荧光假单胞菌抗铜基因簇的表达调控及其致病性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CopRS/CopABCD是细菌用以维持铜内环境稳定的一个系统,虽然已在荧光假单胞菌(Pseudomonas fluorescens)中发现了CopRS/CopABCD系统的同源物,但其潜在的功能还未知。本实验在一个鱼类致病菌P. fluorescens(TSS)中鉴定到了一个基因簇,由copR、copS、copC和copD组成,但缺乏copAB。copR、copS、copC和copD基因的敲除实验发现copRSCD基因簇与TSS抗铜性相关,而且copRS操纵子和copCD操纵子在转录水平上受亚抑制水平的铜诱导。双元调控系统中的调控蛋白CopR不仅激活copCD表达,而且还激活copRS的表达。凝胶滞缓实验显示CopR能直接与copCD和copRS的启动子区域结合。干扰copR的正常表达不仅影响细菌的生长,而且还影响到细菌生物膜的形成、对鱼的侵染力和在组织中的存活力。本实验还筛选到一个CopR的突变体C104,该突变体因缺失N端的信号接受域而成为一个具有组成性活性的调控蛋白,C104在TSS中表达时导致菌株的毒力降低。本实验所发现的P. fluorescens CopR与细菌致病力之间的关系以前未见报道。
CopRS/CopABCD is one of the known systems that control copper homeostasis in bacteria. Though CopRS/CopABCD homologues are found to exist in Pseudomonas fluorescens, the potential role of this system in P. fluorescens has not been investigated. In this study a genetic cluster, consisting of copR, S, C, and D but lacking copAB, was identified in a pathogenic P. fluorescens strain (TSS) isolated from diseased fish. The copRSCD cluster was demonstrated to be required for full copper resistance by knockout of copR, copS, copC and copD. The copRS operon and copCD operon were regulated at the transcription level by Cu. Expression of copCD is regulated directly by the two-component response regulator CopR, which also regulates its own expression. From the exprement of EMSA, we found that CopR can interact directly with the promoter of copCD and copRS. Interruption of the regulated expression of copR affected bacterial growth, biofilm formation, and tissue dissemination and survival. A mutant CopR, which lacks the N-terminal signal receiver domain and is constitutively active, was found to have an attenuating effect on bacterial virulence when expressed in TSS. To our knowledge, this is the first report that suggests a link between CopR and bacterial pathogenicity in P. fluorescens.
引文
1 R.E布坎南, N.E吉本斯等编,中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.伯杰细菌鉴定手册[M].北京:科学出版社, 1984
    2 Palleroni N J, Bradbury J F. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol, 1993, 43(3): 606-609
    3 Silby M W,Levy S B. Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. J Bacteriol, 2004, 186(21): 7411-7419
    4 Siddiqui I A, Haas D, Heeb S. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol, 2005, 71(9): 5646-5649
    5 Ciesielski S, Cydzik-Kwiatkowska A, Pokoj T, et al. Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J Appl Microbiol, 2006, 101(1): 190-199
    6 Takenaka S, Tonoki T, Taira K, et al. Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways. Appl Environ Microbiol, 2007, 73(6): 1797-1802
    7 Newman D J, Cragg G M. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem, 2004, 11(13): 1693-1713
    8 Carvalho M F, Ferreira Jorge R, Pacheco C C, et al. Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol, 2005, 7(2): 294-298
    9 Sigee D C, Al-Rabaee R H. Nickel toxicity in Pseudomonas tabaci: Single cell and bulk sample analysis of bacteria cultured at high cation levels. Protoplasma, 1986, 130(2): 171-185
    10 Ghabat R, Srivastava S. Effect of zinc on morphology and ultrastructure of Pseudomonas stutzeri RS 34. J Gen Appl Microbiol, 1994, 40(3): 265-270
    11 Waalwijk C, Dullemans A, Maat C. Construction of a bioinsecticidal rhizosphere isolate of Pseudomonas fluorescens. FEMS Microbiol Lett, 1991, 77(2-3): 257-264
    12 Gilligan P H, Whittier S, Murray P R, et al. Manual of clinical microbiology. Washington, DC: American Society of Microbiology, 1995: 509-519
    13 Von Graevenitz A, Weinstein J. Pathogenic significance of Pseudomonas fluorescens and Pseudomonas putida. Yale J Biol Med, 1971, 44(3): 265
    14 Anderson M, Davey R. Pseudobacteraemia with Pseudomonas fluorescens. Med J Aust, 1994,
    160(4): 233-234
    15 Murray A E, Bartzokas C A, Shepherd A J, et al. Blood transfusion-associated Pseudomonas fluorescens septicaemia: is this an increasing problem? J Hosp Infect, 1987, 9(3): 243-248
    16 Zervos M,Nelson M. Cefepime versus ceftriaxone for empiric treatment of hospitalized patients with community-acquired pneumonia. Antimicrob Agents CH, 1998, 42(4): 729-733
    17 Hessen M T, Ingerman M J, Kaufman D H, et al. Clinical efficacy of ciprofloxacin therapy for gram-negative bacillary osteomyelitis. Am J Med, 1987, 82(4A): 262-265
    18 Hsueh P R, Teng L J, Pan H J, et al. Outbreak of Pseudomonas fluorescens bacteremia among oncology patients. J Clin Microbiol, 1998, 36(10): 2914-2917
    19胡丽娟.假单胞菌(Pseudomonas)芳香族化合物降解基因的研究.四川师范大学硕士论文, 2001.
