天目山土壤产抗芽孢杆菌的分离筛选及其系统发育分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芽孢杆菌是一类重要的药源性微生物,能产生丰富的具有人类医药应用价值或动植物病害防治功能的次级代谢产物。为了探索天目山国家自然保护区土壤中具有产次级代谢产物潜能的芽孢杆菌多样性,并期望从分离株中发现新种及新抗生素,本研究从天目山采集土壤样品,采用纯培养的方法,分离获得芽孢杆菌。利用特异性引物扩增法,筛选出基因组中具有编码非核糖体肽合成酶(NRPS)基因或Ⅰ型聚酮合酶(PKSI)基因的菌株。对筛选出的菌株进行抗菌活性和代谢产物表面活性物质的检测,并进行基于16S rDNA序列的系统发育分析,以期挑选出具有较大研究价值的菌株进行进一步的研究。
     通过分离与筛选,从天目山土壤中共得到35株产芽孢细菌,其中14个菌株的基因组中具有NRPS或PKSI基因。这14株菌株中有9株菌对金黄色葡萄球菌,大肠杆菌或白色念珠菌表现出不同程度的拮抗作用,7个菌株的代谢产物中检测出了表面活性物质。经16S rDNA序列分析,在这14株菌株中,6株属于芽孢杆菌属,6株属于类芽孢杆菌属,2株属于短芽孢杆菌属,其中有4个菌株为潜在新种。对潜在新种菌株B5进行多相分类学研究,最终确定其为芽孢杆菌新种,命名Bacillus tianmuensis.
     本研究结果表明,天目山自然保护区土壤中拥有较为丰富的具芽孢细菌产抗微生物多样性。运用基于编码非核糖体肽合成酶(NRPS)基因与Ⅰ型聚酮合酶(PKSI)基因的特异性引物扩增法、并结合抗菌活性及系统发育分析的方法集成,是研究筛选产抗菌株,尤其是筛选潜在产抗新菌株,从而发现产抗新种与新活性化合物的针对性强、较快速的有效方法。此外,芽孢杆菌新种Bacillus tianmuensis的发现,不仅进一步丰富了芽孢杆菌种群,也为探索潜在的新的生物活性化合物提供了新资源。
Strains of Bacillus produce a wide range of second metabolites with great pharmaceutical importance, are important sources of antibiotic. With the aim to study the diversity of antagonistic Bacillus from soil of Tianmu Mountain National Natural Reserve and to discover new species and new antibiotics, Bacillus strains were isolated by culture-dependent method from soil samples collected from Tianmu Mountain. The isolated strains were screened for nonribosomal peptide synthetase (NRPS) and typeⅠpolyketide synthase (PKSⅠ) gene by using specific primer PCR method. The selected strains were then detected for antimicrobial activities and surface active substance, and subjected to phylogenetic analysis based on 16S rDNA sequences, with the expectation to obtain strains of considerable research value for further investigation.
     Total 35 strains were isolated form soil of Tianmu Mountain. Of them,14 strains possessed NRPS or PKSⅠgene. Among the 14 strains,9 strains showed different antimicrobial activities against to Staphylococcs aureus, Escherichia coli or Candida albicans, and 7 strains could produce surface active substance. Phylogenetic analysis based on the 16S rDNA sequences revealed that 6 of the 14 strains belonged to the genus of Bacillus,6 of the 14 strains belonged to the genus of Paenibacillus and 2 of the 14 strains belonged to the genus of Brevibacillus. Among the 14 strains,4 strains were novel species candidates. One of the novel species candidate strain B5 was subsequently subjected to a polyphasic taxonomic analysis and was classified to be a novel Bacillus species, for which the name Bacillus tianmuensis was proposed.
     The results of this paper showed that there were diverse antagonistic endospore-forming bacteria existed in the soil of Tianmu Mountain. The screening method based on the specific primer PCR of NRPS or PKSⅠgene combining with antimicrobial activity detection and phylogenetic analysis was a well targeted, rapid and effective method for screening antibiotic producing strains, especially the new strains with potential antibiotic production ability, and leading to the discovery of new antibiotic producing strains and new active metabolites. Moreover, the discovery of new species Bacillus tianmuensis, not only enriched the species of Bacillus, but also provided a good resource for exploring new potential biological active substance.
