胚胎心脏流出道、静脉窦及传导系的发生发育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎心脏发育过程中,流出道经复杂的分隔和结构重建,参与心包内升主动脉和肺动脉干、左右心室流出道及动脉瓣膜结构的发育。流出道发育和分隔异常将导致永久性动脉干,右心室双流出道,室间隔缺损,主动脉和肺动脉易位,法洛氏四联症等多种先天性心脏病。由于转基因或基因敲除后对胚胎发育影响的复杂性和不同动物的种属差异,对心脏流出道的正常发育机理尚有许多争议。受精后前8周是人胚心脏流出道发育、分隔和重建的重要时期。对人胚心脏流出道发育和分隔机理的探讨大多局限于较大胚龄的胚胎,缺乏对早期人胚心脏流出道正常发育和分隔机理的系统研究。探讨胚胎早期心脏流出道的正常发育和分隔机理不但是重要的基础理论研究,也可为探讨流出道发育和分隔异常导致的先天性心脏病的发病机理提供理论依据,对此类先天性心脏病的预防和治疗有重要意义。
     有研究认为静脉窦心肌来自后生心区的间充质,受独特的基因调控,也有著者否认哺乳类动物心脏发育过程中静脉窦结构的存在。以往对人胚心脏发育的研究多集中在C14期(Carnegie stage 14)后较大胎龄的胚胎,此时静脉窦已经并入右心房,因此这些研究并没有观察到静脉窦的早期发育。结蛋白(DES)基因突变导致结蛋白性心肌病,常伴有不同程度的心脏传导障碍和心律失常,严重时引起猝死,其原因不明。
     本实验第一章通过观察α-平滑肌肌动蛋白(α-SMA)、α-横纹肌肌动蛋白(α-SCA)、肌球蛋白重链(MHC)和Caspase-3(CAS-3)在C10期~C16期(排卵后22±1~37天)人胚心脏、咽中胚层的时空表达型及各期心脏和咽中胚层HE染色的形态学特征,探讨了人胚心脏流出道增长的机制、心内膜垫的发育及动脉囊的分隔。本实验第二章通过观察α-SMA、α-SCA和DES在C10~C16期人胚心脏的时空表达型,探讨了人胚心脏静脉窦的发生、分化及传导系统的发育。第三章通过观察α-SMA、α-SCA、MHC、GATA-4、CAS-3、增殖细胞核抗原(PCNA)在胚龄9~12天小鼠胚胎心脏的时空表达型探讨了小鼠胚胎心脏流出道的缩短机制。
     第一章人胚早期心脏流出道的发育
     取29例C10期~C16期(Carnegie stage 10~Carnegie stage 16,排卵后22±1~37天)人胚心脏连续切片,用抗α-平滑肌肌动蛋白(α-SMA)、抗α-横纹肌肌动蛋白(α-SCA)、抗肌球蛋白重链(MHC)和抗活性Caspase-3(CAS-3)抗体进行免疫组织化学染色,并用HE染色观察了各期心脏及咽中胚层的形态学特征,以探讨心包腔背侧脏壁中胚层上皮、咽前间充质及动脉囊与心肌性流出道发生的关系。结果显示:人胚发育C10期~C15期,由于流出道、动脉囊由颈部向胸部移位以及心包腔向胚胎背侧的逐渐扩展,使位于原始咽前方间充质中的动脉囊逐渐突向心包腔内,动脉囊表面的心包腔背侧脏壁中胚层上皮不断分化为α-SMA、α-SCA和MHC阳性的流出道心肌细胞。心包腔脏壁中胚层上皮向心肌细胞的分化在C16期人胚终止。人胚C10晚期~C12期,流出道远端的脏层心包和心包腔的背侧壁为复层上皮,向壁层心包内延伸逐渐变为单层扁平上皮。背侧心包于C13期~C15期变为单层上皮。人胚C10晚期-C13期,流出道远端α-SMA和α-SCA表达可延伸至脏层心包及咽部间充质细胞,流出道逐渐延长。人胚C14期~C15期,流出道明显延长,其远端的脏层心包细胞增生并迁至流出道,在近流出道心肌细胞处表达α-SMA和α-SCA。迁移至流出道动脉端前后壁的间充质在C15期人胚发生凋亡,可见流出道心肌细胞迁入间充质细胞团内,取代凋亡的间充质细胞。α-SMA阳性神经嵴细胞在C12期人胚心脏流出道心内膜垫中开始出现,随发育逐渐增多并在局部聚集形成两条纵形的螺旋状走形的嵴。人胚C15期~C16期,动脉囊后壁的α-SMA阳性神经嵴细胞向动脉囊内增生,形成主肺动脉隔,将动脉囊分隔为心包内升主动脉及肺动脉干。因此我们认为:心包腔背侧脏壁中胚层是人胚心脏第二生心区,可不断分化为心肌细胞,使胚胎心肌性流出道长度增加。细胞凋亡染色提示并非所有迁入流出道的咽前间充质细胞都可分化为心肌细胞。流出道远端心肌可诱导第二生心区或称前心区细胞增殖分化为心肌细胞。α-SMA阳性神经嵴细胞出现在流出道心内膜垫和主肺动脉隔的时间不同,提示神经嵴细胞经不同路线迁移至流出道嵴和主肺动脉隔。
     第二章人胚心脏静脉窦和传导系统的早期发育
     用抗α-平滑肌肌动蛋白(α-SMA)、抗α-横纹肌肌动蛋白(α-SCA)和抗结蛋白(DES)抗体对29例C10期~C16期(Carnegie stage 10~Carnegie stage 16,排卵后22±1~37天)人胚心脏连续切片进行免疫组织化学染色。结果显示:人胚发育C12期~C13期,系统静脉汇集形成的静脉窦出现于心包腔尾端原始横膈间充质中,静脉窦壁间充质细胞逐渐分化为α-SCA阳性的静脉窦心肌细胞。人胚C14期,心包腔的扩张使静脉窦进入心包腔内,参与了右心房的形成。DES阳性传导系心肌的分化始于C10期人胚心脏房室管右侧壁,随发育逐渐向室间沟心肌扩展,发育为房室传导系统的希氏束、左右束支及心室腔面的小梁心肌。在心房,DES表达首先出现于C11期人胚心房背侧壁,在C13期人胚,可见静脉窦左背侧壁α-SCA、α-SMA、DES阳性心肌带与左心房底部、房室管背侧壁相延续,可能这条心肌带参与了人胚心脏静脉窦至房室管传导系统的发育。人胚发育C14~C16期,DES强阳性染色从窦房结经左、右静脉瓣及心房的背、腹侧壁延伸至房室管右侧壁,可能是原始的心房传导通路。因此我们认为,心包腔尾端原始横膈间充质是人胚静脉窦心肌发生区,原始横膈间充质细胞逐渐分化为心肌细胞,添加到人胚心管静脉端,形成心脏静脉窦心肌。人胚心脏传导系统心肌的分化始于房室管,随心管发育逐渐向动、静脉端扩展,在人胚发育C16期,已分化为形态学清晰可辨的DES阳性胚胎心脏传导系统。
     第三章小鼠胚胎心脏流出道早期并入右心室
     用抗α-横纹肌肌节肌动蛋白(α-SCA)、抗肌球蛋白重链(MHC)抗体标记心肌,用抗GATA-4抗体标记心肌及其前体细胞,用抗α-平滑肌肌动蛋白(α-SMA)抗体标记早期心肌细胞,抗增殖细胞核抗原(PCNA)抗体显示增殖细胞,用抗人/鼠活性Caspase-3(CAS-3)抗体检测凋亡早期细胞,对胚龄9~12天(胚龄12天分别取8时、12时、16时、20时胚胎)小鼠胚胎心脏连续切片进行了免疫组织化学PAP法染色。结果显示:①小鼠胚胎心脏流出道于胚龄12天8时~20时明显缩短。②在流出道缩短前及缩短过程中流出道全长均未检测到CAS-3阳性细胞。③胚龄11天至胚龄12天8时,动脉囊陷入心包腔,GATA-4、α-SCA、α-SMA、MHC染色示流出道远端心肌界向心室方向退缩至心包腔内,GATA-4染色示流出道远端心肌未转分化为大血管壁的细胞成分,可见第二生心区来源的间充质细胞不断分化为心肌细胞添加在心脏的动脉端使流出道延长。④胚龄11~12天,α-SMA阳性心神经嵴细胞逐渐从流出道远端迁入,GATA-4、α-SCA、α-SMA、MHC、PCNA染色表明流出道近段心肌不断增生形成小梁侵入邻近的流出道嵴内,使流出道嵴心肌化而并入右心室;胚龄12天,在近流出道心肌处,可见与流出道心肌相延续的α-SCA、α-SMA弱阳性间充质细胞流,高倍光镜下可见其细胞突起向心肌细胞延伸或靠近甚至接触;胚龄12天流出道嵴内可见散在的α-SCA、α-SMA、GATA-4阳性细胞,表明流出道嵴内的间充质细胞在不断转分化为心肌细胞。因此我们认为流出道嵴愈合形成间充质性流出道隔前,其近段即在通过心肌化、间充质细胞转分化为心肌细胞不断肌化,使流出道由近向远并入了右心室,心肌性流出道逐渐缩短,流出道远端界逐渐向心室方向退缩。流出道近段嵴内间充质细胞向心肌细胞的转分化受心肌细胞直接接触及释放的因子的调节。心肌细胞凋亡及流出道远端心肌转分化为大血管壁的细胞不是流出道缩短的机制。