    20 Canovas D, Cases I, De Lorenzo V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol, 2003, 5(12): 1242-1256
    21 Taghavi S, Mergeay M, Nies D, et al. Alcaligenes eutrophus as a model system for bacterial interactions with heavy metals in the environment. Res Microbiol, 1997, 148(6): 536-551
    22 Cooksey D A. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev, 1994, 14(4): 381-386
    23 Cha J S,Cooksey D A. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A, 1991, 88(20): 8915-8919
    24 Gupta A, Matsui K, Lo J F, et al. Molecular basis for resistance to silver cations in Salmonella. Nat Med, 1999, 5(2): 183-188
    25 Navarro C, Wu L F, Mandrand-Berthelot M A. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol, 1993, 9(6):1181-1191
    26 Jubier-Maurin V, Rodrigue A, Ouahrani-Bettache S, et al. Identification of the nik gene cluster of Brucella suis: regulation and contribution to urease activity. J Bacteriol, 2001, 183(2): 426-434
    27 Maupin-Furlow J A, Rosentel J K, Lee J H, et al. Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J Bacteriol, 1995, 177(17): 4851-4856
    28 Strausak D, Solioz M. CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem, 1997, 272(14): 8932-8936
    29 Cobine P, Wickramasinghe W A, Harrison M D, et al. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett, 1999, 445(1): 27-30
    30 Alvarez A H, Moreno-Sanchez R, Cervantes C. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol, 1999, 181(23): 7398-7400
    31 Rosen B P. Biochemistry of arsenic detoxification. FEBS Lett, 2002, 529(1): 86-92
    32 Prithivirajsingh S, Mishra S K, Mahadevan A. Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3. Biochem Biophys Res Commun, 2001, 280(5): 1393-1401
    33 Neyt C, Iriarte M, Thi V H, et al. Virulence and arsenic resistance in Yersiniae. J Bacteriol, 1997, 179(3): 612-619
    34 Schmidt T, Schlegel H G. Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol, 1994, 176(22): 7045-7054
    35 Franke S, Grass G, Nies D H. The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology, 2001, 147(Pt 4): 965-972
    36 Outten F W, Huffman D L, Hale J A, et al. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem, 2001, 276(33): 30670-30677
    37 Wang C L, Michels P C, Dawson S C, et al. Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl Environ Microbiol, 1997, 63(10): 4075-4078
    38 Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science, 1994, 264(5157): 382-388
    39 Saier M H, Jr., Tam R, Reizer A, et al. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol, 1994, 11(5): 841-847
    40 Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol, 1996, 178(20): 5853-5859
    41 Hassan M T, van der Lelie D, Springael D, et al. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene, 1999, 238(2): 417-425
    42 Perron K, Caille O, Rossier C, et al. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem, 2004, 279(10): 8761-8768
    43 Liesegang H, Lemke K, Siddiqui R A, et al. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol, 1993, 175(3): 767-778
    44 Mergeay M, Nies D, Schlegel H G, et al. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol, 1985, 162(1): 328-334
    45 Nies D, Mergeay M, Friedrich B, et al. Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol, 1987, 169(10): 4865-4868
    46 Ryan R P, Ryan D J, Sun Y C, et al. An acquired efflux system is responsible for copper resistance in Xanthomonas strain IG-8 isolated from China. FEMS Microbiol Lett, 2007, 268(1): 40-46
    47 Stover C K, Pham X Q, Erwin A L, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 2000, 406(6799): 959-964
    48 Lee S W, Glickmann E, Cooksey D A. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol, 2001, 67(4): 1437-1444
    49 Stoyanov J V, Hobman J L, Brown N L. CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol, 2001, 39(2): 502-511
    50 Patzer S I, Hantke K. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem, 2000, 275(32): 24321-24332
    51 Chivers P T, Sauer R T. Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites. J Biol Chem, 2000, 275(26): 19735-19741