引文
[1]Hopwood DA, Merrick MJ. Genetics of antibiotic production[J]. Microbiol Mol Biol R,1977,41(3):595-635.
    [2]Demain AL. Pharmaceutically active secondary metabolites of microorganisms[J]. Appl Microbiol Biot,1999,52(4):455-463.
    [3]Rokem JS, Lantz AE, Nielsen J. Systems biology of antibiotic production by microorganisms[J]. Nat Prod Rep,2007,24(6):1262-1287.
    [4]Somma S, Gastaldo L, Corti A. Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp.[J]. Antimicrob Agents Ch,1984,26(6):917-923.
    [5]Parenti F, Beretta G, Berti M, et al. Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp.[J]. J Antibiot,1978,31(4):276-283.
    [6]Kusaka T, Yamamoto H, Shibata M, et al. Streptomyces citricolor nov. sp. and a new antibiotic, aristeromycin[J]. J Antibiot,1968,21(4):255-263.
    [7]Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol[J]. Trends microbiol,2008,16(3):115-125.
    [8]Schneider K, Chen XH, Vater J, et al. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42[J]. J Nat Prod,2007, 70(9):1417-1423.
    [9]Moldenhauer J, Chen XH, Borriss R, et al. Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family[J]. Angew Chem Int Ed,2007,46(43):8195-8197.
    [10]Zimmerman SB, Schwartz CD, Monaghan RL, et al. Difficidin and oxydifficidin: Novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis.1. Production, taxonomy and antibacterial activity[J]. J Antibiot,1987,40(12): 1677-1681.
    [11]Katz E, Demain AL. The peptide antibiotics of Bacillus:chemistry, biogenesis, and possible functions[J]. Microbiol Mol Biol R,1977,41(2):449-474.
    [12]Tamehiro N, Okamoto-Hosoya Y, Okamoto S, et al. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168[J]. Antimicrob Agents Ch, 2002,46(2):315-320.
    [13]Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus[J]. Antonie van Leeuwenhoek,1993,64: 253-260.
    [14]Shida 0, Takagi H, Kadowaki K, et al. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov.[J]. Int J Syst Evol Micr,1996, 46(4):939-946.
    [15]Stansly PG, Schlosser ME. Studies on Polymyxin:isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics[J]. J Bacteriol,1947,54(5):549-556.
    [16]Ito M, Koyama Y. Jolipeptin, a new peptide antibiotic.I. isolation, physicochemical and biological characteristics[J]. J Antibiot,1972,25(5):304-308.
    [17]Nakajima N, Koyama Y, Chihara S. New antibiotic, gatavalin.I. isolation and characterization[J]. J Antibiot,1972,25(4):243-247.
    [18]Okuda K, Edwards GC, Winnick T. Biosynthesis of gramicidin and tyrocidine in the dubos strain of Bacillus brevis I. Experiments with Growing Cultures[J]. J Bacteriol,1963,85(2):329-338.
    [19]Chmara H, Borowski E. Antibiotic edeine. I. Isolation of induced high activity mutant of Bacillus brevis Vm4[J]. Acta Microbiol Pol,1966,15(3):223-234.
    [20]Winnick RE, Lis H, Winnick T. Biosynthesis of gramicidin S I. General characteristics of the process in growing cultures of Bacillus brevis[J]. Biochimica et biophysica acta,1961,49(3):451-462.
    [21]Kajimura Y, Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8:taxonomy, fermentation, isolation, structure elucidation and biological activity[J]. J Antibiot,1996,49(2):129-135.
    [22]Pichard B, Larue JP, Thouvenot D. Gavaserin and Saltavalin, new peptide antibiotics produced by Bacillus Polymyxa[J].Ferns Microbiol Lett,1995,133(3): 215-218.
    [23]Desjardine K, Pereira A, Wright H, et al. Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: Structure elucidation and synthesis[J]. J Nat Prod,2007,70(12):1850-1853.
    [24]Challis GL. Genome mining for novel natural product discovery[J]. J Med Chem, 2008,51(9):2618-2628.
    [25]Minowa Y, Araki M, Kanehisa M. Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes[J]. J Mol Biol,2007,368(5):1500-1517.
    [26]Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases:the emerging view from bacterial genomics[J]. Nat Prod Rep, 2007,24(5):1073-1109.
