p18基因在大肠杆菌及酵母中的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
p18基因全长3 232 bp,含有2个外显子,编码区位于第1外显子内编码522bp,GC含量高达90%。以往研究表明,p18基因与多种肿瘤的发生有关。生物信息学分析,P18蛋白分子量约18.9kD,存在4次跨膜的结构域。通过胶体金定位分析,确定P18蛋白亚细胞定位于内质网和线粒体。由于p18基因编码区高GC含量和P18蛋白的高疏水性,p18基因的可溶性表达存在着很大的困难。
     本研究根据生物信息学分析P18蛋白的疏水性和二级结构特点,构建了p18基因不同的截短体,尝试p18基因截短体的可溶性表达。根据外源基因与一些易表达的序列共翻译能大幅提高表达水平,将目的基因构建到谷胱甘肽转硫酶(GST)融合表达的载体中形成重组体,在大肠杆菌和酵母中摸索最佳表达条件,最终表达出携带目的蛋白的GST融合蛋白。进一步利用谷胱甘肽-琼脂糖亲和层析对目的蛋白进行纯化。
     实验结果表明,转入重组体pGEX-6P-1-p18-280、pGEX-6P-1-p18-397、pGEX-6P-1-p18-433的大肠杆菌Rosetta(DE3)菌株在37℃、1mM IPTG浓度下能够大量表达,但经可溶性分析得知,这些表达的蛋白绝大部分为包涵体。优化诱导条件后,转入上述重组体的大肠杆菌Rosetta(DE3)菌株在16℃、0.1mM IPTG浓度下获得了可溶性表达。转入重组体pYES2-GST-p18的酵母INVSc1在30℃、2%半乳糖诱导72h条件下,经纯化也得到了可溶性的GST-P18融合蛋白,但其表达量远没有在大肠杆菌中表达量高。
     综合分析上述结果可以得知,在大肠杆菌中低温诱导GST融合蛋白是获得重组蛋白可溶性表达的有效方法,但表达量受目的基因的长度、GC含量和二级结构等因素影响。而重组体在酿酒酵母中进行诱导表达虽然可获得较长片段的基因表达,但其表达量过低。为满足进一步实验的需求,仍需不断优化外源基因在酵酒酵母中的表达条件。
P18 gene is 3 232 bp in length, containing two exons, code area located in exon 1 coding 522bp, GC content as high as 90%. Past research has shown that p18 gene involves in the variety of tumor occurrence. Bioinformatics analyses that subcellular localization of P18 protein is majorly in endoplasmic reticulum and mitochondria. The molecular weight of P18 protein is about 18.9kD. There are four transmembrane domains. Because of high GC content and high hydrophobicity, soluble p18 protein is difficult to express.
     According to bioinformatics analysis of the P18 protein hydrophobic and secondary structural features, we construct p18 truncated gene and try to express soluble truncated P18 protein. As exogenous genes coexpress with some genes that can easily express, expression level will increase. Constructing recombinant protein by inserting the target gene into glutathione S-transferase (GST) fusion expression vector, in E. coli and yeast searching the best method to express, finally express the target protein GST fusion protein. Further, purify the target protein using affinity chromatography.
     Experimental results show that E.coli Rosetta(DE3), the transformed recombinant pGEX-6P-1-p18-280 or pGEX-6P-1-p18-397 or pGEX-6P-1-p18-433, cultivating at 37°C , inducing in 1mM IPTG medium can express fusion protein, but being informed by the analysis of solubility, the majority of these proteins are inclusion body. After optimization induced conditions, E.coli Rosetta (DE3), transformed the same recombinant, cultivating at 16℃, inducing in 0.1mM IPTG medium can obtain soluble expression. S.cerevisiae INVSc1, transfected recombinant pYES2-GST-p18, cultivating at 30℃, induced at 2% galactose for 72h, can obtain soluble P18-GST fusion proteins. But the fusion protein expressed in S. cerevisiae is far less than being expressed in E.coli.
