., Wills, N.M., Go, Y.Y., Balasuriya, U.B., Atkins, J.F., Snijder, E.J., and Posthuma, C.C. (2011). Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J. Gen. Virol.92,1097-1106.
    Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res.19,92-105.
    Fu, Y., Quan, R., Zhang, H., Hou, J., Tang, J., and Feng, W.H. (2012). Porcine reproductive and respiratory syndrome virus induces interleukin-15 through the NF-kappaB signaling pathway. J. Virol.86,7625-7636.
    Fukuhara, T., Kambara, H., Shiokawa, M., Ono, C., Katoh, H., Morita, E., Okuzaki, D., Maehara, Y., Koike, K., and Matsuura, Y. (2012). Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. J. Virol.86,7918-7933.
    Gaidatzis, D., van Nimwegen, E., Hausser, J., and Zavolan, M. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8,69.
    Gao, L., Guo, X.K., Wang, L., Zhang, Q., Li, N., Chen, X.X., Wang, Y., and Feng, W.H. (2013). MicroRNA 181 suppresses porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163. J. Virol.87,8808-8812.
    Geisbert, T.W., Lee, A.C., Robbins, M., Geisbert, J.B., Honko, A.N., Sood, V., Johnson, J.C., de Jong, S., Tavakoli, I., and Judge, A. (2010). Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference:a proof-of-concept study. Lancet 375, 1896-1905.
    Ghanayem, N.S., Yee, L., Nelson, T., Wong, S., Gordon, J.B., Marcdante, K., and Rice, T.B. (2001). Stability of dopamine and epinephrine solutions up to 84 hours. Pediatr. Crit. Care Med.2, 315-317.
    Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312,75-79.
    Gottwein, E., and Cullen, B.R. (2008). Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3,375-387.
    Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M.J., Jungkamp, A.C., and Munschauer, M. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141,129-141.
    Han, M., Du Y, Song, C, and Yoo, D. (2013). Degradation of CREB-binding protein and modulation of type I interferon induction by the zinc finger motif of the porcine reproductive and respiratory syndrome virus nsplalpha subunit. Virus Res.172,54-65.
    Heiss, B.L., Maximova, O.A., Thach, D.C., Speicher, J.M., and Pletnev, A.G. (2012). MicroRNA targeting of neurotropic flavivirus:effective control of virus escape and reversion to neurovirulent phenotype. J. Virol.86,5647-5659.
    Hendrickson, D.G., Hogan, D.J., McCullough, H.L., Myers, J.W., Herschlag, D., Ferrell, J.E., and Brown, P.O. (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol.7, e1000238.
    Henke, J.I., Goergen, D., Zheng, J., Song, Y., Schuttler, C.G., Fehr, C., Junemann, C., and Niepmann, M. (2008). microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J.27, 3300-3310.
    Hong, X., Hammell, M., Ambros, V., and Cohen, S.M. (2009). Immunopurification of Agol miRNPs selects for a distinct class of microRNA targets. Proc. Natl. Acad. Sci. USA 106,15085-15090.
    Hou, J., Wang, L., Quan, R., Fu, Y., Zhang, H., and Feng, W.H. (2012). Induction of interleukin-10 is dependent on p38 mitogen-activated protein kinase pathway in macrophages infected with porcine reproductive and respiratory syndrome virus. Virol. J.9,165.
    Hou, J., Wang, P., Lin, L., Liu, X., Ma, F., An, H., Wang, Z., and Cao, X. (2009). MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol.183,2150-2158.
    Hsu, P.W., Lin, L.Z., Hsu, S.D., Hsu, J.B., and Huang, H.D. (2007). ViTa:prediction of host microRNAs targets on viruses. Nucleic Acids Res.35, D381-D385.
    Huang, H.Y., Chien, C.H., Jen, K.H., and Huang, H.D. (2006). RegRNA:an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res.34, W429-W434.
    Huang, J., Wang, F., Argyris, E., Chen, K., Liang, Z., Tian, H., Huang, W., Squires, K., Verlinghieri, G., and Zhang, H. (2007). Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat. Med.13,1241-1247.
    Humphreys, D.T., Westman, B.J., Martin, D.I., and Preiss, T. (2005). MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102,16961-16966.
    Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs:contributions of translational repression and mRNA decay. Nat. Rev. Genet.12,99-110.