    [27]Komaki H, Izumikawa M, Ueda J, et al. Discovery of a pimaricin analog JBIR-13, from Streptomyces bicolor NBRC 12746 as predicted by sequence analysis of type I polyketide synthase gene[J]. Appl Microbiol Biot,2009,83(1):127-133.
    [28]Banskota AH, McAlpine JB, Sorensen D, et al. Genomic analyses lead to novel secondary metabolites [J]. J Antibiot,2006,59(9):533-542.
    [29]J萨姆布鲁克,Dw拉塞尔著,黄培堂等译.分子克隆实验指南:科学出版社,2002.
    [30]Busti E, Monciardini P, Cavaletti L, et al. Antibiotic-producing ability by representatives of a newly discovered lineage of actinomycetes[J]. Microbiol-Sgm, 2006,152:675-683.
    [31]Izumikawa M, Murata M, Tachibana K, et al. Cloning of modular type I polyketide synthase genes from salinomycin producing strain of Streptomyces albus[J]. Bioorgan Med Chem,2003,11(16):3401-3405.
    [32]Lin TP, Chen CL, Fu HC, et al. Functional analysis of fengycin synthetase FenD[J]. Bba-Gene Struct Expr,2005,1730(2):159-164.
    [33]Ohno A, Ano T, Shoda M. Production of the antifungal peptide antibiotic, iturin by Bacillus subtilis Nb22 in solid-state fermentation[J]. J Ferment Bioeng,1993, 75(1):23-27.
    [34]Arima K, Kakinuma A, Tamura G. Surfactin a crystalline peptidelipid surfactant produced by Bacillus subtilis:isolation characterization and its inhibition of fibrin clot formation[J]. Biochem Bioph Res Co,1968,31(3):488-494.
    [35]Nakano MM, Marahiel MA, Zuber P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis[J]. J Bacteriol,1988,170(12):5662-5668.
    [36]Jain DK, Collinsthompson DL, Lee H, et al. A drop-collapsing test for screening surfactant-producing microorganisms [J]. J Microbiol Meth,1991,13(4):271-279.
    [37]Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers[J]. J Microbiol Meth,2003,55(3):541-555.
    [38]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.[J]. Nucleic Acids Res,1994, 22:4673-4680.
    [39]Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.[J]. J Mol Evol, 1980,16:111-120.
    [40]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24(8):1596-1599.
    [41]东秀珠,蔡妙英.常见细菌系统鉴定手册.科学出版社:北京,2001.
    [42]Wang LT, Lee FL, Tai CJ, et al. Comparison of gyrB gene sequences,16S rRNA gene sequences and DNA DNA hybridization in the Bacillus subtilis group[J]. Int J Syst Evol Micr,2007,57(8):1846-1850.
    [43]Tourasse NJ, Helgason E, kstad OA, et al. The Bacillus cereus group:novel aspects of population structure and genome dynamics[J]. J Appl Microbiol,2006, 101(3):579-593.
    [44]Taubel M, Kampfer P, Buczolits S, et al. Bacillus barbaricus sp. nov., isolated from an experimental wall painting[J]. Int J Syst Evol Microbiol,2003,53(Pt 3): 725-30.
    [45]Shivaji S, Suresh K, Chaturvedi P, et al. Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India[J]. Int J Syst Evol Microbiol,2005,55(Pt 3):1123-1127.
    [46]Paul NB, Sundara Rao WVB. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes[J]. Plant Soil,1971,35(1):127-132.
    [47]He HY, Silosuh LA, Handelsman J, et al. Zwittermicin-A, an antifungal and plant-protection agent from Bacillus cereus[J]. Tetrahedron Lett,1994,35(16): 2499-2502.
    [48]Kim DS, Bae CY, Jeon JJ, et al. Paenibacillus elgii sp. nov., with broad antimicrobial activity[J]. Int J Syst Evol Micr,2004,54:2031-2035.
    [49]Iida K, Ueda Y, Kawamura Y, et al. Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan[J]. Int J Syst Evol Micr,2005,55(5):1811.
    [50]Mulligan CN, Cooper DG, Neufeld RJ. Selection of microbes producing biosurfactants in media without hydrocarbons[J]. J Ferment Technol,1984,62(4): 311-314.
    [1]Vanittanakom N, Loeffler W, Koch U, et al. Fengycin:a novel antiftungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3[J]. J Antibiot,1986,39(7): 888-901.
