大豆GmMFT基因克隆、表达模式及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MFT(MOTHER OF FT AND TFL1)基因属于磷脂酰乙醇胺结合蛋白(PEBP)基因家族,广泛存在于多细胞陆生植物中。最初的研究认为MFT基因可能是个开花调控因子,但是后来的一些关于MFT基因的转化和表达分析研究表明MFT基因更可能在种子发育或萌发过程中起作用。对MFT基因进行研究,明确其在种子发育或萌发过程中的作用,将为植物种质的分子改良提供一定的理论参考。本研究从大豆中克隆到GmMFT基因,对它进行了生物信息学分析,用实时荧光定量PCR(RT-qPCR)分析了它在不同组织器官和发育过程的时空表达模式,并在拟南芥中过表达该基因以研究其功能。与此同时,因为合适内参基因的选择对于获得正确的RT-qPCR结果至关重要,所以为了更好地研究GmMFT基因在种子发育和萌发过程的表达模式,本研究还评价了18个大豆候选内参基因在34个不同的种子样本中的表达稳定性。主要研究结果如下:
     1.在大豆种子发育过程中最适合的内参基因是TUA5和UKN2,在种子萌发过程最适合的内参基因是Glyma05g37470和Glyma08g28550,在总样本中则需要用Glyma05g37470、Glyma08g28550、Glyma18g04130和UKN24个内参基因做标准化分析。
     2. GmMFT基因主要在大豆种子中表达,并且在种子发育过程中表达量逐渐升高,在种子萌发过程中表达量逐渐降低。GmMFT基因的这种表达模式暗示其很可能调控大豆种子发育和萌发。
     3. GmMFT蛋白同拟南芥AtMFT和小麦TaMFT蛋白一样定位在细胞核和细胞质中,暗示其可能是一个转录因子。
     4.转基因拟南芥表型分析结果表明GmMFT基因可能抑制种子萌发,并不参与开花时间或种子发育的调控。分析GmMFT转基因和野生型种子中一些与萌发相关的基因的表达情况,我们发现GmMFT基因可能从两方面来抑制种子萌发:一方面通过促进ABA合成基因的表达,同时抑制ABA降解基因的表达来促进ABA在种子中的积累以抑制种子萌发;另一方面通过抑制GA合成基因的表达,同时促进GA降解基因的表达来抑制GA在种子中的积累进而抑制萌发。
MFT (MOTHER OF FT AND TFL1) is a member of phosphatidylethanolamine-binding protein(PEBP)gene family and evolutionarily conserved in a wide range of multicellular land plants. MFT wasinitially identified as a floral regulator in some research. However, later studies using expressionanalysis and transformation analysis of MFT genes indicated that MFT genes may function in seeddevelopment or germination rather than in flowering. An analysis of MFT genes aimed to clarify theirdefinite roles in seed development or germination may be helpful to improve the quality of seeds at themolecular level. In this study, GmMFT gene was cloned and bioinfomatically analyzed. Itsspatio-temporal expression profiles across different developmental stages and in various tissues/organswere performed using real-time quantitative PCR (RT-qPCR). Furthermore, functional analysis ofGmMFT gene was performed in transgenic Arabidopsis. At the same time, due to selection of properinternal reference genes is critical for the reliable RT-qPCR results, we evaluated the expressionstability of18candidate reference genes in34different seed samples in order to study the expressionpattern of GmMFT gene during seed development and germination. The main results were as follows:
     1. The reference genes identified as optimums for soybean seed development were TUA5andUKN2, whereas for seed germination were Glyma05g37470and Glyma08g28550. Furthermore, fortotal samples it was necessary to combine four genes of Glyma05g37470, Glyma08g28550,Glyma18g04130, and UKN2for normalization.
     2. In soybean, GmMFT gene mainly expressed in seeds and the expression level was increasingduring seed development, whereas decreasing during seed germination. This expression pattern ofGmMFT gene indicated that GmMFT may function in seed development or germination of soybean.
     3. GmMFT protein was localized in both nuclear and cytoplasm as Arabidopsis AtMFT and wheatTaMFT, indicating it may be a transcription factor.