After complex septation and remodeling,the outflow tract of embryonic heart developed intrapericardial asending aorta and pulmonary trunk,outlets of ventricles and semilunar valves. Abnormality in outflow tract development and septation resulted in congenital heart defects, such as persistent truncus arteriosus,ventricular septal defects,double outlets of right ventricle, transition of great arteries and tetralogy of Fallot,etc.Due to effects of transgene and gene knock-out on embryonic development and differences in species,there were many debates on mechanism underling the outflow tract development.The outflow tract of human embryonic heart completed septation and remodeling before the eighth week.The investigation of the outflow tract development of human embryonic heart was mainly converged on the older embryos,lack of studies of the very younger embryos.Exploration of the early development of outflow tract was not only important to theoretical research,but also in favor of unraveling the mechanism of congenital heart defects resulting from disturbance of outflow tract development and septation.
     It was reported that myocardium of sinus venosus derived from mesenchyme in the posterior heart-forming field,controlled by distinct gene program.It was even argued that sinus venosus had never been appeared in mammals.There was no date about the early development of sinus venosus of human embryonic heart since studies were almost manipulated on old embryos after C14(Carnegie stage 14),when the sinus venosus had incorporated into right atrium.Mutation in DES gene caused DES myopathy,often accompanied with conduction blocks,arrhythmias and sudden death.The cause of DES myopathy was still unclear so far.
     In chapter I,we observed the spacio-temporal expression patterns ofα-SMA(α-smooth muscle actin),α-SCA(α-sarcomeric actin),myosin heavy chain(MHC) and active Caspase-3 (CAS-3) in cardiac outflow tract and pharyngeal mesoderm of human embryos from C10 to C16 (22±1~37 postovulatory day) and morphologic charicteristic of heart and pharyngeal mesoderm at each stage with HE staining to explore the mechanism underling the elongation of outflow tract,the development of the endocardial cushions and the division of the aortic sac.In chapterⅡ, the spacio-temporal expression patterns ofα-SMA,α-SCA and desmin(DES) in human embryonic heart through C10 to C16 were observed to investigate the early development of sinus venosus and cardiac conduction system.In chapterⅢ,the spacio-temporal expression patterns ofα-SMA,α-SCA,GATA-4,MHC,CAS-3 and PCNA(proliferating cell nuclear antigen) in mouse embryonic heart from E9(embryonic day 9) to E12 were detected to explore the shortening mechanism of outflow tract during its remodeling.