    52 Yethon J A, Vinogradov E, Perry M B, et al. Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. J Bacteriol, 2000, 182(19): 5620-5623
    53 Trevors J T. Copper resistance in bacteria. Microbiol Sci, 1987, 4(1): 29-31
    54 Brandt K K, Petersen A, Holm P E, et al. Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiol Ecol, 2006, 56(2): 281-291
    55 Bender C L, Cooksey D A. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol, 1986, 165(2): 534-541
    56 Sundin G W, Bender C L. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl Environ Microbiol, 1993, 59(4): 1018-1024
    57 Nakajima M G H T. Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato. . J Gen Plant Pathol, 2002, 68: 68–74
    58 Andersen G L, Menkissoglou O, Lindow S E. Occurrence and properties of copper-tolerant strains of Pseudomonas syringae isolated from fruit trees in California. Phytopathology (USA), 1991:
    59 Cooksey D A. Plasmid-determined copper resistance in Pseudomonas syringae from impatiens. Appl Environ Microbiol, 1990, 56(1): 13-16
    60 Rogers J S, Clark E, Cirvílleri G, et al. Cloning and characterization of genes conferring copper resistance in epiphytic ice nucleation-active Pseudomonas syringae strains. Phytopathology, 1994, 84(9): 891-897
    61 Adaskaveg J E, Hine R B. Copper tolerance zinc sensitivity of Mexican strains of Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of pepper. Plant Disease, 1985, 69(11): 993-996
    62 Bender C L, Malvick D K, Conway K E, et al. Characterization of pXV10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol, 1990, 56(1): 170-175
    63 Marco G M,Stall R E. Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitive to copper. Plant Disease, 1983, 67(7): 779-781
    64 Basim H, Minsavage G V, Stall R E, et al. Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol, 2005, 71(12): 8284-8291
    65 Lee Y A, Hendson M, Panopoulos N J, et al. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J Bacteriol, 1994, 176(1): 173-188
    66 Rouch D, Camakaris J, Lee B T, et al. Inducible plasmid-mediated copper resistance in Escherichia coli. J Gen Microbiol, 1985, 131(4): 939-943
    67 Tetaz T J,Luke R K. Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol, 1983, 154(3): 1263-1268
    68 Erardi F X, Failla M L, Falkinham J O, 3rd. Plasmid-encoded copper resistance and precipitation by Mycobacterium scrofulaceum. Appl Environ Microbiol, 1987, 53(8): 1951-1954
    69 Collard J M, Corbisier P, Diels L, et al. Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS Microbiol Rev, 1994, 14(4): 405-414
    70 Odermatt A, Suter H, Krapf R, et al. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem, 1993, 268(17): 12775-12779
    71 Ge Z, Hiratsuka K, Taylor D E. Nucleotide sequence and mutational analysis indicate that two Helicobacter pylori genes encode a P-type ATPase and a cation-binding protein associated with copper transport. Mol Microbiol, 1995, 15(1): 97-106
    72 Melchers K, Weitzenegger T, Buhmann A, et al. Cloning and membrane topology of a P type ATPase from Helicobacter pylori. J Biol Chem, 1996, 271(1): 446
    73 Bayle D, Wangler S, Weitzenegger T, et al. Properties of the P-type ATPases encoded by the copAP operons of Helicobacter pylori and Helicobacter felis. J Bacteriol, 1998, 180(2): 317-329
    74 Balamurugan K, Schaffner W. Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta, 2006, 1763(7): 737-746
    75 Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev, 2003, 27(2-3): 197-213
    76 Cooksey D A, Azad H R, Cha J S, et al. Copper Resistance Gene Homologs in Pathogenic and Saprophytic Bacterial Species from Tomato. Appl Environ Microbiol, 1990, 56(2): 431-435
    77 Cooksey D A, Azad H R. Accumulation of Copper and Other Metals by Copper-Resistant Plant-Pathogenic and Saprophytic Pseudomonads. Appl Environ Microbiol, 1992, 58(1): 274-278
    78 Solioz M, Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci, 1996, 21(7): 237-241