    Iliopoulos, D., Hirsch, H.A., and Struhl, K. (2009). An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139,693-706.
    Jackson, A.L., and Linsley, P.S. (2010). Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug. Discov.9,57-67.
    Jangra, R.K., Yi, M., and Lemon, S.M. (2010). Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J. Virol.84,6615-6625.
    Johnsen, C.K., Botner, A., Kamstrup, S., Lind, P., and Nielsen, J. (2002). Cytokine mRNA profiles in bronchoalveolar cells of piglets experimentally infected in utero with porcine reproductive and respiratory syndrome virus:association of sustained expression of IFN-gamma and IL-10 after viral clearance. Viral. Immunol.15,549-556.
    Johnson, C.D., Esquela-Kerscher, A., Stefani, G., Byrom, M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X., Shelton, J., and Shingara, J. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res.67,7713-7722.
    Johnson, C.R., Griggs, T.F., Gnanandarajah, J., and Murtaugh, M.P. (2011). Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J. Gen. Virol.92,1107-1116.
    Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M., and Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309,1577-1581.
    Jusa, E.R., Inaba, Y., Kouno, M., and Hirose, O. (1997). Effect of heparin on infection of cells by porcine reproductive and respiratory syndrome virus. Am. J. Vet. Res.58,488-491.
    Karginov, F.V., Conaco, C., Xuan, Z., Schmidt, B.H., Parker, J.S., Mandel, G., and Hannon, G.J. (2007). A biochemical approach to identifying microRNA targets. Proc. Natl. Acad. Sci. USA 104, 19291-19296.
    Karolchik, D., Kuhn, R.M., Baertsch, R., Barber, G.P., Clawson, H., Diekhans, M., Giardine, B., Harte, R.A., Hinrichs, A.S., and Hsu, F. (2008). The UCSC Genome Browser Database:2008 update. Nucleic Acids Res.36, D773-D779.
    Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat. Immunol.11,373-384.
    Kelly, E.J., Hadac, E.M., Greiner, S., and Russell, S.J. (2008). Engineering microRNA responsiveness to decrease virus pathogenicity. Nat. Med.14,1278-1283.
    Kelly, E.J., Nace, R., Barber, G.N., and Russell, S.J. (2010). Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J. Virol.84,1550-1562.
    Kim, O., Sun, Y., Lai, F.W., Song, C., and Yoo, D. (2010). Modulation of type Ⅰ interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells. Virology 402,315-326.
    Kim, S., Lee, S., Shin, J., Kim, Y., Evnouchidou, I., Kim, D., Kim, Y.K., Kim, Y.E., Ahn, J.H., and Riddell, S.R. (2011). Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat. Immunol.12,984-991.
    Kim, V.N., Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell. Biol.10,126-139.
    Kimman, T.G., Cornelissen, L.A., Moormann, R.J., Rebel, J.M., and Stockhofe-Zurwieden, N. (2009). Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 27,3704-3718.
    Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., Da, P.I., Gunsalus, K.C., and Stoffel, M. (2005). Combinatorial microRNA target predictions. Nat. Genet. 37,495-500.
    Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet.11,597-610.
    Lai, E.C. (2002). Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet.30,363-364.
    Lal, A., Navarro, F., Maher, C.A., Maliszewski, L.E., Yan, N., O'Day, E., Chowdhury, D., Dykxhoorn, D.M., Tsai, P., and Hofmann, O. (2009a). miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol. Cell 35,610-625.
    Lal, A., Pan, Y., Navarro, F., Dykxhoorn, D.M., Moreau, L., Meire, E., Bentwich, Z., Lieberman, J., and Chowdhury, D. (2009b). miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol.16,492-498.
    Lall, S., Grun, D., Krek, A., Chen, K., Wang, Y.L., Dewey, C.N., Sood, P., Colombo, T., Bray, N., and Macmenamin, P. (2006). A genome-wide map of conserved microRNA targets in C. elegans. Curr. Biol.16,460-471.
    Landthaler, M., Gaidatzis, D., Rothballer, A., Chen, P.Y., Soll, S.J., Dinic, L., Ojo, T., Hafner, M., Zavolan, M., and Tuschl, T. (2008). Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. Rna 14,2580-2596.
    Lanford, R.E., Hildebrandt-Eriksen, E.S., Petri, A., Persson, R., Lindow, M., Munk, M.E., Kauppinen, S., and Orum, H. (2010). Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327,198-201.
    Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294,858-862.
    Lecellier, C.H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saib, A., and Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science 308,557-560.
    Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75,843-854.
    Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120,15-20.
    Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115,787-798.
    Li, B., Fang, L., Liu, S., Zhao, F., Jiang, Y., He, K., Chen, H., and Xiao, S. (2010). The genomic diversity of Chinese porcine reproductive and respiratory syndrome virus isolates from 1996 to 2009. Vet. Microbiol.146,226-237.
    Li, B.J., Tang, Q., Cheng, D., Qin, C., Xie, F.Y., Wei, Q., Xu, J., Liu, Y., Zheng, B.J., and Woodle, M.C. (2005). Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med.11,944-951.
    Li, H.W., and Ding, S.W. (2005). Antiviral silencing in animals. FEBS Lett.579,5965-5973.
    Li, Q.J., Chau, J., Ebert, P.J., Sylvester, G., Min, H., Liu, G., Braich, R., Manoharan, M., Soutschek, J., and Skare, P. (2007b). miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129,147-161.
    Li, Y., Wang, X., Bo, K., Wang, X., Tang, B., Yang, B., Jiang, W., and Jiang, P. (2007a). Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. Vet. J.174,577-584.
    Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433,769-773.
    Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge, C.B., and Bartel, D.P. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev.17,991-1008.
    Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297,2053-2056.
    Lodish, H.F., Zhou, B., Liu, G., and Chen, C.Z. (2008). Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol.8,120-130.
    Loemba, H.D., Mounir, S., Mardassi, H., Archambault, D., and Dea, S. (1996). Kinetics of humoral immune response to the major structural proteins of the porcine reproductive and respiratory syndrome virus. Arch. Virol.141,751-761.
    Lopez, F.L., Domenech, N., Alvarez, B., Ezquerra, A., Dominguez, J., Castro, J.M., and Alonso, F. (1999). Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome infection. Virus Res.64,33-42.
    Lu, C.C., Li, Z., Chu, C.Y., Feng, J., Feng, J., Sun, R., and Rana, T.M. (2010). MicroRNAs encoded by Kaposi's sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep.11,784-790.
    Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L. Mak, R.H., and Ferrando, A.A. (2005). MicroRNA expression profiles classify human cancers. Nature 435,834-838.
    Luo, R., Xiao, S., Jiang, Y., Jin, H., Wang, D., Liu, M., Chen, H., and Fang, L. (2008). Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-beta production by interfering with the RIG-I signaling pathway. Mol. Immunol.45,2839-2846.
    Mardassi, H., Massie, B., and Dea, S. (1996). Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. Virology 221,98-112.
    Mardassi, H., Mounir, S., and Dea, S. (1995). Molecular analysis of the ORFs 3 to 7 of porcine reproductive and respiratory syndrome virus, Quebec reference strain. Arch. Virol.140, 1405-1418.
    Maroney, P.A., Yu, Y., Fisher, J., and Nilsen, T.W. (2006). Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat. Struct. Mol. Biol.13,1102-1107.
    Metcalf, D., Alexander, W.S., Elefanty, A.G., Nicola, N.A., Hilton, D.J., Starr, R., Mifsud, S., and Di Rago, L. (1999). Aberrant hematopoiesis in mice with inactivation of the gene encoding SOCS-1. Leukemia 13,926-934.
    Meulenberg, J.J., Hulst, M.M., de Meijer, E.J., Moonen, P.L., den Besten, A., de Kluyver, E.P., Wensvoort, G., and Moormann, R.J. (1993). Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192,62-72.
    Meulenberg, J.J., Petersen-den, B.A., De Kluyver, E.P., Moormann, R.J., Schaaper, W.M., and Wensvoort, G. (1995). Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 206,155-163.
    Meulenberg, J.J., and Petersen-den, B.A. (1996). Identification and characterization of a sixth structural protein of Lelystad virus:the glycoprotein GP2 encoded by ORF2 is incorporated in virus particles. Virology 225,44-51.
    Miguel, J.C., Chen, J., Van Alstine, W.G., and Johnson, R.W. (2010). Expression of inflammatory cytokines and Toll-like receptors in the brain and respiratory tract of pigs infected with porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunopathol.135,314-319.