     ChapterⅠThe development of the outflow tract in the early human embryonic heart
     Serial sections of twenty-nine human embryonic hearts from Carnegie stage 10 to Carnegie stage 16(C10~C16) were stained immunohistochemically with antibodies againstα-SMA (α-smooth muscle actin),α-SCA(α-sarcomeric actin),MHC(myosin heavy chain) and CAS-3 (active Caspase-3) to investigate the relationship of splanchnic epithelium lining the dorsal wall of the pericardial cavity,the prepharyngeal mesenchyme and the aortic sac with the embryogenesis of the outflow tract myocardium.HE staining was carried out to observe morphologic charicteristic of heart and pharyngeal mesoderm at each stage.We found that with the caudal translocation of the aortic sac and outflow tract relative to the pharyngeal arches during C10 to C15 and the dorsal expansion of the pericardial cavity on both lateral sides of the outflow tract,the aortic sac originally embedded in the prepharyngeal mesenchyme gradually protruded into the pericardial cavity.The progressive differentiation of the pericardial splanchnic epithelium covering the mesenchymal wall of the aortic sac intoα-SCA and MHC positive cardiomyocytes resulted in the elongation of the myocardial outflow tract.The ability of the dorsal pericardial splanchnic epithelium to differentiate into cardiomyocyte was terminated at C16.From C10 to C12,splanchnic pericardium distal to the outflow tract and dorsal pericardium were stratified epithelium,when extending into parietal mesoderm pericardium gradually transformed into simple squamous epithelium.During the following three stages, dorsal pericardium gradually changed into simple epithelium.During C10 to C13,expression ofα-SMA andα-SCA reached splanchnic pericardium and pharyngeal mesenchymal cells distal to the outflow tract,which caused the progressively elongation of the outflow tract.From C14 to C15,the outflow tract gradually elongated.Over these stages,splanchnic pericardial cells distal to the outflow tract proliferated and progressively migrated into the outflow tract, expresssingα-SMA andα-SCA when closed to cardiomyocytes.The prepharyngeal mesenchyme migrated to the dorsal and ventral walls of the arterial pole of the outflow tract was seen being apoptosed at C15,the outflow tract cardiomyocytes were detected to proliferate, migrate into and replace the apoptosised outflow tract mesenchymal masses.α-SMA positive neural crest cells began to appear in the endocardium of the outflow tract at C12 and gradually aggregated to form two opposite spiral ridges during the following stages.During C15 and C16, α-SMA positive neural crest cells in the posterior wall of the aortic sac proliferated and grew into the aortic sac to form the aorto-pulmonary septum that divided the aortic sac into the intrapericardial ascending aorta and pulmonary trunk.We suggest that the splanchnic mesodermal epithelium of the pericardial cavity is the secondary heart field of the human embryonic heart,the continuous differentiation of which into cardiomyocytes brings about the increase in the length of the myocardial outflow tract.CAS-3 positive staining suggests that not all of the mesenchymal cells migrated to the arterial pole of the outflow tract can differentiate into cardiomyocytes.Myocardium of distal outflow tract can induce cells derived from the secondary heart field(or the anterior heart field) to differentiate into cardiomyocytes. Appearance ofα-SMA positive neural crest cells in the endocardium of the outflow tract and aorto-pulmonary septum at different developmental stages indicates that migration of the neural crest cells towards the outflow tract ridges and the aorto-pulmonary septum is along the different routes.
     ChapterⅡThe early development of the sinus venosus and the cardiac conduction system in human embryonic heart
     Serial transverse sections of 29 human embryonic hearts from Carnegie stage 10 to Carnegie stage 16(C10-C16) were stained immunohistochemically with antibodies againstα-SMA (α-smooth muscle actin),α-SCA(α-sarcomeric actin) and DES(desmin).We found that during C12 and C13,the sinus venosus formed by confluence of systematic veins at the caudal end of the pericardial cavity could be recognized in the mesenchyme of primitive transverse septum. The mesenchymal cells of the sinus venosus gradually differentiated intoα-SCA positive cardiocyocytes.At C14,the sinus venosus was within the pericardial cavity due to expansion of the pericardial cavity and incorporated into the right atrium.Differentiation of DES positive conductive cardiomyocyte was initiated in the right wall of atrio-ventricular canal of C10 embryonic heart and with the development,extended towards the myocardium of the interventricular sulcus to form His bundle,left and right bundle branches as well as the ventricular trabecular myocardium.In the atium,the strong expression of DES was first detected in the dorsal wall of C11 atrium.At C13,unique myocardial band showingα-SCA,α-SMA and DES expression in the left dorsal wall of the sinus venosus were found to be continuous with the basal wall of left atium and the dorsal wall of the atrio-ventricular canal,this band might be related to the development of conduction system from sinoatrial node to atrio-ventricular canal. During C14 to C16,primary conduction pathway of atria with strong DES expression was formed that extended from sinoatrial node along venous valves,DES positive myocardium in the dorsal and ventral walls of the atria to the right atrio-ventricular canal,respectively.We suggest that the mesenchyme of the primitive transverse septum is heart forming field of human embryos responsible for formation of sinus venosus myocardium,and cardiomyocytes differentiated from mesenchymal cells in the primitive transverse septum progressively add to the venous pole of the heart tube to form myocardial sinus venosus.The differentiation of CCS of the early human embryo initiates in the atrio-ventricular canal and develops gradually towards the arterial and venous poles of the heart tube.By C16,DES positive embryonic CCS can be clearly recognized morphologically.
     ChapterⅢCardiac outflow tract in the early development incorporating into right ventricle in mouse embryo
     Sections of embryonic mouse heart from E9(embryonic day9)-E12(harvested respectively at eight,twelve,sixteen,twenty o'clock at E12) were stained with mouse monoclonal antibody respectively againstα-SCA(α-sarcomeric actin),α-SMA(α-smooth muscle actin),GATA-4, MHC(myosin heavy chain),PCNA(proliferating cell nuclear antigen) and rabbit polyclonal antibody against active CAS-3(Caspase-3).We found that the length of outflow tract from embryonic mouse heart became shortened during eight to twenty o'clock at E12.Before and during its shortening,no CAS-3 positive cell was detected in the whole outflow tract.Through E11 to 8 o'clock at E12,with the translocation of the aortic sac into the pericardial cavity,the expression ofα-SCA,α-SMA,GATA-4 and MHC at the distal part of the outflow tract retracted in the pericardial cavity towards the ventricle.GATA-4 staining suggested at the distal border of the outflow tract no cardiomyocytes transdifferentiated into cell components of the great arteries, and mesenchymal cells derived from the secondary heart field continued differentiating into cardiomyocytes to add to the arterial pole of the heart,which still resulted in the elongation of the outflow tract.Through E11 to E12,α-SMA positive cardiac neural crest-derived cells migrated into the distal outflow tract,α-SCA,α-SMA,GATA-4,MHC and PCNA expression showed that in the proximal outflow tract,cardiomyocytes proliferated into trabecula invading into adjacent ridges,resulting in the myocardilization of it and the outflow tract incorporating into the right ventricle.At E12,α-SCA andα-SMA weak positive mesenchymal cell confluents continuous with the myocardium of the outflow tract were detected.With higher magnification, mesenchymal cell processes were observed to extend towards myocardiocytes,some of which even contacted with myocardiocyte.Independent cells withα-SCA,α-SMA,GATA-4 coexisting were observed in the outflow tract ridges during E12.These results suggested that mesenchymal cells in the outflow tract ridges transdifferentiated into cardiomyocytes.We suggest that just before the fusion of outflow tract ridges into the outflow tract septum,their proximity musculizes through myocardilization and mesenchymal cell transdifferention into cardiomyocytes,with the result of the outflow tract being absorbed into the right ventricle,the shortening of the outflow tract and retraction of the distal end of the outflow tract toward the ventricle.In the proximal outflow tract ridges,mesenchymal cell transdifferention into cardiomyocytes is induced by contact with cardiomyocytes and substance released from cardiomyocytes.Neither apoptosis of cardiomyocytes nor transdifferention of cardiomyocytes into cell components of the great arteries at the distal border of the outflow tract is the mechanism underlying the outflow tract shortening during remodeling.
引文
1. Mcbride RE, Moore GW, Hutchins GM. Development of the outflow tract and closure of the interventricular septum in the normal human heart[J]. Am J Anat, 1981,160: 309-331.