    79 Adaikkalam V, Swarup S. Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology, 2002, 148(Pt 9): 2857-2867
    80 Schwan W R, Warrener P, Keunz E, et al. Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol, 2005, 295(4): 237-242
    81 Odermatt A, Solioz M. Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem, 1995, 270(9): 4349-4354
    82 Rensing C, Fan B, Sharma R, et al. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A, 2000, 97(2): 652-656
    83 Reeve W G, Tiwari R P, Kale N B, et al. ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol, 2002, 43(4): 981-991
    84 Brown N L, Rouch D A, Lee B T. Copper resistance determinants in bacteria. Plasmid, 1992, 27(1): 41-51
    85 Bender C L, Cooksey D A. Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol, 1987, 169(2): 470-474
    86 Cooksey D A. Copper uptake and resistance in bacteria. Mol Microbiol, 1993, 7(1): 1-5
    87 Mellano M A, Cooksey D A. Induction of the copper resistance operon from Pseudomonas syringae. J Bacteriol, 1988, 170(9): 4399-4401
    88 Mills S D, Jasalavich C A, Cooksey D A. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol, 1993, 175(6): 1656-1664
    89 Teitzel G M, Geddie A, De Long S K, et al. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol, 2006, 188(20): 7242-7256
    90 Caille O, Rossier C, Perron K. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol, 2007, 189(13): 4561-4568
    91 Solioz M, Stoyanov J V. Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev, 2003,
    27(2-3): 183-195
    92 Petersen C, Moller L B. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene, 2000, 261(2): 289-298
    93 Munson G P, Lam D L, Outten F W, et al. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol, 2000, 182(20): 5864-5871
    94 Franke S, Grass G, Rensing C, et al. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol, 2003, 185(13): 3804-3812
    95 Yamamoto K, Ishihama A. Transcriptional response of Escherichia coli to external copper. Mol Microbiol, 2005, 56(1): 215-227
    96 Brown N L, Barrett S R, Camakaris J, et al. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol, 1995, 17(6): 1153-1166
    97 Rogers S D, Bhave M R, Mercer J F, et al. Cloning and characterization of cutE, a gene involved in copper transport in Escherichia coli. J Bacteriol, 1991, 173(21): 6742-6748
    98 Bron P A, Grangette C, Mercenier A, et al. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J Bacteriol, 2004, 186(17): 5721-5729
    99 Lowe A M, Beattie D T, Deresiewicz R L. Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol, 1998, 27(5): 967-976
    100 Zhang X X, Rainey P B. The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization. Mol Plant Microbe Interact, 2007, 20(5): 581-588
    101 Browse J, Xin Z. Temperature sensing and cold acclimation. Curr Opin Plant Biol, 2001, 4(3): 241-246
    102 Coote J G. Environmental sensing mechanisms in Bordetella. Adv Microb Physiol, 2001, 44: 141-181
    103 Groisman E A. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol, 2001, 183(6): 1835-1842
    104 Lois A F, Weinstein M, Ditta G S, et al. Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinately regulated by oxygen. J Biol Chem, 1993, 268(6): 4370-4375
    105 Stock J. Signal transduction: Gyrating protein kinases. Curr Biol, 1999, 9(10): R364-367
    106 Lukat G S, McCleary W R, Stock A M, et al. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci U S A, 1992, 89(2): 718-722
    107 Sambrook J, Russell D W. Molecular cloning: a laboratory manual. CSHL press, 2001
    108 Syn C K,Swarup S. A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal Biochem, 2000, 278(1): 86-90
    109 Zhang W W, Sun L. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl Environ Microbiol, 2007, 73(9): 2825-2831
    110 Sousa C, de Lorenzo V, Cebolla A. Modulation of gene expression through chromosomal positioning in Escherichia coli. Microbiology, 1997, 143 ( Pt 6): 2071-2078
    111 Ryden L G, Hunt L T. Evolution of protein complexity: the blue copper-containing oxidases and related proteins. J Mol Evol, 1993, 36(1): 41-66
