端粒相关蛋白编码基因的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
端粒酶与肿瘤的发生有十分密切的联系。研究表明,大多数肿瘤组织端粒酶阳性率达85-90%,除种系细胞、干细胞、淋巴细胞外,正常组织多为阴性。在某些癌前病变中亦发现有端粒酶表达,且其活性随着病变恶性程度的演进而增高。端粒酶与患者肿瘤大小、组织分化、临床分期、预后可能有一定关系,高表达者其预后可能不良。hTERT是人端粒酶催化亚单位,与hTR构成端粒酶的基本核心,以hTR为模板,延长端粒。hTERT mRNA仅存在于永生化或肿瘤细胞中,对端粒酶活性起关键性调控作用。如能发现与hTERT相互作用的端粒相关蛋白将有利于了解其生物学功能、进一步阐述端粒酶的生物学作用及其在永生化或肿瘤细胞中作用的分子机制,可为肿瘤、衰老的发生及防治奠定重要的理论基础。为此,我们采用酵母双杂交技术筛选cDNA文库,以期获得新的端粒相关蛋白。主要研究内容和结果如下:
     1.使用缺陷混合氨基酸[色氨酸(Trp),亮氨酸(Leu),组氨酸(His)]检测酵母菌株AH109、Y187营养需求。结果显示:AH109、Y187酵母菌株基因表型稳定,在全培养基(YPD)中生长良好,但不能在单缺陷性培养基(-Leu,-Trp,-His)中生长。将AH109、Y187酵母菌株单菌落划线于含有0、2.5、5、7.5、10、12.5、15mM不同3-AT浓度的SD/-His琼脂平板上,30℃培养3~4天。AH109、Y187酵母菌株不能生长。提示AH109、Y187酵母菌株无His渗漏表达,在筛选cDNA文库时无须加入3-AT。采用氯化钙法将酵母双杂交质粒pGBKT7,pGBKT7-53,pGBKT7-Lam,pGADT7,pGADT7-T,Pcl-1等质粒转化入E.coli DH5α中,并经酶切鉴定证实,为cDNA文库筛选提供了基本条件。
     2.采用DNA重组技术将hTERT cDNA定向克隆入DNA结合域
    
     第三军医大学博士学位论文 端粒+以(上白红d码基1习的克隆及功能分折
     山NABD)载体pGBKT7的多克隆位点 ECOR、NOt,并经酶切鉴定
     证实成功构建了人端粒酶催化亚单位诱饵融合蛋白表达载体pGBKT7-
     hhRT。醋酸理法将 pGBKT7-hTERT转入酵母菌株 AH109,涂于 SD/-Trp平
     板,30℃培养Zot天,转化株生长良好,显示pGBKT7-hhRT融合蛋白对酵
     母细胞生长无毒性作用。p-半乳糖昔酶菌落滤膜影印分析显示pGBKT7-
     hhRT融合蛋白无自身激活报告基因的活性。Western blot进一步证实在约
     140KD处见一特异条带,显示pGBKT7-hTERT融合蛋白能够在AH109酵母
     菌株中有效稳定表达。所构建的端粒酶催化亚单位诱饵融合蛋白表达载体
     完全符合筛选CDNA文库的要求,从而为获得与hhRT相互作用的端粒相
     关蛋白分子奠定了基础。
     3.检测人睾丸cDNA文库转化株Y187效价为4.5f,适
     合CDNA文库筛选的要求。采用酵母交配法将pGBKT7-hTERT转化株
     AH109与人睾丸cDNA文库转化株Y187交配,转化菌株涂于SD/工eu/-
     T叩-His平板,30C培养6~7天。阳性克隆转涂于SD/-Ade/-Leu/-切/-His
     平板,30oC培养 8叶0天。获得 Ade\ Leu+、Tp\ His邓性克隆 28个。
     日-半乳糖苦酶菌落影印滤膜分析获得Ade+、His+、LacZ+阳性克隆12个。
     将12个Ade\His\LacZ+阳性克隆涂于SD/Leu/-切/His平板,30℃
     培养 sed天,反复培养 3次,再次涂于 SD/叭de/工eu/-Tp/爿is平板,30
     ℃继续培养8~10天,以弃除非相关质粒。提取12个Ade+、His+、LacZ+
     阳性酵母细胞质粒,与pGBKT7-hTERT、pGBKT7、pGBKT7-Lain、pGADT7
     等质粒互换酵母菌株后进行交配实验。p-半乳糖昔酶菌落影印滤膜分析显
     示有5个文库质粒具有自身激活报告基因的作用,予以弃除。有7个文库
     质粒转化株为真阳性克隆,将真阳性克隆质粒进行测序。其中有2个序列
     重复。所测6个真阳性克隆质粒cDNA序列通过Internet利用Blast软件与
     GenBank进行同源序列比较,结果获得6个己收录人cDNA序列,它们分
     别是:T-STAR,PAWR,Imidazoline receptor candidate,SMARB,LOXL3,
     HKR3。至今尚未见这一组可能是端粒相关蛋白分于与端粒、端粒酶相关
     研究报道,这一新的发现无疑为进一步研究端粒酶全酶的结构、生物学功能
     IX
     z
    