    2. Anderson RH, Webb S, Brown NA, et al. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks[J]. Heart, 2003, 89(9): 1110-8.
    3. Webb S, Qayyum SR, Anderson RH, et al. Septation and separation within the outflow tract of the developing heart[J]. J Anat, 2003,202(4): 327-42
    4. Lamers WH, Moorman AF. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis[J]. Circ Res, 2002, 91(2): 93-103.
    5. Ya J, van den Hoff MJ, de Boer PA, et al. Normal development of the outflow tract in the rat[J]. Circ Res, 1998, 82(4): 464-72.
    6. Sugishita Y, Watanabe M, Fisher SA. The development of the embryonic outflow tract provides novel insights into cardiac differentiation and remodeling[J]. Trends Cardiovasc Med, 2004,14(6): 235-41.
    7. Bergwerff M, Verberne ME, DeRuiter MC, et al. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology[J]? Circ Res, 1998, 82(2): 221-31.
    8. Kelly RG. Molecular inroads into the anterior heart field[J]. Trends Cardiovasc Med, 2005, 15(2): 51-6.
    9. Huston MR, Zhang P, Stadt HA, et al. Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx[J]. Dev Biol, 2006, 295: 486-497.
    10. Park EJ, Ogden LA, Talbot A, et al. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling[J]. Development, 2006,133(12): 2419-33.
    11. Zeisberg EM, Ma Q, Juraszek AL, et al. Morphogenesis of the right ventricle requires myocardial expression of Gata4[J]. J Clin Invest, 2005, 115(6): 1522-31.
    12. Brown CB, Wenning JM, Lu MM, et al. Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse[J]. Dev Biol, 2004, 267(1): 190-202.
    13. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation[J]. Science, 1983,220(4601): 1059-61.
    14. Brown CB, Feiner L, Lu MM, et al. PlexinA2 and semaphorin signaling during cardiac neural crest development [J]. Development, 2001,128(16): 3071-80.
    15. Waldo KL, Kumiski DH, Wallis KT, et al. Conotnincal myocardium arises from a secondary heart field[J]. Dev, 2001,128: 3179-3188.
    16. Verzi MP, Mcculley DJ, Val SD, et al. The right ventricule, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field[J].DevBiol, 2005,287: 134-145.
    
    17. Rosenquist GC, Dehaan RL. Migration of precardiac cells in the chick embryos: a radioautographic study[J]. Contrib Embryo, 1966, 38: 111-121.
    18. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field[J]. Dev Biol, 2001, 238: 97-109.
    19. Kelly RG, Brown NA, Buckingham ME, et al. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm[J]. Dev Cell, 2001,1: 435-440.
    
    20. Kelly RG, Buckingham ME. The anterior heart-forming field: voyage to the arterial pole of the heart[J]. Trends Genet, 2002,18(4): 210-6.
    21. Abu-issa R, Waldo K, Kirby ML. Heart field: one, two or more[J]? Dev Biol, 2004, 272: 281-185.
    22. Yutzey KE, Kirby ML. Wherefore heart thou? Embryonic origins of cardiogenic mesoderm[J]. Dev Dyn, 2002,223(3): 307-20.
    23. Waldo KL, Hutson MR, Stadt HA, et al. Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field[J]. Dev Biol. 2005,281(1): 66-77.
    24. Beall AC, Rosenquist TH. Smooth muscle cells of neural crest origin form the aorticopulmonary septum in the avian embryo[J]. Anat Rec, 1990,226(3): 360-6.
    25. Farrell MJ, Burch JL, Wallis K, Rowley L, et al. FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation[J]. J Clin Invest, 2001, 107(12): 1509-17.
    26. Farrell M, Waldo K, Li YX, et al. A novel role for cardiac neural crest in heart development[J]. Trends Cardiovasc Med, 1999, 9(7): 214-20.
    27. O'Rahilly R, Müller F. Developmental stages in human embryos[M]. Washington: Meriden-Stinehour Press.
    28. von Both I, Silvestri C, Erdemir T, et al. Foxh1 is essential for development of the anterior heart field[J]. Dev Cell, 2004, 7(3): 331-45.
    29. Llagan R, Abu-lssa, Brown D, et al. Fgf8 is required for anterior heart field development[J]. Dev, 2006, 133: 2435-2445.
    30. Virágh S, Challice CE. Origin and differentiation of cardiac muscle cells in the mouse[J]. J Ultrastruct Res, 1973,42(1): 1-24.
    31. Zaffan S, Kelly RG, Meilhac SM, et al. Right ventricular myocardium derives from the anterior heart field[J]. Circ Res, 2004, 95: 261-268.
    32.Waldo KL,Hutson MR,Ward CC,et al.Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart[J].Dev Biol,2005,281(1):78-90.
    33.Mishima N,Mikawa T,Kirby ML.Smooth muscle α-actin downregulation in cultured chick aortic smooth muscle and neural crest cells is associated with altered cell shape[J].Exp cell Res,1996,224:204-207.
    34.Waldo KL,Lo CW,Kirby ML.Connexin 43 expression reflects neural crest patterns during cardiovascular development[J].Dev Biol,1999,208(2):307-23.
    35.Thompson RP,Fitzharris TP.Morphogenesis of the trtmcus arteriosus of the chick embryo heart:tissue reorganization during septation[J].Am J Anat,1979,156(2):251-264.
    36.Thompson RP,Sumida H,Abercrombie V,et al.Morphogenesis of human cardiac outflow[J].Anat Rec,1985,213(4):578-86.
    1. Restivo A, Piacentini G, Placidi S, et al. Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart[J]. Anat Rec A Discov Mol Cell Evol Biol, 2006, 288(9): 936-43.
    2. Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis[J]. Cell, 2006, 126(6): 1037-48.
    3. Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field[J]. Dev, 2001,128: 3179-3188.
    4. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field[J]. Dev Biol, 2001, 238:97-109.
    5. Kelly RG, Brown NA, Buckingham ME, et al. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm[J]. Dev Cell, 2001, 1: 435-440.
    6. Zaffan S, Kelly RG, Meilhac SM, et al. Right ventricular myocardium derives from the anterior heart field[J]. Circ Res, 2004, 95:261-268.
    7. Rana MS, Horsten NC, Tesink-Taekema S, et al. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract[J]. Circ Res, 2007, 100(7): 1000-7.
    8. Chen YH, Ishii M, Sun J, et al. Msxl and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract[J]. Dev Biol, 2007, 308(2): 421-37.
    9. Ai D, Liu W, Ma L, et al. Pitx2 regulates cardiac left-right asymmetry by patterning second cardiac lineage-derived myocardium [J]. Dev Biol, 2006, 296(2): 437-49.
    10. O'Rahilly R, Müller F. Developmental stages in human embryos[M]. Washington: Meriden-Stinehour Press.
    11. Ward C, Stadt H, Hutson M, et al. Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia[J]. Dev Biol, 2005, 284(1): 72-83.