    112 Sanger F, Coulson A R, Friedmann T, et al. The nucleotide sequence of bacteriophage phiX174. J Mol Biol, 1978, 125(2): 225-246
    113 Rouch D A, Brown N L. Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology, 1997, 143 ( Pt 4): 1191-1202
    114 Winsor G L, Lo R, Sui S J, et al. Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation. Nucleic Acids Res, 2005, 33(Database issue): D338-343
    115 Zhang X X, Rainey P B. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol, 2008, 10(12): 3284-3294
    116 Barre O, Mourlane F, Solioz M. Copper induction of lactate oxidase of Lactococcus lactis: a novel metal stress response. J Bacteriol, 2007, 189(16): 5947-5954
    117 Adaikkalam V, Swarup S. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain. Can J Microbiol, 2005, 51(3): 209-216
    118 Mo Z L, Peng X, Xiang M Y, et al. Construction and characterization of a live, attenuated esrB mutant of Edwardsiella tarda and its potential as a vaccine against the haemorrhagic septicaemia in turbot, Scophthamus maximus (L.). Fish Shellfish Immun, 2007, 23(3): 521-530
    119 Ho S N, Hunt H D, Horton R M, et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989, 77(1): 51-59
    120 Eagon R G. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J Bacteriol, 1962, 83: 736-737
    121 Rajashekara G, Covert J, Petersen E, et al. Genomic island 2 of Brucella melitensis is a major virulence determinant: functional analyses of genomic islands. J Bacteriol, 2008, 190(18): 6243-6252
    122 Ryan R, Ryan D, Dowling D. Multiple Metal Resistant Transferable Phenotypes in Bacteria as Indicators of Soil Contamination with Heavy Metals (6 pp). J Soils Sediments, 2005, 5(2): 95-100
    123 Ford T, Jay J, Patel A, et al. Use of ecotoxicological tools to evaluate the health of New Bedford Harbor sediments: a microbial biomarker approach. Environ Health Persp, 2005, 113(2): 186
    124 Mellano M A, Cooksey D A. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol, 1988, 170(6): 2879-2883
    125 Masami N, Masao G, Katsumi A, et al. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. actinidiae. Eur J Plant Pathol, 2004, 110(2): 223-226
    126 Saxena D, Joshi N, Srivastava S. Mechanism of copper resistance in a copper mine isolate Pseudomonas putida strain S4. Curr Microbiol, 2002, 45(6): 410-414
    127 Miller J H,Cold Spring Harbor L. Experiments in molecular genetics. Cold Spring Harbor Laboratory [Cold Spring Harbor], NY, 1972
    128 Voloudakis A E, Bender C L, Cooksey D A. Similarity between Copper Resistance Genes from Xanthomonas campestris and Pseudomonas syringae. Appl Environ Microbiol, 1993, 59(5): 1627-1634
    129 Magnani D, Barre O, Gerber S D, et al. Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol, 2008, 190(2): 536-545
    130 Mills S D, Lim C K, Cooksey D A. Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae. Mol Gen Genet, 1994, 244(4): 341-351
    131 Simms S A, Keane M G, Stock J. Multiple forms of the CheB methylesterase in bacterial chemosensing. J Biol Chem, 1985, 260(18): 10161-10168
    132 Kahn D, Ditta G. Modular structure of FixJ: homology of the transcriptional activator domain with the -35 binding domain of sigma factors. Mol Microbiol, 1991, 5(4): 987-997
    133 McCleary W R. The activation of PhoB by acetylphosphate. Mol Microbiol, 1996, 20(6): 1155-1163
    134 Blat Y,Eisenbach M. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry, 1994, 33(4): 902-906
    135 Aiba H, Nakasai F, Mizushima S, et al. Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, results in stimulation of its DNA-binding ability. J Biol Chem, 1989, 106(1): 5-7
    136 Zhang M, Sun K, Sun L. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiology, 2008, 154(Pt 7): 2060-2069
    137 Ha U H, Kim J, Badrane H, et al. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol, 2004, 54(2): 307-320
    138 Harrison J J, Turner R J, Joo D A, et al. Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrob Agents Ch, 2008, 52(8): 2870-2881
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.