     These results show that it is an effective means to express soluble GST fusion protein in E. coli at low temperature. However, the expression of target genes affect by the factors such as the length of GC content and the secondary structure. The recombinant could be expressed in S.cerevisiae, but the amount of fusion protein is too low. To meet the demand for further experiments, it still will be optimized expression condition in S. cerevisiae.
引文
1朱红裕,李强.外源蛋白在大肠杆菌中的可溶性表达策略.过程工程学报, 2006,第6卷,第1期: 150~155.
    2 R. S. Donovan, C. W. Robinson, B. R.Glick Review: Optimizing Inducer and Culture Conditions for Expression of Foreign Protein under the Control of the Lac Promoter J. Ind. Microbiol., 1996,16: 145~154.
    3 C. H. Schein, M. H. M. Noteborn. Formation of Soluble Recombinant Proteins in Escherichia coli is Favored by Lower Growth Temperatures J. Bio-technology, 1988, 6: 291~294.
    4 C. H. Schein, E. Boix, M. Haugg, et al. Secretion of Mammalian Ribonucleases from Escherichia-coli Using the Signal Sequence of Murine Spleen Ribonuclease J. Biochem. J., 1992, 283: 137~144.
    5 P. Carter, R. F. Kelley, M. L. Rodrigues, et al. High-level Escherichia-coli Expression and Production of a Bivalent Humanized Antibody Fragment [J]. Bio-technology, 1992, 10: 163~167.
    6吕冰洁.肿瘤相关新基因结构及功能研究的方法和策略.哈尔滨医科大学博士学位论文. 2004:100~101
    7王瑶,吴玉水,兰风华,等. NADH-细胞色素b5还原酶在大肠杆菌中的表达及其产物的纯化.中国生物化学与分子生物学报,2000 ,16 (4) :452~457.
    8 P. Caspers, M. Stieger, P. Burn. Overproduction of Bacterial Chaperones Improves the olubility of Recombinant Protein Tyrosine Kinase in Escherichia coli. Cell. Mol. Biol., 1994, 40: 635~644.
    9 S. C. Lee, P. O. Olins. Effect of Overproduction of Heat Shock Chaperons GroESL and DnaK on Human Procollagenase Production in Escherichia coli. J. Biol. Chem., 1992, 267: 2849~2852.
    10 S. Yoon, R. Hirata, Da Silva A, et al. Cloning and Expression of Soluble Recombinant Protein Comprising the Extracellular Domain of the Human Type I Interferon Receptor 2c Subunit (IFNAR-2c) in E-coli. Biotechnol. Lett., 2002, 24(17): 1443~1448.
    11 C. L. Gordon, S. K. Sather, S. Casjens, et al. Selective in vivo Rescue by GroEL/GroES of Thermolabile Folding Intermediate to Phage P22 Structural Proteins. J. Biol. Chem., 1994, 269: 27941~27951.
    12 E. L. Schneider, J. G. Thomas, J. A. Bassuk, et al. Manipulating the Aggregation andOxidation of Human SPARC in the Cytoplasm of Escherichia coli. Nat. Biotechnol., 1997, 15: 581~585.
    13 T. Yasukawa, C. Kanei-Ishii, T. Maekawa, et al. Increase of Solubility of Foreign Proteins in Escherichia coli by Coproduction of the Bacterial Thioredoxin. J. Biol. Chem., 1995, 270: 25328~25331.
    14 J. G. Thomas, F. Baneyx. Protein Folding in the Cytoplasm of Escherichia coli Cells Overproducing Heat-shock Proteins. J. Biol. Chem., 1996, 271: 11141~11147.
    15 K. Jiro, E. Yasunori. Improvement of Productivity of Active Form of Glutamate Racemase in Escherichia coli by Coexpression of Folding Accessory Proteins. Biochem. Eng., 2002, 10: 39~45.