    12. Virágh S, Challice CE. Origin and differentiation of cardiac muscle cells in the mouse[J]. J Ultrastruct Res, 1973,42: 1-24.
    13. Waldo KL, Huston MR, Ward CC, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart[J]. Dev Biol, 2005, 281: 78-90.
    14. Abu-issa R, Waldo K, Kirby ML. Heart field: one, two or more[J]? Dev Biol, 2004, 272: 281-185.
    15. Kelly RG. Molecular inroads into the anterior heart field[J]. Trends Cardiovasc Med, 2005,15(2): 51-6.
    16. Dodou E, Verzi MP, Anderson JP, et al. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development[J]. Development, 2004,131(16): 3931-42.
    17. Verzi MP, McCulley DJ. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field[J]. Dev Biol, 2005, 287(1): 134-45.
    18. Yamada M, Szendro PI, Prokscha A, et al. Evidence for a role of Smad6 in chick cardiac development[J]. Dev Biol, 1999, 215: 48-61.
    19. Yamada S, Itoh H, Uwabe C, et al. Computerized three-dimensional analysis of the heart and great vessels in normal and holoprosencephalic human embryos[J]. Anat Rec (Hoboken), 2007,290(3): 259-67.
    20. De la cruz MV, Concepción sánchez gómez, Manuel arteaga M, et al. Experimental study of the development of the truncus and the conus in the chick embryo [J]. J Ana, 1977, 123: 661-668.
    1. Meil(?)ac SM, Esner M, Kelly RG, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart[J]. Dev Cell, 2004, 6(5): 685-98.
    2. Christoffels VM, Mommersteeg MT, Trowe MO, et al. Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18[J]. Circ Res, 2006, 98(12): 1555-63.
    3. Anderson RH, Brown NA, Moorman AF. Development and structures of the venous pole of the heart[J]. Dev Dyn, 2006,235(1): 2-9.
    4. Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart[J]. Dev Cell, 2003, 5: 877-889.
    5. Kelly RG. Molecular inroads into the anterior heart field[J]. Trends Cardiovasc Med, 2005, 15: 51-56.
    6. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells[J]. Nat Rev Genet, 2005, 6: 826-837.
    7. Wessels A, Anderson RH, Markwald RR, et al. Atrial development in the human heart: an immunohistochemical study with emphasis on the role of mesenchymal tissues[J]. Anat Rec, 2000,259(3): 288-300.
    8. Capetanaki Y, Bloch RJ, Kouloumenta A, et al. Muscle intermediate filaments and their links to membranes and membranous organelles[J]. Exp Cell Res, 2007,313(10): 2063-76.
    9. Schroder R, Vrabie A, Goebel HH. Primary desminopathies[J]. J Cell Mol Med, 2007,11(3): 416-26.
    10. Go(?)dfarb LG, Vicart P, Goebel HH, et al. Desmin myopathy[J]. Brain, 2004, 127(Pt 4): 723-34.
    11. Da(?)akas MC, Park KY, Semino-Mora C, et al. Desmin Myopathy, a Skeletal Myopathy with Cardiomyopathy Caused by Mutations in the Desmin Gene[J]. N Engl J Med, 2000, 342: 770-780.
    12. O'Rahilly R, Müller F. Developmental stages in human embryos[M]. Washington: Meriden-Stinehour Press.
    13. Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution[J]. Physiol Rev, 2003, 83(4): 1223-67.
    14. Soufan AT, van den Hoff MJ, Ruijter JM, et al. Reconstruction of the patterns of gene expression in the developing mouse heart reveals an architectural arrangement that facilitates the understanding of atrial malformations and arrhythmias[J]. Circ Res, 2004, 95(12): 1207-15.
    15. Clement S, Stouffs M, Bettiol E, et al. Expression and function of alpha-smooth muscle actin during embryonic-stem-cell-derived cardiomyocyte differentiation[J]. J Cell Sci, 2007, 120(Pt 2): 229-38.
    16. Mommersteeg MT, Hoogaars WM, Prall OW, et al. Molecular pathway for the localized formation of the sinoatrial node[J]. Circ Res, 2007,100(3): 354-62.
    17. Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field[J]. Dev, 2001,128: 3179-3188.
    18. Gittenberger-de Groot AC, Mahtab EA, Hahurij ND, et al. Nkx2.5-negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system[J]. Anat Rec (Hoboken), 2007, 290(1): 115-22.
    19. Blaschke RJ, Hahurij ND, Kuijper S, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development[J]. Circulation, 2007, 115(14): 1830-8.
    20. Moorman AF, de Jong F, Denyn MM, Lamers WH. Development of the cardiac conduction system[J]. Circ Res, 1998, 82(6): 629-44.
    21. Blom NA, Gittenberger-de Groot AC, DeRuiter MC, et al. Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity[J]. Circulation, 1999,99(6): 800-6.
    22. Wessels A, Vermeulen JL, Verbeek FJ, et al. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. Ⅲ. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system[J]. Anat Rec, 1992, 232(1): 97-111.
    23. Ikeda T, Iwasaki K, Shimokawa I, et al. Leu-7 immunoreactivity in human and rat embryonic hearts, with special reference to the development of the conduction tissue[J]. Anat Embryol, 1990, 182: 553-562.
    24. Ito H, Iwasaki K, Ikeda T, et al. HNK-1 expression pattern in normal and bis-diamine induced malformed developing rat heart: three dimensional reconstruction analysis using computer graphics[J]. Anat Embryol, 1992,186: 327-334.
    25. Aoyama N, Kikawada R, Yamashina S. Immunohistochemical study on the development of the rat heart conduction system using anti-Leu-7 antibody[J]. Arch Histol Cytol, 1993, 56: 303-315.
    26. Nakagawa M, Thompson RP, Terracio L, et al. Developmental anatomy of HNK-1 immunoreactivity in the embryonic rat heart: co-distribution with early conduction tissue[J]. Anat Embryol, 1993,187: 445-460.
    27. Sakai H, Ikeda T, Ito H, Nakamura T, et al. Immunoelectron microscopic localization of HNK-1 in the embryonic rat heart[J]. Anat Embryol, 1994, 190: 13-20.
    28. Nakamura T, Ikeda T, Shimokawa I, et al. Distribution of acetylcholinesterase activity in the rat embryonic heart with reference to HNK-1 immunoreactivity in the conduction tissue[J]. Anat Embryol, 1994,190: 367-373.
    29. Aoyama N, Tamaki H, Kikawada R, et al. Development of the conduction system in the rat heart as determined by Leu-7 (HNK-1) immunohistochemistry and computer graphics reconstruction[J]. Lab Invest, 1995, 72: 355-366.