    第三军医大学博士学位论文 端2粒相关蛋白聊码基因的克隆及功能分析
    及其调控机制奠定了良好的实验基础。
     4.为获取真正的人端粒相关蛋白编码基因,我们采用哺乳细胞双杂交
    技术以确证在哺乳细胞内T-STAR与hTERT密切关系。首先,采用DNA
    重组技术构建DNA-BD载体(pNfhTERT人AD载体(pVP16-TETAR人
    将盯*又T山*A克隆入载体质粒邮的多克隆位点**RI:以k。RI。
    NOt双酶切鉴定 DNA序列的方向,获取正义重组体 pM上TERT。将
    T-STAR CDNA定向克隆入载体质粒 PCDNA3?
Tumorigenesis is cogently associated with the activation of telomerase. It was exhibited that the telomerase was expressed in 85-90% of human tumors, but not in the majority of normal tissues except for some stem cell ,lymphocyte and germline cells. The expression of telomerase was also identified in some precancerous lesions and its level would be increased with the malignant progression. There might be some relationship between telomerase activity and tumor size, differention, clinical stage and prognosis. Patients would have a poor prognosis if they suffered from tumors with high level of telomerase activity. It was indicated in the in vitro studies that both hTERT( which played a key role in the activation of telomerase)and human telomere RNA(hTR) composed basic core of telomerase. These subunits acted in concert to elongate telomeres by reading from the RNA template sequence carried by the RNA subunit and synthesizing a complementary DNA strand. hTERT mRNA, in contrast to other subunits of telomerase, exists only in immortal or tumor cells. If we could find additional telomere-associated proteins which interact with hTERT, it would be advantageous for us to elucidate the biological function 昦nd molecular mechanism of telomerase in immortal and/or tumor cells. This would establish a sound theoretical basis for the tumor genesis, aging and prevention. Therefore yeast two-hybrid method was employed in the study to screen cDNA libraries with hTERT as bait. The main results are as follows:
    1. Dropout mixed amino acids [tryptophan(Trp), leucine(Leu), histidine (His)] were employed to detect the nutritional requirement of yeast strains
    ' Supported by the National Natural Science Foundation of China (No. 39980010)
    IV
    
    
    