    [2]Magetdana R, Peypoux F. Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties[J]. Toxicology,1994,87(1-3):151-174.
    [3]Arima K, Kakinuma A, Tamura G. Surfactin a crystalline peptidelipid surfactant produced by Bacillus subtilis:Isolation characterization and its Inhibition of fibrin clot formation[J]. Biochem Biophys Res Commun,1968,31(3):488-494.
    [4]Naruse N, Tenmyo 0, Kobaru S, et al. Pumilacidin, a complex of new antiviral antibiotics:production, isolation, chemical properties, structure and biological activity[J]. J Antibiot,1990,43(3):267-280.
    [5]Yakimov M, Fredrickson H, Timmis K. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50[J]. Biotechnol Appl Biochem,1996,23:13-18.
    [6]Carrillo C, Teruel JA, Aranda FJ, et al. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin[J]. Biochimica Et Biophysica Acta-Biomembranes,2003,1611(1-2):91-97.
    [7]Kim K, Jung SY, Lee DK, et al. Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A(2)[J]. Biochem Pharmacol,1998,55(7):975-985.
    [8]Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiol,2004,134(1):307-319.
    [9]Magetdana R, Peypoux F. Iturins, a Special-Class of Pore-Forming Lipopeptides-Biological and Physicochemical Properties[J]. Toxicology,1994,87(1-3):151-174.
    [10]Mhammedi A, Peypoux F, Besson F, et al. Bacillomycin F, a new antibiotic of iturin group:Isolation and characterization[J]. J Antibiot,1982,35(3):306-311.
    [11]Eshita SM, Roberto NH, Beale JM, et al. Bacillomycin L c, a new antibiotic of the iturin group:Isolations, structures, and antifungal activities of the congeners[J]. J Antibiot,1995,48(11):1240-1247.
    [12]Moyne AL, Shelby R, Cleveland TE, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus[J]. J Appl Microbiol,2001, 90(4):622-629.
    [13]Duitman EH, Hamoen LW, Rembold M, et al. The mycosubtilin synthetase of Bacillus subtilis ATCC6633:A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase[J]. Proc Natl Acad Sci U S A,1999, 96(23):13294-13299.
    [14]Thimon L, Peypoux F, Wallach J, et al. Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells [J]. FEMS Microbiol Lett,1995,128(2):101-106.
    [15]Besson F, Peypoux F, Michel G, et al. Antifungal activity upon Saccharomyces cerevisiae of iturin A, mycosubtilin, bacillomycin L and of their derivatives; inhibition of this antifungal activity by lipid antagonists[J]. J Antibiot,1979,32(8): 828-833.
    [16]Moyne AL, Shelby R, Cleveland TE, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus[J]. J Appl Microbiol,2001,90(4): 622-629.
    [17]Nishikiori T, Naganawa H, Muraoka Y, et al. Plipastatins:new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67[J]. J Antibiot,1986, 39(6):755-761.
    [18]Volpon L, Besson F, Lancelin JM. NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A2[J]. FEBS Lett,2000, 485(1):76-80.
    [19]Chen XH, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens[J]. J Biotechnol,2009,140(1-2):27-37.
    [20]Koumoutsi A, Chen XH, Henne A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42[J]. J Bacteriol,2004,186(4): 1084-1096.
    [21]Batrakov SG, Rodionova TA, Esipov SE, et al. A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603[J]. Bba-Mol Cell Biol L,2003,1634(3):107-115.
    [22]Kaneda M, Kajimura Y. New antifungal antibiotics, bacillopeptins and fusaricidins[J]. Yakugaku zasshi,2002,122(9):651-671.
    [23]Kwa A, Kasiakou SK, Tam VH, et al. Polymyxin B:similarities to and differences from colistin (polymyxin E)[J]. Expert Rev Anti Infect Ther,2007,5(5): 811-821.
    [24]Stansly PG, Schlosser ME. Studies on polymyxin:isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics[J]. J Bacteriol,1947,54(5):549-556.
    [25]Storm DR, Rosenthal KS, Swanson PE. Polymyxin and related peptide antibiotics[J]. Annu Rev Biochem,1977,46(1):723-763.
    [26]Johnson BA, Anker H, Meleney FL. Bacitracin:a new antibiotic produced by a member of'the B.subtilis Group[J]. Science,1945,102(2650):376-377.