    30. Gorza L, Schiaffino S, Vitadello M. Heart conduction system: a neural crest derivative[J]? Brain Res, 1988,457: 360-366.
    31. Ya. J, Marry. WM, Gerry. TM, et al. Expression of the smooth-muscle proteins α-smooth-muscle actin and calponin, and of the intermediate filament protein desmin are parameters of cardiomyocyte maturation in the prenatal rat heart[J]. Anat Rec, 1997, 249(4): 495-505.
    32. LI Hai-rong, JING Ya*, XU Xiu-wen, et al. Association of a-SCA, a-SMA and desmin with the myocardial maturation of the embryonic mouse heart[J]. 解剖学报, 2005, 36 (4): 422-427.
    33. Rentschler S, Vaidya DM, Tamaddon H, et al. Visualization and functional characterization of the developing murine cardiac conduction system[J]. Development, 2001, 128(10): 1785-92.
    34. Gourdie RG, Harris BS, Bond J, et al. Development of the cardiac pacemaking and conduction system[J]. Birth Defects Res C Embryo Today, 2003, 69(1): 46-57.
    35. Kamino K, Hirota A, Fujii S. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye[J]. Nature, 1981, 290: 595-597.
    36. de Haan RL. Cardia bifida and the development of pacemaker function in the early chick heart[J]. Dev Biol, 1959, 1: 586-602.
    37. Sakai T, Hirota A, Fujii S, et al. Flexibility of regional pacemaking priority in early embryonic heart monitored by simultaneous optical recording of action potentials from multiple sites[J]. Jpn J Physiol, 1983, 33: 337-350.
    38. Goss CM. The physiology of the embryonic mammalian heart before circulation[J]. Am J Physiol, 1942, 137: 146-152.
    39. Blom NA, Ottenkamp J, Deruiter MC, et al. Development of the cardiac conduction system in atrioventricular septal defect in human trisomy 21 [J]. Pediatr Res, 2005, 58(3): 516-20.
    40. Walsh EP, Saul JP, Hulse JE, et al. Transcatheter ablation of ectopic atrial tachycardia in young patients using radiofrequency current[J]. Circulation, 1992, 86: 1138-1146.
    41. Kay GN, Chong F, Epstein AE, et al. Radiofrequency ablation for treatment of primary atrial tachycardias[J]. J Am Coll Cardiol, 1993,21: 901-909.
    42. Kalman JM, Olgin JE, Karch MR, et al. "Cristal tachycardias": origin of right atrial tachycardias from the crista terminalis identified by intracardiac echocardiography[J]. J Am Coll Cardiol, 1998, 31: 451-459.
    43. Marston SB, Redwood CS. Modulation of thin filament activation by breakdown or isoform switching of thin filament proteins: physiological and pathological implications[J]. Circ Res, 2003,93(12): 1170-8.
    1. Watanabe M, Choudhry A, Berlan M, et al. Developmental remodeling and shortening of the cardiac outflow tract involves myocyte programmed cell death[J]. Development, 1998,125(19): 3809-20.
    2. Anderson RH, Webb S, Brown NA, et al. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks[J]. Heart, 2003, 89(9): 1110-8.
    3. Lamers WH, Moorman AF. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis[J]. Circ Res, 2002,91(2): 93-103.
    4. Sugishita Y, Watanabe M, Fisher SA. The development of the embryonic outflow tract provides novel insights into cardiac differentiation and remodeling[J]. Trends Cardiovasc Med, 2004,14(6): 235-41.
    5. Mcbride RE, Moore GW, Hutchins GM. Development of the outflow tract and closure of the interventricular septum in the normal human heart. Am J Anat, 1981,160(3):309-31.
    6. Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat, 1977,148(1): 85-119.
    7. Kramer TC. The partitioning of the truncus and conus and the formation of the membranous portion of the interventricular septum in the human heart[J]. Am J Anat, 1942, 3: 343-70.
    8. Virágh S, Szabó E, Challice CE. Formation of the primitive myo- and endocardial tubes in the chicken embryo[J]. J Mol Cell Cardiol, 1989,21(2): 123-37.
    9. Markwald R, Eisenberg C, Eisenberg L, et al. Epithelial-mesenchymal transformations in early avian heart development. Acta Anat (Basel), 1996, 156(3): 173-86.
    10. Runyan RB, Markwald RR. Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue[J]. Dev Biol, 1983, 95(1): 108-14.
    11. Krug EL, Mjaatvedt CH, Markwald RR. Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation[J]. Dev Biol, 1987, 120(2): 348-55.
    12. Noden DM, Poelmann RE, Gittenberger-de Groot AC. Cell origins and tissue boundaries during outflow tract development[J]. Trends Cardiovasc Med, 1995, 5: 69-75.
    13. Rana MS, Horsten NC, Tesink-Taekema S, et al. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract[J]. Circ Res, 2007, 100(7): 1000-1007.
    14. Kelly RG. Molecular inroads into the anterior heart field[J]. Trends Cardiovasc Med, 2005, 15(2): 51-6.
    15. Huston MR, Zhang P, Stadt HA, et al. Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx[J]. Dev Biol, 2006, 295: 486-497.
    16. Brown CB, Wenning JM, Lu MM, et al. Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse[J]. Dev Biol, 2004,267(1): 190-202.
    17. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation[J]. Science, 1983,220(4601): 1059-61.
    18. Yang YP, Li HR, Jing Y. Septation and shortening of outflow tract in embryonic mouse heart involve changes in cardiomyocyte phenotype and alpha-SMA positive cells in the endocardium[J]. Chin Med J (Engl), 2004,117: 1240-1245.
    19. Goor DA, Dische R, Lillehei CW. The conotruncus. I. Its normal inversion and conus absorption[J]. Circulation, 1972,46(2): 375-84.
    20. Dor X, Corone P. Migration and torsions of the conotruncus in the chick embryo heart: observational evidence and conclusions drawn from experimental intervention[J]. Heart Vessels, 1985,1(4): 195-211.
    21. de la Cruz MV, Sánchez Gómez C, Arteaga MM, et al. Experimental study of the development of the truncus and the conus in the chick embryo[J]. J Anat, 1977,123(Pt 3): 661-86.
    22. Thompson RP, Abercrombie V, Wong M. Morphogenesis of the truncus arteriosus of the chick embryo heart: movements of autoradiographic tattoos during septation[J]. Anat Rec, 1987,218(4): 434-40, 394-5.
    23. Ya J, van den Hoff MJ, de Boer PA, et al. Normal development of the outflow tract in the rat[J]. Circ Res, 1998, 82(4): 464-72.
    24. van den Hoff MJ, van den Eijnde SM, Virágh S, et al. Programmed cell death in the developing heart[J]. Cardiovasc Res, 2000, 45(3): 603-20.