    AH109, Y187. It was indicated that the gene phenotypes of AH109 and Y187 yeast strains were stable and the strains grew well in the full nutritional supplement(adenine supplemented YPD) but did not in the single dropout supplements(-Leu, -Trp and -His). When the single strain of AH109 and Y187 yeasts was streaked in the SDAHis agar plates with different concentrations of 3-AT (0, 2.5, 5, 7.5, 10, 12.5, 15 mM) and was cultured at 30癈 for 3-4 days. There was no growth of AH 109 and Y187 yeast strains in the culture, which indicated that there was no leak expression of His in AH109 and Y187 and that 3-AT was unnecessary in the screening of cDNA libraries. The plasmids of yeast two hybrid system ( pGBKT7,pGBKT7-53, pGBKT7-Lam, pGADT7, pGADT7-T, Pcl-1) were transformed into the E. coli DH5 a by calcium chlorate and identified by restriction endonuclease. This provide essential conditions for the screening of cDNA libraries.
    2. hTERT cDNA was directly cloned into the multiclone sites EcoRI, NotI of pGBKT7 vector of DNA binding domain (DNA-BD) by recombinant technique. The recombinant of human telomerase catalytic subunit bait fusion gene, which was named as pGBKT7-hTERT, was identified by restriction endonuclease EcoR I and Not I. pGBKT7-hTERT was transformed into yeast strain AH109 by the method of Li acetate and the transformed strains were streaked onto SDATrp plate and grew well after cultured at 30癈 for 2-4 days. This implied that pGBKT7-hTERT bait fusion protein had no toxic effects on AH 109. It was exhibited in the print analysis of P -galactosidase colony-lift filter assay that there was no autonomous activated reporter gene in pGBKT7-hTERT fusion protein. A specific band was identified in 140KD during electrophoresis by Western blot. This indicated that pGBKT7-hTERT fusion protein could be stably expressed in AH 109 yeast strain. The constructed pGBKT7-hTERT satisfactorily fulfilled the requirement of the screening of cDNA libraries.
    3. The human testicle cDNA library transformed strain Y187 viability was
    
    
    
    determined to be 4.5 ~ 5X 107cfu/ml, which was coincided with the screening of cDNA libraries. The mating of pGBKT7-hTERT transformed strain AH 109 with human testicle cDNA library transformed strain Y187 was made by yeast mating method. And the t
引文
1. Izumi H, Hara T, Oga A,et al. High telomerase activity correlates with the stabilities of genome and DNA ploidy in renal cell carcinoma. Neoplasia 2002; 4(2):103-11
    2. Mu J, and Wei LX. Telomere and telomerase in oncology. Cell Res 2002; 12(1):1-7
    3. Boklan J, Nanjangud G, MacKenzie KL, et al. Limited proliferation and telomere dysfunction following telomerase inhibitionin immortal murine fibroblasts. Cancer Res 2002;62(7):2104-14
    4.陈兵,刘为纹,房殿春。端粒酶研究近况 世界华人消化杂志;2001;9(4);441-446
    5. Schnabl B, Choi YH, Olsen JC, et al. Immortal activated human hepatic stellate cells generated by ectopic telomerase expression. Lab Invest 2002;82(3):323-33
    6. Darimont C, Avanti O, Tromvoukis Y, et al. SV40 T Antigen and Telomerase Are Required to Obtain Immortalized Human Adult Bone Cells without Loss of the Differentiated Phenotype. Cell Growth Differ 2002;13(2):59-67
    7. Helder MN, Wisman GB, van der Zee GJ.Telomerase and telomeres: from basic biology to cancer treatment. Cancer Invest 2002;20(1):82-101
    8. Drayton S, Peters G. Immortalisation and transformation revisited. Curr Opin Genet Dev 2002;12(1):98-104
    9. Allain JE, Dagher I, Mahieu-Caputo D, et al. Immortalization of a primate bipotent epithelial liver stem cell. Proc Natl Acad Sci U S A 2002;99(6):3639-44
    10. Fossel M. Cell Senescence in Human Aging and Disease. Ann N Y Acad Sci 2002 959:14-23
    
    
    11. Liu JP. Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J, 1999;13:2091-2104
    12. Allshire BC, Gosden JR, Cross SH, et al. Telomeric repeat from Tetrahymena Therophila cross hybridizes with human telomeres. Nature,1988;332:656
    13. Counter CW, Avilion AA, LeFeuvre CE, et al. Telomere shorting associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J, 1992, 11:1921
    14. Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res, 1991,256:271
    15. Harley CB, Vaziri H, Counter CM, et al. The telomere hypothesis of cellular ageing. Exp Gerontal, 1992,27:375
    16. Gottschling DE, Aparicio OM, Billington BL, et al. Position effect at S. cerevisiae telomeres: reversible repression of Pol Ⅱ transcription. Cell,1990; 63:751-762.
    17. Joseph AB, Ying Z, Jerry WS, et al. Telomere position effect in human cells. Science, 2001 ;292:2075-2077
    18. Metz T, Harris AW, and Adams JM. Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell,1995;82:29-36.
    19. Biessmann H, Walter MF, and Mason JM. Drosophila telomere elongation. Ciba Fndn. Symp, 1997;21:53-67
    20. Zakian VA. Strcture, function, and replication of Saccharomyces cerevisiae telomeres. Annu Rev Genet, 1996;30:141-172.
    21. Zakian VA, Runge K, Wang SS. How does the end begin? Formation and maintenance of telomeres in ciliates and yeast. Trends Genet, 1990; 6:12-16
    22. Bryan TM, Englezou A, Dalla-Pozza L, et al. Evidence for an alternative
    
    mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med, 1997;3:1271-1274.
    23. Morin GB. The human telomere terminal transferase engyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989; 59:521-529
    24. Autexier C, Pruzan R, Funk WD, et al. Reconstitution of human telomerase activity and identification of a minimal functional region of the human telomerase RNA. EMBO. 1996; 15:5928-5935
    25. Hathcock KS, Hemann MT, Opperman KK, et al. Haploinsufficiency of mTR results in defects in telomere elongation. Proc Natl Acad Sci U S A 2002;99(6):3591-6
    26. Collins K, Kobayashi R, and Greider CW. Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell. 1995;81:677-686
    27. Gandhi L, and Collins K. Interaction of recombination Tetrahymena telomerase proteins p80 and p95 with telomerase RNA and telomeric DNA substrates. Genes Dev. 1998; 12:721-733
    28. Linger J, and Cech TR. Purification of telomerase from Euplotes aediculatys requirement of a primer 3'overhang. Proc Natl Acad Sci USA,1996; 93:10712-10717
    29. Linger J, Hughes TR; Shevchenko A, et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 1997;276:561-567
    30. Counter CM, Meyerson M, Eaton EN, et al. The catalytic subunit of yeast telomerase. Proc Natl Acad Sci USA, 1997;94:9202-9207
    31. Shore, D. RAPl: a protein regulator in yeast. Trends Genet, 1994; 10:408-412
    32. Cooper JP, Nimmo, ER, Allshire RC, et al. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature.
    
    1997;385:744-747
    33. Konkel LM, Enomoto S, Chamberlain EM, et al. A class of single-stranded telomeric DNA-binding proteins required for Raplp localization in yeast nuclei. Proc Natl Acad Sci USA, 1995;92:5558-5562
    34. Garvik B, Carson M, and Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol. 1995; 15:6128-6138
    35. VirtaPearlman V, Morrs DK, and Lundblad V. Estl has the properties of a single-stranded telomere end-binding protein. Genes Dev, 1996; 10:3094-3104
    36. Lingner J, Hughes TR, Shevchenlo A, et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science, 1997;276:561-567
    37. Counter CM, Meyerson M, Eaton EN, et al. The catalytic subunit of yeast telomerase. Proc. Natl Acad Sci USA, 1997;94:9202-9207
    38. Vansteensel B, Smogorzewska A, and DE Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell, 1998;92:401-413
    39. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997; 277:955-959
    40. Meyerson M, Counter CM, Eaton EN, et al. hEst2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 1997; 90:785-795
    41. Harrington L, McPhail T, Mar V, et al. A mammalian telomeraseassociated protein. Science, 1997;275:973-977
    42. Ancelin K, Brunori M, Bauwens S, et al. Targeting Assay To Study the cis Functions of Human Telomeric Proteins: Evidence for Inhibition of Telomerase by TRF1 and for Activation of Telomere Degradation by TRF2. Mol Cell Biol 2002; 22(10):3474-87
    43. LaBranche H, Dupuis S, Ben-David Y, et al. Telomere elongation by
    
    hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat. Genet, 1998; 19:199-202
    44. Peter B, and Thomas RC. Potl, the putative telomere end-binding protein in fission yeast and human. Science 2001 ;292:1171-1175
    45. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997; 277: 955-959
    46. Meyerson M, Counter CM, Eaton EN, et al. hEst2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 1997;90:785-795
    47. Harrington L, Zhou W, McPhail T, et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev, 1997;11:3109-3115
    48. Kilian A, Bowtell DD, Abud HE, et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet, 1997;6:2011-2019
    49. Nakayama J, Tahara H, Tahara E, et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinoma. Nat Genet, 1998; 18:65-68
    50. Holt SE, Aisner DL, Baur J, et al. Functional requirement of p23 and hsp90 in telomerase complexes. Genes Dev, 1999;13:817-826
    51. Nakayama J, Saito M, Nakamura H, et al. TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell, 1997;88:875-884
    52. Tsao DA, Wu CW, and Lin YS. Molecular cloning of bovine telomerase RNA. Gene, 1998;221:51-58
    53. Schnapp G, Rodi HP, Rettig WJ, et al. One-step affinity purification protocol for human telomerase. Nucleic Acids Res, 1998;26:3311-3313
    