    Mortensen, R.D., Serra, M., Steitz, J.A., and Vasudevan, S. (2011). Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc. Natl. Acad. Sci. USA 108,8281-8286.
    Mortimer, S.A., and Doudna, J.A. (2013). Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure. Nucleic Acids Res.41,4230-4240.
    Moschos, S.A., Williams, A.E., Perry, M.M., Birrell, M.A., Belvisi, M.G., and Lindsay, M.A. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8,240.
    Moss, E.G., Lee, R.C., and Ambros, V. (1997). The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88,637-646.
    Nachmani, D., Lankry, D., Wolf, D.G., and Mandelboim, O. (2010). The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat. Immunol.11,806-813.
    Nathans, R., Chu, C.Y., Serquina, A.K., Lu, C.C., Cao, H., and Rana, T.M. (2009). Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol. Cell 34,696-709.
    Nedialkova, D.D., Gorbalenya, A.E., and Snijder, E.J. (2010). Arterivirus Nspl modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs. PLoS Pathog.6, e1000772.
    Neilson, J.R., Zheng, G.X., Burge, C.B., and Sharp, P.A. (2007). Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev.21,578-589.
    Niepmann, M. (2009). Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle 8,1473-1477.
    Nieuwenhuis, N., Duinhof, T.F., and van Nes, A. (2012). Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds. Vet. Rec.170,225.
    Nottrott, S., Simard, M.J., and Richter, J.D. (2006). Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat. Struct. Mol. Biol.13,1108-1114.
    O'Connell, R.M., Chaudhuri, A.A., Rao, D.S., and Baltimore, D. (2009). Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. USA 106,7113-7118.
    O'Connell, R.M., Kahn, D., Gibson, W.S., Round, J.L., Scholz, R.L., Chaudhuri, A.A., Kahn, M.E., Rao, D.S., and Baltimore, D. (2010b). MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33,607-619.
    O'Connell, R.M., Rao, D.S., Chaudhuri, A.A., Boldin, M.P., Taganov, K.D., Nicoll, J., Paquette, R.L., and Baltimore, D. (2008). Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J. Exp. Med.205,585-594.
    O'Connell, R.M., Rao, D.S., Chaudhuri, A.A., and Baltimore, D. (2010a). Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol.10,111-122.
    O'Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G., and Baltimore, D. (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 104, 1604-1609.
    Olsen, P.H., and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev.Biol.216,671-680.
    O'Neill, L.A., Sheedy, F.J., and McCoy, C.E. (2011). MicroRNAs:the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol.11,163-175.
    Orom, U.A., Nielsen, F.C., and Lund, A.H. (2008). MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30,460-471.
    Otsuka, M., Jing, Q., Georgel, P., New, L., Chen, J., Mols, J., Kang, Y.J., Jiang, Z., Du X, and Cook, R. (2007). Hypersusceptibility to vesicular stomatitis virus infection in Dicerl-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27,123-134.
    Ouyang, W., Rutz, S., Crellin, N.K., Valdez, P.A., and Hymowitz, S.G. (2011). Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol.29, 71-109.
    Overend, C., Mitchell, R., He, D., Rompato, G., Grubman, M.J., and Garmendia, A.E. (2007). Recombinant swine beta interferon protects swine alveolar macrophages and MARC-145 cells from infection with Porcine reproductive and respiratory syndrome virus. J. Gen. Virol.88, 925-931.
    Palliser, D., Chowdhury, D., Wang, Q.Y., Lee, S.J., Bronson, R.T., Knipe, D.M., and Lieberman, J. (2006). An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439,89-94.
    Pasquinelli, A.E. (2012). MicroRNAs and their targets:recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet.13,271-282.
    Patel, D., Nan, Y., Shen, M., Ritthipichai, K., Zhu, X., and Zhang, Y.J. (2010). Porcine reproductive and respiratory syndrome virus inhibits type I interferon signaling by blocking STAT1/STAT2 nuclear translocation. J. Virol.84,11045-11055.
    Pedersen, I.M., Cheng, G., Wieland, S., Volinia, S., Croce, C.M., Chisari, F.V., and David, M. (2007). Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449,919-922.
    Perez, J.T., Pham, A.M., Lorini, M.H., Chua, M.A., Steel, J., and TenOever, B.R. (2009). MicroRNA-mediated species-specific attenuation of influenza A virus. Nat. Biotechnol.27, 572-576.