     4. The phenotype analysis of transgenic Arabidopsis indicated that GmMFT gene may suppressesseed germination rather than regulate flowering or seed development. In comparison of the expressionof germination-related genes between GmMFT transgenic and wild-type seeds, We found that GmMFTgene may inhibit seed germination in two ways: On one hand, GmMFT promotes the accumulation ofABA in seeds by increasing the expression of ABA biosynthetic genes and decreasing the expression ofABA degradation genes; On the other hand, GmMFT inhibits the accumulation of GA in seeds bydecreasing the expression of GA biosynthetic genes and increasing the expression of GA degradationgenes.
引文
1. Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006)A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J25:605-614
    2. Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signalrelieving seed dormancy in Arabidopsis. Plant Cell Environ28:500-512
    3. Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changesin endogenous abscisic acid levels during dormancy release and maintenance of mature seeds:studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta219:479-488
    4. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reversetranscription-PCR data: a model-based variance estimation approach to identify genes suited fornormalization, applied to bladder and colon cancer data sets. Cancer Res64:5245-5250
    5. Banfield MJ, Barker JJ, Perry AC, Brady RL (1998) Function from structure? The crystal structureof human phosphatidylethanolamine-binding protein suggests a role in membrane signaltransduction. Structure6:1245-1254
    6. Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomicstudies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. PlantPhysiol150:1006-1021
    7. Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylenesignaling cascades. Plant Cell12:1103-1115
    8. Borges A, Tsai SM, Caldas DG (2012) Validation of reference genes for RT-qPCR normalization incommon bean during biotic and abiotic stresses. Plant Cell Rep31:827-838
    9. Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larre C, Satour P, Leprince O (2006) Comparativeanalysis of the heat stable proteome of radicles of Medicago truncatula seeds during germinationidentifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol140:1418-1436
    10. Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescencearchitecture in Antirrhinum. Nature379:791-797
    11. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems. J Mol Endocrinol29:23-39
    12. Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE (2006) Gene expression profiles ofArabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy controlmechanism. Plant J46:805-822
    13. Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA-dependenttranscriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol142:509-525
    14. Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ (2008)Seed after-ripening is a discrete developmental pathway associated with specific gene networks inArabidopsis. Plant J53:214-224
    15. Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ(2007) Gene expression profiling reveals defined functions of the ATP-binding cassette transporterCOMATOSE late in phase II of germination. Plant Physiol143:1669-1679
    16. Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J MolEvol61:579-590
    17. Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seeddormancy in Arabidopsis. Plant Physiol142:1493-1510
    18. Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, Kermode AR (2005) Theetr1-2mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellinmetabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J42:35-48
    19. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identificationand testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol139:5-17
    20. D'Aloia M, Bonhomme D, Bouche F, Tamseddak K, Ormenese S, Torti S, Coupland G, Perilleux C(2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FTparalogue TSF. Plant J65:972-979
    21. Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expressioncompendium of the expanded PEBP gene family from maize. Plant Physiol146:250-264
    22. Dekkers BJ, Willems L, Bassel GW, van Bolderen-Veldkamp RP, Ligterink W, Hilhorst HW,Bentsink L (2012) Identification of reference genes for RT-qPCR expression analysis inArabidopsis and tomato seeds. Plant Cell Physiol53:28-37
    23. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. NewPhytol171:501-523
    24. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. AnnuRev Plant Biol59:387-415
    25. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation ofabscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell12:1117-1126
    26. Graeber K, Linkies A, Wood AT, Leubner-Metzger G (2011) A guideline to family-widecomparative state-of-the-art quantitative RT-PCR analysis exemplified with a brassicaceaecross-species seed germination case study. Plant Cell23:2045-2063
    27. Gutierrez-Gonzalez JJ, Guttikonda SK, Tran LS, Aldrich DL, Zhong R, Yu O, Nguyen HT, SleperDA (2010) Differential expression of isoflavone biosynthetic genes in soybean during water deficits.Plant Cell Physiol51:936-948
    28. Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T,Guerineau F, Bellini C, Van Wuytswinkel O (2008) The lack of a systematic validation of referencegenes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR)analysis in plants. Plant Biotechnol J6:609-618