    
    54. Greene EC, and Shippen DE. Developmentally programmed assembly of higher order telomerase complexes with distinct biochemical and structural properties. Genes Dev, 1998; 12:2921-2931
    55. Smith S, Lzabela G, Anja S, et al. Tankyrase, a Poly(ADP)-Ribose) polymerase at human telomeres. Science 1998;282(5393): 1484-1487
    56. Zhou XZ, Lu KP. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell, 2001; 107(3):347-59
    57. Shore D. Telomerase and telomere-binding proteins: controlling the endgame. Trends Biochem Sci, 1997;22(7):233-235
    58. Cooper JP, Nimmo ER, Allshire RC, et al. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature, 1997; 385:744-747
    59. Grobelny JV, Kulp-McEliece M, Broccoli D. Effects of reconstitution of telomerase activity on telomere maintenance by the alternative lengthening of telomeres (ALT) pathway. Hum Mol Genet 2001;10(18):1953-61
    60. Cerone MA, Londono-Vallejo JA, Bacchetti S. Telomere maintenance by telomerase and by recombination can coexist in human cells. Hum Mol Genet, 2001;10(18):1945-52
    61. Bechter OE, Eisterer W, Dlaska M, et al. CpG island methylation of the hTERT promoter is associated with lower telomerase activity in B-cell lymphocytic leukemia. Exp Hematol 2002;30(1):26-33
    62. Hoare SF, Bryce LA, Wisman GB, et al. Lack of telomerase RNA gene hTERC expression in alternative lengthening of telomeres cells is associated with methylation of the hTERC promoter. Cancer Res, 2001;61(1):27-32
    63. Opitz OG, Suliman Y, Hahn WC, et al. Cyclin D1 overexpression and p53 inactivation immortalize primary oral keratinocytes by a telomeraseindependent mechanism. J Clin Invest 2001;108(5):725-32
    
    
    64. Kim NW, Piatyszek MA, Prouse KR, et al. Specific association of human telomerase activity with immortal cells and cancer.. Science, 1994; 266:2011
    65. Shay JW. and Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer, 1997;33:787-791
    66. Igarashi H, and Sakaguchi N. Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood, 1997;89:1299-1307
    67. Kyo S, Takakura M, Kohama T, et al. Telomerase activity in human endometrium. Cancer Res, 1997;57:610
    68. Ueda M, Ouhtit A, Bito T, et al. Evidence for UV-associated activation of telomerase in human skin. Cancer Res, 1997;57:370-374
    69. Hande MP, Balajee AS and Natarajan AT. Induction of telomerase activity by UV-irradiation in Chinese hamster cells. Oncogene, 1997; 15:1747-1752
    70. Leteurtre F, Li X, Gluckman E, et al. telomerase activity during the cycle and in gamma-irradiated hematopoietic cells. Leukemia, I997; 11: 1681-1689
    71. Kiaris H, and Schally AV. Decrease in telomerase activity in U-87MG human glioblastomas after treatment with an antagonist of growth hormone-releasing hormone. Proc Natl Acad Sci USA, 1999;96;226-231
    72. Ford LP, Shay JW, Wright WE. The La antigen associates with the human telomemse ribonucleoprotein and influences telomere length in vivo. RNA, 2001;7(8): 1068-75
    73.郑晓飞,王升启,邢瑞云,等.癌细胞株及胃癌组织端粒酶催化亚基基因表达研究军事医学科学院院刊,1999;23(3):190-192
    74. Sagawa Y, Nishi H, Isaka K, et al. The correlation of TERT expression with c-myc expression in cervical cancer. Cancer Lett, 2001 10; 168 (1):
    