    16 P. T. Kallio, J. E. Bailey. Intracellular Expression of Vitreoscilla Hemoglobin (VHb) Enhances Total Protein Secretion and Improves the Production ofα-Amylase and Neutral Protease in Bacillus subtilis. Biotechnol. Prog., 1996, 12: 31~39.
    17 F. J. M. Mergulhao, G. A. Monteiro, G. Larsson, et al. Evaluation of Inducible Promoters on the Secretion of a ZZ-proinsulin Fusion Protein. Biotechnol. Appl. Biochem., 2003, 38: 87~93.
    18 F. Baneyx. Recombinant Protein Expression in Escherichia coli. Curr. Opin. Biotechnol., 1999, 10: 411~421.
    19 J. A. Vasina, F. Baneyx. Expression of Aggregation-prone Recombinant Proteins at Low Temperatures: A Comparative Study of the Escherichia coli cspA and tac Promoter Systems Protein Express. Purific., 1997, 9: 211~218.
    20 J. M. Clement, M. Jehanno, O. Popescu, et al. Expression and Biological Activity of Genetic Fusions between MalE, the Maltose Binding Protein from Escherichia coli and Portions of CD4, the T-Cell Receptor of the AIDS Virus. Protein Express. Purific., 1996, 8: 319~331.
    21 M. D. Spangfort, H. Ipsen, S. H. Sparholt, et al. Characterization of Purified Recombinant Bet v 1 with Authentic N-Terminus, Cloned in Fusion with Maltose-binding Protein. Protein Express. Purific., 1996, 8: 365~373.
    22 A. K. Mohanty, M. C. Wiener. Membrane Protein Expression and Production: Effects of Polyhistidine Tag Length and Position. Protein Express. Purific., 2004, 33: 311~325.
    23 C. Lee, S. G. Lee, S. Takahashi, et al. The Soluble Expression of the Protein Using Fusion Parters: Thioredoxin, Maltose Binding Human Rennin Binding a Comparison of Ubiquitin, Protein and NusA. Biotechnol. Biopro. Eng., 2003, 8(2): 89~93.
    24 G. D. Vavis, C. Elisee, D. M. Newham, et al. New Fusion Protein Systems Designed to GiveSoluble Expression in Escherichia coli . Biotechnol. Bioeng.,1999, 65(4): 382~388.
    25 K. Terpe. Overview of Tag Protein Fusions: From Molecular and Biochemical Fundamentals to Commercial Systems. Appl. Microbiol. Biotechnol., 2003, 60: 523~533.
    26 W. L. Picking, J. A. Mertz, M. E. Marquart, et al. Cloning, Expression, and Affinity Purification of Recombinant Shigella Flexneri Invasion Plasmid Antigens IpaB and IpaC. Protein Express. Purific., 1996, 8: 401~408.
    27 H. E. Rosenberg. Isolation of Recombinant Secretory Proteins by Limited Induction and Quantitative Harvest. Biotechniques, 1998,24: 188~191.
    28 H. C. Huang, M. Y. Sherman, O. Kandror, et al. The Molecular Chaperone Dnaj Is Required for the Degradation of a Soluble Abnormal Protein in Escherichia coli. J. Biol. Chem., 2001, 276: 3920~3928.
    29贾向东,陈喜文,陈德,陈洁.谷胱甘肽S2转移酶Zeta类基因在酿酒酵母中的表达.遗传28(5): 551~556 ,2006
    30 J. L. Palacios, I. Zaror, P. Martinez, et al. Subset of Hybrid Eukaryotic Proteins is Exported by the Type I Secretion Systems of Erwinia chrysanthemi. Bacteriol., 2001, 183: 1346~1358.
    31 A. V. Kajava, S. N. Zolov, A. E. Kalinin, et al. The Net Charge of the First 18 Residues of the Mature Sequence Affects Protein Translocation Across the Cytoplasmic Membrane of Gram-negative Bacteria J. Bacteriol, 2000, 182: 2163~2169.
    32 H. J. Nielsen, J. Engelbrecht, S. Brunak, et al. Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of Their Cleavage Sites. Protein Eng., 1997, 10: 1~6.