    29. Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator offlowering. Proc Natl Acad Sci U S A102:7748-7753
    30. Hedman H, Kallman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants.Plant Mol Biol70:359-369
    31. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relativequantification framework and software for management and automated analysis of real-timequantitative PCR data. Genome Biol8:R19
    32. Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seedmaturation, after-ripening, dormancy and germination. New Phytol179:33-54
    33. Howell KA, Narsai R, Carroll A, Ivanova A, Lohse M, Usadel B, Millar AH, Whelan J (2009)Mapping metabolic and transcript temporal switches during germination in rice highlights specifictranscription factors and the role of RNA instability in the germination process. Plant Physiol149:961-980
    34. Hruz T, Wyss M, Docquier M, Pfaffl MW, Masanetz S, Borghi L, Verbrugghe P, Kalaydjieva L,Bleuler S, Laule O, Descombes P, Gruissem W, Zimmermann P (2011) RefGenes: identification ofreliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics12:156
    35. Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for geneexpression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol10:93
    36. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies andconsiderations. Genes Immun6:279-284
    37. Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expressionstudy in soybean by quantitative real-time PCR. BMC Mol Biol9:59
    38. Jung JH, Park CM (2011) Auxin modulation of salt stress signaling in Arabidopsis seedgermination. Plant Signal Behav6:1198-1200
    39. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ,Weigel D (1999) Activation tagging of the floral inducer FT. Science286:1962-1965
    40. Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N (2007) Statistical significance ofquantitative PCR. BMC Bioinformatics8:131
    41. Karlgren A, Gyllenstrand N, Kallman T, Sundstrom JF, Moore D, Lascoux M, Lagercrantz U (2011)Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution.Plant Physiol156:1967-1977
    42. Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H (2009) Molecular and functionalcharacterization of PEBP genes in barley reveal the diversification of their roles in flowering. PlantPhysiol149:1341-1353
    43. Kimura M, Nambara E (2010) Stored and neosynthesized mRNA in Arabidopsis seeds: effects ofcycloheximide and controlled deterioration treatment on the resumption of transcription duringimbibition. Plant Mol Biol73:119-129
    44. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes withantagonistic roles in mediating flowering signals. Science286:1960-1962
    45. Kroslak T, Koch T, Kahl E, Hollt V (2001) Human phosphatidylethanolamine-binding proteinfacilitates heterotrimeric G protein-dependent signaling. J Biol Chem276:39772-39778
    46. Kulcheski FR, Marcelino-Guimaraes FC, Nepomuceno AL, Abdelnoor RV, Margis R (2010) Theuse of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. AnalBiochem406:185-192
    47. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M,Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010)Global analysis of gene activity during Arabidopsis seed development and identification ofseed-specific transcription factors. Proc Natl Acad Sci U S A107:8063-8070
    48. Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics tostudy legume seed development. Plant Physiol144:562-574
    49. Lee PD, Sladek R, Greenwood CM, Hudson TJ (2002) Control genes and variability: absence ofubiquitous reference transcripts in diverse mammalian expression studies. Genome Res12:292-297
    50. Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination bydistinct pathways. Planta213:758-763
    51. Libault MT, Bilgin S, Radwan D, Benitez O, Clough M, SJ Stacey G (2008) Identification of foursoybean reference genes for gene expression normalization. The Plant Genome1:44
    52. Lifschitz E, Eshed Y (2006) Universal florigenic signals triggered by FT homologues regulategrowth and flowering cycles in perennial day-neutral tomato. J Exp Bot57:3405-3414
    53. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y(2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering andsubstitute for diverse environmental stimuli. Proc Natl Acad Sci U S A103:6398-6403
    54. Linkies A, Muller K, Morris K, Tureckova V, Wenk M, Cadman CS, Corbineau F, Strnad M, LynnJR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulateendosperm rupture during germination: a comparative approach using Lepidium sativum andArabidopsis thaliana. Plant Cell21:3803-3822
    55. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007)Repression of AUXIN RESPONSE FACTOR10by microRNA160is critical for seed germinationand post-germination stages. Plant J52:133-146
    56. Mimida N, Goto K, Kobayashi Y, Araki T, Ahn JH, Weigel D, Murata M, Motoyoshi F, SakamotoW (2001) Functional divergence of the TFL1-like gene family in Arabidopsis revealed bycharacterization of a novel homologue. Genes Cells6:327-336
    57. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling ofstored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation oftranscription in seed. Plant J41:697-709
    58. Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T,Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog ofMOTHER OF FT AND TFL1acts in the regulation of germination. Plant Cell23:3215-3229
    59. Narsai R, Ivanova A, Ng S, Whelan J (2010) Defining reference genes in Oryza sativa using organ,development, biotic and abiotic transcriptome datasets. BMC Plant Biol10:56