    45-50
    75. Ogretmen B, Kraveka JM, Schady D, et al. Molecular mechanisms of ceramide-mediated telomerase inhibition in the A549 human lung adenocarcinoma cell line. J Biol Chem, 2001;276(35):32506-14
    76. Satoru K, Masahiro T, Takahiro T, et al. SP1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene(hTERT). Nucleic Acids Res, 2000;28(3):669-677
    77. Yu-sheng C, and Silver B. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. JBC. 2000;275(46):35665-8
    78. Kohtaro F, Satoru K, Masahiro T, et al. Identification and characterization of negative regulatory elements of the human telomerase catalytic subunit(hTERT) gene promoter: possible role of MZF-2 in transcriptional repression of hTERT. Nucleic Acids Res, 2000;28(13):2557-2562
    79. Ducrest AL, Amacker M, Mathieu YD, et al. Regulation of human telomerase activity: repression by normal chromosome 3 abolishes nuclear telomerase reverse transcriptase transcripts but does not affect c-Myc activity. Cancer Res, 2001 ;61(20):7594-602
    80. Steenbergen RD, Kramer D, Meijer C J, et al. Telomerase suppression by chromosome 6 in a human papillomavirus type 16-immortalized keratinocyte cell line and in a cervical cancer cell line. J Natl Cancer Inst, 2001;93(11):865-72
    81. Nishimoto A, Miura N, Horikawa Ⅰ, et al. Functional evidence for a telomerase repressor gene on human chromosome 10p15.1. Oncogene, 2001;20(7):828-35
    82. Klingelhutz A J, Foster SA, and McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature, 1996; 380: 79-82
    83. Kiyono Y, Foster SA, Koop J, et al. Both Rb/p16INK4a inactivation and
    
    telomerase activity are required to immortalize human epithelial cells. Nature, 1998;396:84-88
    84. Mandal M, and Kumar R. Bcl-2 modulates telomerase activity. J Biol Chem, 1997;272:14183-14187
    85. Xu HJ, Zhou Y, Ji W, et al. Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition. Oncogene, 1997;15:2589-2596
    86. Nguyen DC, and Crowe DL. Intact functional domains of the retinoblastoma gene product(pRb) are required for downregulation of telomerase activity. Biochim Biophys Acta, 1999; 1445:207-215
    87. Kallassy M, Martel N, Damour O, et al. Growth arrest of immortalized human keratinocytes and suppression of telomerase activity by p21 WAF1 gene expression. Mol Carcinogen, 1998;21:26-36
    88. Terasaki M, Kato S, Sugita Y, et al. Adenovirus-mediated over-expression of p21 WAF1 differentially affects the proliferation, telomerase activity, and expression of glial fibrillary acidic protein in human glioma cells. Int J Oncol, 1999;14:63-69
    89. Scott KD, Hua-yin Y, Roger RR, et al. methylation of the human telomerase gene CpG island Cancer Res. 2000,60:537-541
    90. Theodora RD, Izumi H, Colleen HA, et al. Ethylation analysis of the promoter region of the human telomerase reverse transcriptase(hTERT) gene. Cancer Res, 1999;59:6087-90
    91. Ducrest AL, Amacker M, Mathieu YD, et al. Regulation of human telomerase activity: repression by normal chromosome 3 abolishes nuclear telomerase reverse transcriptase transcripts but does not affect c-Myc activity. Cancer Res, 2001;61 (20):7594-602
    92. Ulaner GA, Hu JF, Vu TH, et al. Telomerase activity in human development is regulated by human telomerase reverse transcriptase
    
    (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res, 1998;58:4168-4172
    93. Li H, Cao T, Berndt MC, et al. Molecular interaction between telomerase and the tumor suppressor protein p53 in vitro. Oncogene, 1999; 18 (48): 6785-94
    94. Li H, zhao LL, Funder JW, et al. Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem, 1997; 272: 16729-16732
    95. Li H, Zhao L, Yang Z, et al. Telomerase is controlled by protein kinase Calpha in human breast cancer cells. J Biol Chem, 1998;273:33436-33442
    96. Aylin R, Victoria L. Defects in mismatch repair promote telomeraseindependent proliferation. Nature, 2001;411:713-716
    97. Raju K, and Ronald AD. Telomerase meets its mismatch. Nature, 2001; 411:647-848
    98. Olovnikov A. A theory of marginotomy: the incomplete copying of template margin in enzymatic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol, 1973;41:181
    99. Alldopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA, 1992;89:10114
    100. Harley CB. Telomere loss: Mitotic clock or genetic time bomb? Mutat Res, 1991;256:271
    101. Kiyono T, Foster SA, Koop JI, et al. Both Rb/P16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature, 1998;396:84
    102. Hiyama K,Hiyama E,Ishioka S,et al. Telomerase activity in gastric cancer. Cancer Res, 1995;55:3258
    103. Bednarek A, Budunora Ⅰ, Slaga TJ, et al. Increased telomerase activity in
    