    [27]Haavik HI, Froyshov O. Function of peptide antibiotics in producer organisms[J]. Nature,1975,254(5495):79-82.
    [28]Pavli V, Sokoli M. Comparative determination of bacitracin by HPLC and microbiological methods in some pharmaceuticals and feed grade preparations [J]. J Liq Chromatogr Relat Technol,1990,13(2):303-318.
    [29]Yonezawa H, Okamoto K, Tomokiyo K, et al. Mode of antibacterial action by gramicidin S[J]. J Biochem (Tokyo),1986,100(5):1253-1259.
    [30]Majumdar SK, Bose SK. Mycobacillin, a new antifungal antibiotic produced by B. subtilis[J]. Nature,1958,181:134-135.
    [31]Kajimura Y, Kaneda M. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8:isolation, structure elucidation and biological activity[J]. J Antibiot,1997,50(3):220-228.
    [32]Choi SK, Park SY, Kim R, et al. Identification and Functional Analysis of the Fusaricidin Biosynthetic Gene of Paenibacillus Polymyxa E681[J]. Biochem Biophys Res Commun,2008,365(1):89-95.
    [33]Li J, Beatty PK, Shah S, et al. Use of PCR-Targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl Environ Microbiol,2007,73(11):3480-3489.
    [34]Wallace BA. Structure of gramicidin A[J]. Biophys. J.,1986,49(1):295-306.
    [35]Wojciechowska H, Konitz A, Borowski E. The antibiotic edeine[J]. Int J Pept Protein Res,2009,26(3):279-293.
    [36]Tamehiro N, Okamoto-Hosoya Y, Okamoto S, et al. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168[J]. Antimicrob Agents Chemother,2002,46(2):315-320.
    [37]He HY, Silosuh LA, Handelsman J, et al. Zwittermicin-A, an antifungal and plant-protection agent from Bacillus cereus[J]. Tetrahedron Lett,1994,35(16): 2499-2502.
    [38]Silo-Suh LA, Stabb EV, Raffel SJ, et al. Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus[J]. Curr Microbiol,1998,37(1):6-11.
    [39]Broderick NA, Goodman RM, Raffa KF, et al. Synergy between zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera Lymantriidae)[J]. Environ Entomol,2000,29(1):101-107.
    [40]Hilton MD, Alaeddinoglu NG, Demain AL. Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino-acid pathway[J]. J Bacteriol, 1988,170(1):482-484.
    [41]Inaoka T, Takahashi K, Ohnishi-Kameyama M, et al. Guanine nucleotides guanosine 5'-diphosphate 3'-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis[J]. J Biol Chem,2003,278(4): 2169-2176.
    [42]Chmara H. Inhibition of glucosamine synthase by bacilysin and anticapsin[J]. J Gen Microbiol,1985,131(Feb):265-271.
    [43]Stein T, Vater J, Kruft V, et al. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates[J]. J Biol Chem,1996, 271(26):15428-15435.
    [44]Stachelhaus T, Huser A, Marahiel MA. Biochemical characterization of peptides carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases[J]. Chem Biol,1996,3(11):913-921.
    [45]Ehmann DE, Trauger JW, Stachelhaus T, et al. Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases[J]. Chem Biol,2000,7(10):765-772.
    [46]Quadri LEN, Weinreb PH, Lei M, et al. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases[J]. Biochemistry,1998,37(6):1585-1595.
    [47]Kohli RM, Trauger JW, Schwarzer D, et al. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases[J]. Biochemistry,2001,40(24):7099-7108.
    [48]Trauger JW, Kohli RM, Mootz HD, et al. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase[J]. Nature,2000,407(6801):215-218.
    [49]Mootz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular nonribosomal peptide synthetases[J]. Chem BioChem,2002,3: 490-504.
    [50]Mulligan CN, Yong RN, Gibbs BF, et al. Metal removal from contaminated soil and sediments by the biosurfactant surfactin[J]. Environ Sci Technol,1999,33(21): 3812-3820.
    [51]Moran AC, Olivera N, Commendatore M, et al. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9[J]. Biodegradation,2000,11(1):65-71.
    [52]Vollenbroich D, Ozel M, Vater J, et al. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis[J]. Biologicals,1997, 25(3):289-297.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.