    60. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellinbiosynthesis and response during Arabidopsis seed germination. Plant Cell15:1591-1604
    61. Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y,Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis ofendogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis usingtiling arrays. Plant J62:39-51
    62. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeepinggenes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based toolusing pair-wise correlations. Biotechnol Lett26:509-515
    63. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJ, Nilsson O (2010) Anantagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science330:1397-1400
    64. Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, NambaraE (2009) Temporal expression patterns of hormone metabolism genes during imbibition ofArabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. PlantCell Physiol50:1786-1800
    65. Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect ofalpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored andneosynthesized mRNAs during germination. Plant Physiol134:1598-1613
    66. Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants revealfunctions in shoot growth, leaf senescence, seed size, germination, root development, and cytokininmetabolism. Plant Cell18:40-54
    67. Ruonala R, Rinne PL, Kangasjarvi J, van der Schoot C (2008) CENL1expression in the ribmeristem affects stem elongation and the transition to dormancy in Populus. Plant Cell20:59-74
    68. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D,Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet37:501-506
    69. Schoentgen F, Jolles P (1995) From structure to function: possible biological roles of a newwidespread protein family binding hydrophobic ligands and displaying a nucleotide binding site.FEBS Lett369:22-26
    70. Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, SunTP, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E (2006) Regulation of hormone metabolism inArabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulationof gibberellin metabolism. Plant J48:354-366
    71. Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, Lifschitz E (2009) Theflowering hormone florigen functions as a general systemic regulator of growth and termination.Proc Natl Acad Sci U S A106:8392-8397
    72. Shi J, Liu M, Zheng G, Wang Y, Wang J, Chen Y, Lu C, Yin W (2012) Reference gene selectionfor qPCR in Ammopiptanthus mongolicus under abiotic stresses and expression analysis of sevenROS-scavenging enzyme genes. Plant Cell Rep
    73. Sreenivasulu N, Borisjuk L, Junker BH, Mock HP, Rolletschek H, Seiffert U, Weschke W, WobusU (2010) Barley grain development toward an integrative view. Int Rev Cell Mol Biol281:49-89
    74. Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. PlantPhysiol125:763-769
    75. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques29:332-337
    76. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E(1999) Housekeeping genes as internal standards: use and limits. J Biotechnol75:291-295
    77. Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y (1998) Phytochrome regulatesgibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol118:1517-1523
    78. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002)Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multipleinternal control genes. Genome Biol3:RESEARCH0034
    79. Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z (2011) Auxin Response Factor2(ARF2)and its regulated homeodomain gene HB33mediate abscisic acid response in Arabidopsis. PLoSGenet7:e1002172
    80. Wang Y, Li L, Ye T, Zhao S, Liu Z, Feng YQ, Wu Y (2011) Cytokinin antagonizes ABAsuppression to seed germination of Arabidopsis by downregulating ABI5expression. Plant J68:249-261
    81. Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. PlantPhysiol144:1240-1246
    82. Weitbrecht K, Muller K, Leubner-Metzger G (2011) First off the mark: early seed germination. JExp Bot62:3289-3309
    83. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integrationof spatial and temporal information during floral induction in Arabidopsis. Science309:1056-1059
    84. Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1regulates seed germinationthrough a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell22:1733-1748
    85. Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) TWIN SISTER OF FT (TSF) acts asa floral pathway integrator redundantly with FT. Plant Cell Physiol46:1175-1189
    86. Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T (1998) Phytochrome regulation anddifferential expression of gibberellin3beta-hydroxylase genes in germinating Arabidopsis seeds.Plant Cell10:2115-2126
    87. Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation ofgibberellin biosynthesis and response pathways by low temperature during imbibition ofArabidopsis thaliana seeds. Plant Cell16:367-378
    88. Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH (2010) BROTHER OF FT AND TFL1(BFT) has TFL1-like activity and functions redundantly with TFL1in inflorescence meristemdevelopment in Arabidopsis. Plant J63:241-253
    89. Yoo SY, Kardailsky I, Lee JS, Weigel D, Ahn JH (2004) Acceleration of flowering byoverexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells17:95-10
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.