    mouse skin premalignant progression. Cancer Res, 1995;55:4566
    104. Takara H, Nakanishi T, Kitamoto M, et al. Telomerase activity in human liver tissues: comparision between chronic liver disease and hepatocellular carcinomas. Cancer Res, 1995;55:2734
    105.杨仕明,房殿春,罗元辉,等.胃癌及癌前组织中端粒酶活性的检测及其临床意义.中华医学杂志,1998;78(3):207-209
    106. Lee DH, Yang SC, Hong SJ, et al. telomerase:a potential marker of bladder transitional cell carcinoma in bladder washes. Clin Cancer Res, 1998;4:535
    107. Yang CT, Lee MH, Lan RS, et al. Telomerase activity in pleural effusions: diagnostic significance. J Clin Oncol, 1998; 16:567
    108. Murakami J, Nagai N, Ohama K. Telomerase activity in body cavity fluid and peritoneal washings in uterine and ovarian cancer. J Int Med Res, 1998; 26:129
    109. Soria JC, Morat L, Durdux C, et al. The molecular detection of circulating tumor cells in bladder cancer using telomerase activity. J Urol 2002 Jan;167(1):352-6
    110. Counter CM, Cupta J, Harley CB, et al. Telomerase activity in normal leukocyes and in hematologic malignancies. Blood, 1995; 85:2315
    111. Hastie ND, Dempster M, Dunlop MG, et al. Telomere reduction in human coloretal carcinoma and with aging. Nature, 1990; 346:866
    112. Hiyama K, Ishioka S, Shirotani Y, et al. Alteration in telomeric repeat length in lung cancer are associated with loss of heterozygosity in P53 and Rb. Oncogene, 1995; 10:937
    113.杨仕明,房殿春,罗元辉,等.胃癌及癌前组织端粒状态的分析.中华消化杂志,1999;19(5):301-304
    114. Liu BC, LaRose I, Weinstein LJ, et al. Expression of telomerase subunits in normal and neoplastic prostate epithelial cells isolated by laser capture
    
    microdissection. Cancer, 2001 ;92(7): 1943-8
    115.苑昕,张波,应建明,等.端粒酶基因在人肿瘤组织中的表达 中华病理学杂志,2000;29(1):16-19
    116.冯德云,郑晖,程瑞雪,等.肝细胞癌及癌旁肝组织中bcl-2和p53蛋白表达与端粒酶活性的相关性研究 临床与实验病理学杂志,1999;15(4):287-289
    117.何兴祥,王家,吴捷莉,等。不同病变胃组织端粒酶活性及其与幽门螺杆菌感染的关系.胃肠病学,2000;5(1):19-22
    118. Yasunaga Y, Nakamura K, Ko D, et al. A novel human cancer culture model for the study of prostate cancer. Oncogene, 2001;20(55):8036-41
    119. Jerry WS, and Woodring EW. When do telomeres matter? Science, 2001; 291:839-840
    120. Dean GT, Yasuhito MT, James AA, et al. Lack of replicative senescence in culture rat oligodendrocyte precursor cells. Science, 2001;291:868-871
    121. Nicole FM, Denise SM, Marie CH, et al. Lack of replicative senescence in normal rodent glia. Science, 2001;291:872-875
    122.梁红,方焱.微孔板杂交法检测端粒酶活性 洛阳医专学报,1999;17(3):164-165
    123.吴成秋,陈雯,张桥,等.TRAP结合液体闪烁计数法半定量检测端粒酶活性 癌变·畸变·突变,1999;11(5):213-216
    124.伍勇,陈正炎,唐银.溴化乙啶-端粒重复扩增法检测端粒酶活性临床检验杂志,1999;17(5):285-286
    125.赵家明,叶锋,王旭光,等.PCR-ELISA法检测消化道恶性肿瘤端粒酶活性 广东医学,1999;20(10):771-772
    126. Abe N, Watanabe T, Nakashima M, et al. Quantitative analysis of telomerase activity: a potential diagnostic tool for colorectal carcinoma. Hepatogastroenterology, 2001;48(39):692-5
    127. Vonderheide RH. Telomerase as a universal tumor-associated antigen for
    