    33 H. Bothmann, A. Pluckthun. The Periplasmic Escherichia coli Peptidylprolyl Cistrans-isomerase FkpA I Increased Functional Expression of Antibody Fragments with and without Cis-proteins. J. Biol. Chem., 2000, 275: 17100~17105.
    34 J. C. Joly, W. S. Leung, J. R. Swartz. Overexpression of Escherichia coli Oxidoreductases Increases Recombinant Insulin-like Growth Factor I. Accumulation. Proc. Natl. Acad. Sci. USA, 1998, 95: 2773~2777.
    35 K. Nishihara, M. Kanemori, M. Kitagawa, et al. Chaperone Coexpression Plasmids: Differential and Synergistic Roles of DnaK?dnaJ?grpE and GroEL?groES in Assisting Folding of an Allergen of Japanese Cedar Pollen Cryj2 in Escherichia coli. Appl. Environ. Microbiol., 1998, 64: 1694~1699.
    36 J. E. Kane. Effects of Rare Codon Clusters on High Level Expression of Heterologous Proteins in Escherichia coli. Curr. Opin. Biotechnol., 1995, 6: 494~500.
    37 L. Holm. Codon Usage and Gene Expression. Nucl. Acid R., 1986, 14: 3075~3087.
    38 F. Bonekamp, H. Dalboge, H. Chiristensen, et al. Translation Rates of Individual Codons Are Not Correlated with Trna Abundance or with Frequencies of Utilization in Escherichia coli J. Bacteriol., 1989, 171: 5812~5816.
    39 Y. Guisez, J. Robbens, Remaut E, et al. Folding of the MS2 Coat Protein in Escherichia coli Is Modulated by Translational Pauses Resulting from mRNA Secondary Structure and Codon Usage: A Hypothesis J. Theor. Biol., 1993, 162: 243~252.
    40 M. Piatak, J. A. Lane, W. Laird, et al. Expression of Soluble and Fully Functional Ricin A Chain in Escherichia coli Is Temperature Sensitive J. Biol. Chem., 1988, 263: 4837~4843.
    41 E. Kopetzki, G. Schumacher, P. Buckel. Control of Formation of Active Soluble or Inactive Insoluble Baker′s Yeastα-Glucosidase PI in Escherichia coli by Induction and Growth Conditions Mol. Gen. Genet., 1989, 216: 149~155.
    42 C. H. Schein, M. H. M. Noteborn. Formation of Soluble Recombinant Proteins in Escherichia coli Is Favored by Lower Growth Temperatures. Bio-technology, 1988, 6: 291~294.
    43 D. R. Loyd. V. Leelavatcharamas, A. N. Emery, et nz. The role of cell cycle in determining gene expression and productivity in CH0 cells, Cytotechnolegy. 1999,30: 49~57.
    44 J. J. Clare. F. B. Rayment, S. P. Ballantine,et a1. High·level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene.Biotechnology,1991,9:455~460.
    45 R. Ye, J. H. Kim, B. G. Kim, S. Szarka, E. Sihota, S. L. Wong. High– level secretary production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol Bioeng, 1999, 62: 86~96.
    46何炜,袁汉英,高卜渝,等.人类超氧化物歧化酶在酵母系统中的高效表达.复旦学报:自然科学版, 2004,43 (2) : 156.
    47 A. Huttenhofer and H. F. Noller.Footprinting mRNA ribosome complexes with chemical probes.EMBO J. 1994.13:3892~3901.
    48 M. A. Sorenson, M. P. Arlotto,and M. R. Waterman. Expression and enzymatic activity of recombinant cytochrome P450 17α-hydroxylase in E.coli.Proc.Natl.Acad.Sci. 1991. 88:5597~5601.
    49 A. I. Derman, W. A. Prinz, D. Belin, et al. Mutations that Allow Disulfide Bond Formation in the Cytoplasm of Escherichia-coli. Science, 1993, 262: 1744~1747.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.