    25. Cheng G, Wessels A, Gourdie RG, et al. Spatiotemporal and tissue specific distribution of apoptosis in the developing chick heart[J]. Dev Dyn, 2002, 223(1): 119-33.
    26. Kubalak SW, Hutson DR, Scott KK, et al. Elevated transforming growth factor beta2 enhances apoptosis and contributes to abnormal outflow tract and aortic sac development in retinoic X receptor alpha knockout embryos[J]. Development, 2002, 129(3): 733-46.
    27. Sugishita Y, Watanabe M, Fisher SA. Role of myocardial hypoxia in the remodeling of the embryonic avian cardiac outflow tract[J]. Dev Biol, 2004, 267(2): 294-308.
    28. Kern CB, Norris RA, Thompson RP, et al. Versican proteolysis mediates myocardial regression during outflow tract development[J]. Dev Dyn, 2007, 236(3): 671-83.
    29.Thompson RP,Fitzharris TP.Morphogenesis of the tnmcus arteriosus of the chick embryo heart:tissue reorganization during septation[J].Am J Anat,1979,156(2):251-64.
    30.Barbosky L,Lawrence DK,Karunamuni G,et al.Apoptosis in the developing mouse heart[J].Dev Dyn,2006,235(9):2592-602.
    31.Sharma PR,Anderson RH,Copp A J,et al.Spatiotemporal analysis of programmed cell death during mouse cardiac septation[J].Anat Rec A Discov Mol Cell Evol Biol,2004,277(2):355-69.
    32.Poelmann RE,Molin D,Wisse L J,et al.Apoptosis in cardiac development[J].Cell Tissue Res,2000,301(1):43-52.
    33.杨艳萍,李海荣,景雅,等.小鼠胚胎心脏流出道隔的形成机制[J].解剖学杂志2007,30(6):698-701.
    34.van den Hoff M J,Moorman AF,Ruijter JM,et al.Myocardialization of the cardiac outflow tract[J].Dev Biol,1999,212(2):477-90.
    35.Meilhac SM,Esner M,Kerszberg M,et al.Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis[J].J Cell Biol,2004,164(1):97-109.
    36.Waldo KL,Kumiski DH,Wallis KT,et al.Conotruncal myocardium arises from a secondary heart field[J].Development,2001,128:3179-3188.
    37.Verzi MP,Mcculley D J,Val SD,et al.The right ventricule,outflow tract,and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field[J].Dev Biol,2005,287:134-145.
    38.Mjaatvedt CH,Nakaoka T,Moreno-Rodriguez R,et al.The outflow tract of the heart is recruited from a novel heart-forming field[J].Dev Biol,2001,238:97-109.
    39.Kelly RG,Brown NA,Buckingham ME,et al.The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm[J].Dev Cell,2001,1:435-440.
    40.Kelly RG,Buckingham ME.The anterior heart-forming field:voyage to the arterial pole of the heart[J].Trends Genet,2002,18(4):210-6.
    41.Abu-issa R,Waldo K,Kirby ML.Heart field:one,two or more[J]? Dev Biol,2004,272:281-185.
    42.Huston MR,Kirby ML.Model systems for the study of heart development and disease Cardiac neural crest and conotruncal malformations[J].Semin Cell Dev Biol,2007,18(1):101-10
    43.van den Hoff M J,Moorman AF.Cardiac neural crest:the holy grail of cardiac abnormalities[J]? Cardiovasc Res,2000,47(2):212-6.
    44.Epstein JA,Li J,Lang D,et al.Migration of cardiac neural crest cells in Splotch embryos[J].Development,2000,127(9):1869-78.
    45. Ferguson CA, Graham A. Redefining the head-trunk interface for the neural crest[J]. Dev Biol, 2004,269(1): 70-80.
    46. Hutson MR, Kirby ML. Neural crest and cardiovascular development: a 20-year perspective[J]. Birth Defects Res C Embryo Today, 2003, 69(1): 2-13.
    47. Snider P, Olaopa M, Firulli AB, et al. Cardiovascular development and the colonizing cardiac neural crest lineage[J]. Scientific World Journal, 2007, 7: 1090-113.
    48. Waller BR 3rd, McQuinn T, Phelps AL, et al. Conotruncal anomalies in the trisomy 16 mouse: an immunohistochemical analysis with emphasis on the involvement of the neural crest[J]. Anat Rec, 2000, 260(3): 279-93.
    49. Poelmann RE, Mikawa T, Gittenberger-de Groot AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis[J]. Dev Dyn, 1998, 212(3): 373-84.
    50. Bartram U, Molin DG, Wisse LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice[J]. Circulation, 2001,103(22): 2745-52.
    51. Cai DH, Vollberg TM Sr, Hahn-Dantona E, et al. MMP-2 expression during early avian cardiac and neural crest morphogenesis[J]. Anat Rec, 2000,259(2): 168-79.
    52. Ang LC, Zhang Y, Cao L, et al. Versican enhances locomotion of astrocytoma cells and reduces cell adhesion through its G1 domain[J]. J Neuropathol Exp Neurol, 1999, 58(6): 597-605.
    53. Yang BL, Zhang Y, Cao L, et al. Cell adhesion and proliferation mediated through the G1 domain of versican[J]. J Cell Biochem, 1999, 72(2): 210-20.
    1. Rawles ME. The heart-forming areas of the early chick blastoderm[J]. Physiol Zool, 1943, 16: 22-42.
    2. Rosenquist GC. Location and movements of cardiogenic cells in the chick embryo: the heart forming portion of the primitive streak[J]. Dev Biol, 1970,22: 461-475.
    3. Rosenquist GC, de Haan RL. Migration of precardiac cells in the chick embryo: a radioautographic study[M]. In Carnegie Inst. Washington Publ, 1966, 625: 111-121.
    4. Garcia-Martinez V, Schoenwolf GC. Primitive streak origin of the cardiovascular system in avian embryos[J]. Dev Biol, 1993,159: 706-719.
    5. Tam PP, Parameswaran M., Kinder SJ, et al. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation[J]. Development, 1997,124: 1631-1642.
    6. Chen JN and Fishman MC. Genetics of heart development[J]. Trends Genet, 2000,16: 383-388.
    7. Srivastava D and Olson EN. A genetic blueprint for cardiac development[J]. Nature, 2000, 407: 221-226.
    8. Davis CL. Development of the human heart from its first appearance to the stage found in embryos of twenty paired somites[J]. Contrib Embryol, 1927, 19: 245-284.
    9. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field[J]. Dev Biol, 2001,238: 97-109.
    10. Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field[J]. Development, 2001,128: 3179-3188.
    11. Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm[J]. Dev Cell, 2001,1: 435-440.
    12. Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis[J].Dev Biol, 2003, 258: 1-19.
    13. Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis[J]. Cell, 2006, 126: 1037-48.