    Petersen, C.P., Bordeleau, M.E., Pelletier, J., and Sharp, P.A. (2006). Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21,533-542.
    Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., and Sander, C. (2004). Identification of virus-encoded microRNAs. Science 304,734-136.
    Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309,1573-1576.
    Plagemann, P.G. (2006). Neutralizing antibody formation in swine infected with seven strains of porcine reproductive and respiratory syndrome virus as measured by indirect ELISA with peptides containing the GP5 neutralization epitope. Viral. Immunol.19,285-293.
    Pol, J.M., van Leengoed, L.A., Stockhofe, N., Kok, G., and Wensvoort, G. (1997). Dual infections of PRRSV/influenza or PRRSV/Actinobacillus pleuropneumoniae in the respiratory tract. Vet. Microbiol.55,259-264.
    Prieto, C, Vazquez, A., Nunez, J.I., Alvarez, E., Simarro, I., and Castro, J.M. (2009). Influence of time on the genetic heterogeneity of Spanish porcine reproductive and respiratory syndrome virus isolates. Vet. J.180,363-370.
    Pritchard, C.C., Cheng, H.H., and Tewari, M. (2012). MicroRNA profiling:approaches and considerations. Nat. Rev. Genet.13,358-369.
    Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger,J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403,901-906.
    Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110,513-520.
    Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., Benjamin, H., Shabes, N., Tabak, S., and Levy, A. (2008). MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol.26,462-469.
    Rossow, K.D., Shivers, J.L., Yeske, P.E., Polson, D.D., Rowland, R.R., Lawson, S.R., Murtaugh, M.P., Nelson, E.A., and Collins, J.E. (1999). Porcine reproductive and respiratory syndrome virus infection in neonatal pigs characterised by marked neurovirulence. Vet. Rec.144,444-448.
    Salmena, L., Poliseno, L., Tay, Y., Kats, L., and Pandolfi, P.P. (2011). A ceRNA hypothesis:the Rosetta Stone of a hidden RNA language? Cell 146,353-358.
    Schwartz, R.E., Trehan, K., Andrus, L., Sheahan, T.P., Ploss, A., Duncan, S.A., Rice, C.M., and Bhatia, S.N. (2012). Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 109,2544-2548.
    Seggerson, K., Tang, L., and Moss, E.G. (2002). Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol.243,215-225.
    Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455,58-63.
    Seybert, A., van Dinten, L.C., Snijder, E.J., and Ziebuhr, J. (2000). Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J. Virol.74,9586-9593.
    Sheedy, F.J., Palsson-McDermott, E., Hennessy, E.J., Martin, C., O'Leary, J.J., Ruan, Q., Johnson, D.S., Chen, Y., and O'Neill, L.A. (2010). Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol.11, 141-147.
    Shitnakami, T., Yamane, D., Jangra, R.K., Kempf, B.J., Spaniel, C., Barton, D.J., and Lemon, S.M. (2012a). Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc. Natl. Acad. Sci. USA 109,941-946.
    Shimakami, T., Yamane, D., Welsch, C., Hensley, L., Jangra, R.K., and Lemon, S.M. (2012b). Base pairing between hepatitis C virus RNA and microRNA 122 3'of its seed sequence is essential for genome stabilization and production of infectious virus. J. Virol.86,7372-7383.
    Snijder, E.J., Kikkert, M., and Fang, Y. (2013). Arterivirus molecular biology and pathogenesis. J. Gen. Virol.94,2141-2163.
    Snijder, E.J., Wassenaar, A.L., van Dinten, L.C., Spaan, W.J., and Gorbalenya, A.E. (1996). The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases. J. Biol. Chem.271,4864-4871.
    Snijder, E.J., and Meulenberg, J.J. (1998). The molecular biology of arteriviruses. J. Gen. Virol.79 (Pt 5),961-979.
    Song, C, Krell, P., and Yoo, D. (2010a). Nonstructural protein lalpha subunit-based inhibition of NF-kappaB activation and suppression of interferon-beta production by porcine reproductive and respiratory syndrome virus. Virology 407,268-280.
    Song, L., Liu, H., Gao, S., Jiang, W., and Huang, W. (2010b). Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J. Virol.84,8849-8860.
    Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M. (2005). Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123, 1133-1146.
    Sun, Z., Chen, Z., Lawson, S.R., and Fang, Y. (2010). The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J. Virol.84,7832-7846.