    cancer immunotherapy. Oncogene 2002 Jan 21;21(4):674-9
    128. Zahler AM, Williamson JR, Cech TR, et al. Inhibition of telomerase by G-quartet DNA structure. Nature, 1991 ;350:718-720
    129. Gowan SM, Harrison JR, Patterson L, et al. A G-Quadruplex-Interactive Potent Small-Molecule Inhibitor of Telomerase Exhibiting in Vitro and in Vivo Antitumor Activity. Mol Pharmacol 2002;61(5):1154-1162
    130. Fdoroff OY, Salazar M, Han HY, et al. NMR-based model of telomeraseinhibiting compound bound to G-quardruplex DNA. Biochem, 1998; 37:12367-12374
    131.孟志强,于尔辛,宋明志.化疗药对人肝癌细胞SMMC-7721端粒酶活性的影响.世界华人消化杂志,1999;7(3):252-254
    132. Greider CW. Telomere length regulation. Annu Rev Biochem, 1996;65:337-365
    133. Holt SE, Aisner DL, Shay JW, et al. Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci USA, 1997; 94(20): 10687-10692
    134.杨金亮,杨仕明,房殿春。抗端粒酶治疗肿瘤的研究进展肿瘤,1999;19(2):117-119
    135. Kim MM, Rivera MA, Botchkina IL, et al. A low threshold level of expression of mutant-template telomerase RNA inhibits human tumor cell proliferation. Proc Natl Acad Sci USA, 2001;98(14):7982-7
    136. Kanazawa Y, Ohkawa K, Ueda K, et al. Hammerhead ribozyme-mediated inhibition of telomerase activity in extracts of human Hepatocellular cells. Biochem Biophs Res Commun, 19996;225:570-576
    137.屈艺,刘菽秋,张朝良,等。端粒酶核酶抑制裸鼠移植瘤生长的实验研究中华医学遗传学杂志,1999;16(6):368-370
    138. Saretzki G,Ludwig A,von Zglinicki T, et al. Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere
    
    shortening in ovarian cancer cells. Cancer Gene Ther, 2001;8(10):827-34
    139.苑昕,张波,应建明,等。反义端粒酶基因表达抑制人癌细胞恶性表型 中华病理学杂志,1999;28(5):356-360
    140. Fletcher TM, Salazar M, Chen SF. Human telomerase inhibition by 7-deaza-2'-deoxypurine nucleoside transphosphates. Biochem, 1996; 35: 15611-15617
    141. Xu D, Gruber A, Peterson C et al. Supression of telomerase activity in HL60 cells after treatment with differentiating agents. Leukemia, 1996; 10(8):1354-1357
    142.孟志强,于尔辛,宋明志,等。健脾理气中药对肝癌端粒酶活性的影响.中国中医基础医学杂志,2000:6(1):23-26
    143.江瑞华,李鲁伟,韩世温.灵芝孢子对肿瘤细胞端粒酶的作用.齐鲁医学杂志,1999;14(3):168-169
    144.唐发清,吴尚辉,文忠,等。益气解毒片对鼻咽癌细胞裸鼠植瘤细胞端粒酶抑制作用的实验研究中国中医药科技,1999.07.20;6(4):218-220
    145.陈泽雄,陈雯,彭俊生,等。中药复方抗癌方抑制人结肠癌细胞株端粒酶活性.中国胃肠外科杂志,1999.06.25;2(2):117-118
    146.张方信,贾忠健,邓芝云,等.苯丙素甙对MKN45细胞端粒酶活性的抑制机制.世界华人消化杂志,2002;10(3):366-367
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.