    14. Garg V. Insights into the genetic basis of congenital heart disease[J]. Cell Mol Life Sci, 2006,63: 1141-8.
    15. Lough J and Sugi Y. Endoderm and heart development[J]. Dev Dynamics, 2000, 217: 327-342.
    16. Larsen WJ. Human Embryology[M]. Churchill Livingstone, 1993.
    17. Kelly RG, Buckingham ME. The anterior heart-forming field: voyage to the arterial pole of the heart[J]. Trends Genet, 2002,18(4): 210-216.
    18. Viragh S, and Challice CE. Origin and differentiation of cardiac muscle cells in the mouse[J]. J Ultrastruct Res, 1973, 42: 1-24.
    19. de la Cruz MV, Sanchez Gomez C, Arteaga MM, et ah Experimental study of the development of the truncus and the conus in the chick embryo[J]. J Anat, 1977,123: 661-686
    20. de Vries PA. Evolution of precardiac and splanchnic mesoderm in relationship to the infundibulum and truncus[M]. In Mechanisms of Cardiac Morphogenesis and Teratogenesis, 1981.
    21. Zaffran S, Reim I, Qian L, et al. Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila[J]. Development, 2006, 133:4073-83.
    22. Meilhac SM, Esner M, Kelly RG, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart[J]. Dev Cell, 2004, 6: 685-98.
    23. Verzi MP, McCulley DJ, De Val S, et al. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field[J]. Dev Biol ,2005,287: 134-45.
    24. Franco D, Meilhac SM, Christoffels VM, et al. Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart[J]. Dev Biol, 2006,294: 366-75.
    25. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain[J]. Nat Genet, 1999,21:70-1.
    26. Cai CL, Liang X, Shi Y, et ah Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart[J]. Dev Cell, 2003, 5: 877-89.
    27. Rana MS, Horsten NC, Tesink-Taekema S, et al. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract[J]. Circ Res, 2007, 100(7): 1000-1007.
    28. Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5[J]. Genes Dev, 1995, 9: 1654-1666.
    29. Tanaka M, Chen Z, Bartunkova S, et al. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development[J]. Development, 1999, 126: 1269-1280.
    30. Lin Q, Schwarz J, Bucana C, et ah Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C[J]. Science, 1997, 276: 1404-7.
    31. Dodou E, Verzi MP, Anderson JP, et al. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development[J]. Development, 2004,131: 3931-3942.
    32. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells[J]. Nat Rev Genet, 2005,6: 826-35.
    33. Vong L, Bi W, O'Connor-Halligan KE, et al. MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial precursors of the primary heart field[J]. Dev Dyn, 2006,235:1809-21.
    34. von Both I, Silvestri C, Erdemir T, et al. Foxh1 is essential for development of the anterior heart field[J]. Dev Cell, 2004, 7: 331-45.
    35. Seo S, Kume T. Forkhead transcription factors, Foxcl and Foxc2, are required for the morphogenesis of the cardiac outflow tract[J]. Dev Biol, 2006, 296: 421-36.
    36. Kume T, Jiang H, Topczewska JM, et al. The murine winged helix transcription factors, Foxcl and Foxc2, are both required for cardiovascular development and somitogenesis[J]. Genes Dev, 2001,15: 2470-82.
    37. Srivastava D, Thomas T, Lin Q, et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND[J]. Nat Genet, 1997,16: 154-60.
    38. Srivastava D, Cserjesi P, Olson EN. A subclass of bHLH proteins required for cardiac morphogenesis[J]. Science, 1995,270: 1995-9.
    39. Thomas T, Yamagishi H, Overbeek PA, et al. The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness[J]. Dev Biol, 1998,196:228-36.
    40. Stennard FA, Harvey RP. T-box transcription factors and their roles in regulatory hierarchies in the developing heart[J]. Development, 2005,132: 4897-910.
    41. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1 [J]. Nat Genet, 2001, 27: 286-91.
    42. Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome regioncauses aortic arch defects in mice[J]. Nature, 2001, 410: 97-101.
    43. Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome[J]. Cell, 2001, 104: 619-29.
    44. Xu H, Morishima M, Wylie JN, et al. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract[J]. Development, 2004,131: 3217-27.
    45. 杨艳萍, 李海荣, 景雅, 等.小鼠胚胎心脏流出道隔的形成机制[J].解剖学杂志,2007,30(6): 698-701.
    46. van den hoff MJ, Kruithof BPT, Moorman AF, et al. Formation of myocardium after the initial development of the the linear heart tube[J]. Dev Biol, 2001, 240: 61-76.
    47. Jones CM, Lyons KM, Hogan BL. Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse[J]. Development, 1991, 111: 531-542.
    48. Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart[J]. Dev. Biol, 2001, 235: 449-466.
    49. Neubuser A, Peters H, Balling R, et al. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation[J]. Cell, 1997, 90: 247-255.
    50. Crossley PH and Martin GR. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo[J]. Development, 1995, 121: 439-451.
    51. Reifers F, Walsh EC, Léger S, et al. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar)[J]. Development, 2000,27: 225-235.
    52. Bergwerff M, Verberne ME, DeRuiter MC, et al. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology[J]? Circ Res, 1998, 82(2): 221-31.
    53. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation[J]. Science, 1983,220(4601): 1059-61.
    54. Waldo KL, Hutson MR, Stadt HA, et al. Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field[J]. Dev Biol, 2005,281(1): 66-77.
    55. Beall AC, Rosenquist TH. Smooth muscle cells of neural crest origin form the aorticopulmonary septum in the avian embryo[J]. Anat Rec, 1990, 226(3): 360-6.
    56. Farrell MJ, Burch JL, Wallis K, et al. FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation[J]. J Clin Invest, 2001, 107(12): 1509-17.
    57. Farrell M, Waldo K, Li YX, et al. A novel role for cardiac neural crest in heart development[J]. Trends Cardiovasc Med, 1999, 9(7): 214-20.
    58. Waldo K, Zdanowicz M, Burch J, et al. A novel role for cardiac neural crest in heart development[J]. J Clin Invest, 1999,103: 1499-1507.
    59. Conway SJ, Henderson DJ, Kirby ML, et al. Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse[J]. Cardiovasc Res, 1997, 36: 163-173.
    60. Epstein JA. Developing models of DiGeorge syndrome[J]. Trends Genet, 2001,17: S13-S17.
    61. Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region[J]. Nature, 1999,401: 379-383.
    62. Garg V, Yamagishi C, Hu T, et al. Tbxl, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development[J]. Dev Biol, 2001,235: 62-73.
    63. Moorman AF, Christoffels VM, Robert H, et al. The heart-forming fields: one or multiple?[J]. Phil Trans R Soc B, 2007, 362: 1257-1265.
    64. Abu-Issa R, Waldo K, Kirby ML. Heart fields: one, two or more? Dev Biol, 2004,272: 281-285.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.