    Sun, Z., Li, Y., Ransburgh, R., Snijder, E.J., and Fang, Y. (2012). Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J. Virol.86,3839-3850.
    Suradhat, S., Thanawongnuwech, R., and Poovorawan, Y. (2003). Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus. J. Gen. Virol.84,453-459.
    Taganov, K.D., Boldin, M.P., Chang, K.J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103,12481-12486.
    Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140,805-820.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28,2731-2739.
    Thai, T.H., Calado, D.P., Casola, S., Ansel, K.M., Xiao, C., Xue, Y., Murphy, A., Frendewey, D., Valenzuela, D., and Kutok, J.L. (2007). Regulation of the germinal center response by microRNA-155. Science 316,604-608.
    Thiel, H.J., Meyers, G., Stark, R., Tautz, N., Rumenapf, T., Unger, G., and Conzelmann, K.K. (1993). Molecular characterization of positive-strand RNA viruses:pestiviruses and the porcine reproductive and respiratory syndrome virus (PRRSV). Arch. Virol. Suppl.7,41-52.
    Thomas, M., Lieberman, J., and Lal, A. (2010). Desperately seeking microRNA targets. Nat. Struct. Mol. Biol.17,1169-1174.
    Tian, K., Yu, X., Zhao, T., Feng, Y., Cao, Z., Wang, C., Hu, Y., Chen, X., Hu, D., and Tian, X. (2007). Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One 2, e526.
    Tili, E., Michaille, J.J., Cimino, A., Costinean, S., Dumitru, C.D., Adair, B., Fabbri, M., Alder, H., Liu, C.G., and Calin, G.A. (2007). Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol.179,5082-5089.
    Tompkins, S.M., Lo, C.Y., Tumpey, T.M., and Epstein, S.L. (2004). Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA 101,8682-8686.
    Trobaugh, D.W., Gardner, C.L., Sun, C., Haddow, A.D., Wang, E., Chapnik, E., Mildner, A., Weaver, S.C., Ryman, K.D., and Klimstra, W.B. (2014). RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature 506,245-248.
    Umbach, J.L., Kramer, M.F., Jurak, I., Karnowski, H.W., Coen, D.M., and Cullen, B.R. (2008). MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454,780-783.
    Umbach, J.L., and Cullen, B.R. (2009). The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev.23,1151-1164.
    Van Breedam, W., Delputte, P.L., Van Gorp, H., Misinzo, G., Vanderheijden, N., Duan, X., and Nauwynck, H.J. (2010a). Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J. Gen. Virol.91,1659-1667.
    Van Breedam, W., Van Gorp, H., Zhang, J.Q., Crocker, P.R., Delputte, P.L., and Nauwynck, H.J. (2010b). The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner. PLoS Pathog.6, e1000730.
    van Dinten, L.C., van Tol, H., Gorbalenya, A.E., and Snijder, E.J. (2000). The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J. Virol.74,5213-5223.
    Van Gorp, H., Van Breedam, W., Van Doorsselaere, J., Delputte, P.L., and Nauwynck, H.J. (2010). Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus. J. Virol.84,3101-3105.
    van Nieuwstadt, A.P., Meulenberg, J.J., van Essen-Zanbergen, A., Petersen-den, B.A., Bende, R.J., Moormann, R.J., and Wensvoort, G. (1996). Proteins encoded by open reading frames 3 and 4 of the genome of Lelystad virus (Arteriviridae) are structural proteins of the virion. J. Virol.70, 4767-4772.
    Vasudevan, S., Tong, Y., and Steitz, J.A. (2007). Switching from repression to activation:microRNAs can up-regulate translation. Science 318,1931-1934.
    Wang, R., Nan, Y., Yu, Y., and Zhang, Y.J. (2013). Porcine reproductive and respiratory syndrome virus Nsplbeta inhibits interferon-activated JAK/STAT signal transduction by inducing karyopherin-alphal degradation. J. Virol.87,5219-5228.
    Wark, A.W., Lee, H.J., and Corn, R.M. (2008). Multiplexed detection methods for profiling microRNA expression in biological samples. Angew. Chem. Int. Ed. Engl.47,644-652.
    Wensvoort, G., Terpstra, C, Pol, J.M., ter Laak, E.A., Bloemraad, M., de Kluyver, E.P., Kragten, C., van Buiten, L., den Besten, A., and Wagenaar, F. (1991). Mystery swine disease in The Netherlands:the isolation of Lelystad virus. Vet. Q.13,121-130.
    Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H.R., Kauppinen, S., and Plasterk, R.H. (2005). MicroRNA expression in zebrafish embryonic development. Science 309,310-311.
    Wightman, B., Burglin, T.R., Gatto, J., Arasu, P., and Ruvkun, G. (1991). Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev.5,1813-1824.
    Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75,855-862.
    Wissink, E.H., Kroese, M.V., van Wijk, H.A., Rijsewijk, F.A., Meulenberg, J.J., and Rottier, P.J. (2005). Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus. J. Virol.79,12495-12506.
    Wu, L., Fan, J., and Belasco, J.G. (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103,4034-4039.
    Wu, W.H., Fang, Y., Farwell, R., Steffen-Bien, M., Rowland, R.R., Christopher-Hennings, J., and Nelson, E.A. (2001). A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 287,183-191.
    Wu, X., Robotham, J.M., Lee, E., Dalton, S., Kneteman, N.M., Gilbert, D.M., and Tang, H. (2012). Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog.8, e1002617.
    Wu, Y., Navarro, F., Lal, A., Basar, E., Pandey, R.K., Manoharan, M., Feng, Y., Lee, S.J., Lieberman, J., and Palliser, D. (2009). Durable protection from Herpes Simplex Virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell Host Microbe 5,84-94.
    Wyman, S.K., Knouf, E.C., Parkin, R.K., Fritz, B.R., Lin, D.W., Dennis, L.M., Krouse, M.A., Webster, P.J., and Tewari, M. (2011). Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res.21, 1450-1461.
    Xiao, S., Mo, D., Wang, Q., Jia, J., Qin, L., Yu, X., Niu, Y., Zhao, X., Liu, X., and Chen, Y. (2010). Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. BMC Genomics 11,544.
    Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M. (2005). Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature 434,338-345.
    Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304,594-596.
    Ylosmaki, E., Hakkarainen, T., Hemminki, A., Visakorpi, T., Andino, R., and Saksela, K. (2008). Generation of a conditionally replicating adenovirus based on targeted destruction of E1 A mRNA by a cell type-specific MicroRNA. J. Virol.82,11009-11015.
    Yoo, D., Song, C., Sun, Y., Du Y., Kim, O., and Liu, H.C. (2010). Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus. Virus Res.154,48-60.
    Yoon, I.J., Joo, H.S., Christianson, W.T., Kim, H.S., Collins, J.E., Carlson, J.H., and Dee, S.A. (1992). Isolation of a cytopathic virus from weak pigs on farms with a history of swine infertility and respiratory syndrome. J. Vet. Diagn. Invest.4,139-143.
    Yu, Y., Wang, R., Nan, Y., Zhang, L., and Zhang, Y. (2013). Induction of STAT1 phosphorylation at serine 727 and expression of proinflammatory cytokines by porcine reproductive and respiratory syndrome virus. PLoS One 8, e61967.
    Zhang, L., Liu, J., Bai, J., Wang, X., Li, Y., and Jiang, P. (2013). Comparative expression of Toll-like receptors and inflammatory cytokines in pigs infected with different virulent porcine reproductive and respiratory syndrome virus isolates. Virol. J.10,135.
    Zhang, W., Yang, H., Kong, X., Mohapatra, S., San, J.H., Hellermann, G., Behera, S., Singam, R., Lockey, R.F., and Mohapatra, S.S. (2005). Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat. Med.11,56-62.
    Zhao, J.L., Rao, D.S., Boldin, M.P., Taganov, K.D., O'Connell, R.M., and Baltimore, D. (2011). NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl. Acad. Sci. USA 108,9184-9189.
    Zhou, L., Zhang, J., Zeng, J., Yin, S., Li, Y., Zheng, L., Guo, X., Ge, X., and Yang, H. (2009). The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence. J. Virol.83,5156-5167.
    Ziebuhr, J., Snijder, E.J., and Gorbalenya, A.E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol.81,853-879.
    郭宝清,陈章水,刘文兴,崔益洙.从疑似PRRS流产胎儿分离PRRSV的研究.中国畜禽传染病,1996(02).
    张银田.我国高致病性猪蓝耳病疫情及防控情况.兽医导刊,2007(07).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.