硼硅玻璃系陶瓷结合剂的强度优化与气孔调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要包含两方面的工作:一是研制一种硼硅玻璃系高强度的陶瓷结合剂,优化烧结工艺和陶瓷结合剂配方,寻找抗折强度较高的陶瓷结合剂;二是研究陶瓷结合剂的气孔可控性,即以该陶瓷结合剂为基础,向其加入造孔剂,研究影响气孔率的相关因素。
     本文采用了冷压烧结法以硼玻璃、矿物A为主要原料,白刚玉为骨架相原料,烧制成SiO2-Na2O-B2O3体系陶瓷结合剂,研究了烧结工艺,优化了陶瓷结合剂配方。本文研究了玻璃化结合剂中氧化硼含量与其抗折强度之间的关系,研究了烧成温度、造孔剂粒度及其质量百分数对气孔率及气孔孔径的影响。
     本文用三点弯曲法测量陶瓷结合剂的抗折强度,运用X射线衍射和差热对陶瓷结合剂物相进行了分析;采用体式显微镜对气孔表面形貌进行了观察和分析。
     研究结果表明,以B2O3、SiO2和Al2O3为主要化学成分,配方10在烧成温度为900°C,等温烧结时间为2 h的条件下,结合剂的抗折强度为113.7 MPa,是一种抗折强度较高的陶瓷结合剂。向结合剂中添加金刚石烧结后,没有发生物相转变,故可以制作超硬磨具。结果表明:随着氧化硼含量的增加,结合剂的抗折强度先增加后减少,且满足R2O/B2O3=0.98和B2O3/SiO2=0.52的两条件时强度最高。
     用大理石颗粒在该结合剂中造孔,得到的气孔形状多为近球形,分布均匀,气孔直径分布在100~600μm之间。结合剂中的气孔率及孔径与烧成温度、造孔剂粒度及其质量百分数有关。气孔率可以通过改变造孔剂含量、烧结温度、造孔剂的粒度加以控制。在相同的烧结温度下,造孔剂含量越多气孔率越高,强度下降;在相同的造孔剂含量下,烧结温度升高,气孔率会增加,强度下降;在相同的烧结温度和造孔剂含量下,造孔剂的粒度增加,气孔率会下降,强度略微提高。
This paper mainly focuses on two purposes: preparing porous vitrified bond with high strength, and managing to controll the porosity and the morphology of pores in the vitrified bond.
     The vitrified bond was prepared by cold pressing and sintering method using borosilicate, mineral A and white corundum as raw materials. Bending strength of vitrified bond was measured by three-point bending. XRD and stereomicroscope were carried to investigate the phase structure and the morphology of the pores. The relationship between the content of B2O3 and the bending strength of the vitrified bond which contains boron glass was established. The effects of sintering temperature, the contents and sizes of the pore former on the porosity and the morphology of pores were investigated.
     The experimental results show that high-strength vitrified bond whose main chemical components were B2O3, SiO2 and Al2O3 was obtained after sintering at the temperature of 900 oC for 2 hours. The bending strength reached 113.0MPa. With the increasing the B2O3 content, the bending strength tended to increase and then decrease. The optimum ratios of R2O/B2O3=0.98 and B2O3/SiO2=0.52. No chemical reaction was found when diamond grits added into the vitrified bond, showing that the bond was suitable for preparing the vitrified bond diamond tools.
     The spherical-like pores with the diameters of 100~600μm distributed uniformly in the bond when using marble as pore former. The porosity and the sizes of the pores depended on the sintering temperature, the content and granularity of the pore former. At the same sintering temperature and content, the results indicated that the porosity of the vitrified bond increased as the granularity of pore former decreased, while the strength of the bond induced a little bit.
引文
1王光祖,院兴国.超硬材料.郑州:河南科学技术出版社,1996
    2黄秉麟等.陶瓷磨具制造(上).机械工业委员会机床工具工业局,1985
    3王明智等.普通磨料磨具制造.秦皇岛:燕山大学,2002
    4刘时康.陶瓷工艺原理.广州:华南理工大学出版社,1982:355-363
    5王春华,王改民.低熔玻璃料的制备及应用的研究.陶瓷研究,2000,15(2):5
    6南京化工学院等.硅酸盐物理化学.南京:中国工业出版社,1999
    7李志宏,朱玉梅,袁启明.陶瓷结合剂CBN磨具强度的影响因素研究.硅酸盐通报,2002(5):21-28
    8张习敏.陶瓷立方氮化硼磨具组织及性能的研究.[燕山大学工学硕士论文],2000:42-46
    9西北轻工业学院主编.玻璃工艺学.北京:中国轻工业出版社,1982:106-107 249-258
    10张向红.低融高强陶瓷结合剂超硬磨具的研究.[燕山大学工学硕士论文],2004:27-35
    11张红霞,王改民,华勇.陶瓷金刚石砂轮结合剂的探讨和研制.中国陶瓷,2004(6):121-122
    12张习敏,王明智,王艳辉.不同造孔剂对陶瓷结合剂性能的影响.金刚石与磨料磨具工程,2002(5):19-22
    13 E.J.Minay,P.Veronesi,V.Cannillo,C.Leonelli,A.R.Boccaccini. Control of pore size by metallic fibres in giass matrix composite foams produced by microwave heating. Journal of the European Ceramic Society 24(2004)3203-3208
    14 Cheol-Woom Kim,Delbert E.Day. Immobilization of Hanford LAW in iron phosphate glasses.Journal of Non-Crystalline Solids 331(2003)20-23
    15 Abdesselam Abdelouas,Samuel Noirault,Bernd Grambow. Immobilization of inert TRISO-coated fuel in glass for geological disposal. Journal of Nuclear Materials 358(2006)1-9
    16 O.Pinet,A.Grandjean,P.Frugier,H.Rabiller,S.Poissonnet.Leaching behavior of a polyphase glass–ceramic containment matrix.Journal of Non-Crystalline Solids 352(2006)3095-3102
    17 E.J.Minay,A.R.Boccaccini,P.Veronesi,V.Cannillo,C.Leonelli.Processing of novel glass matrix composites by microwave heating.Journal of Materials Processing Technology 155-156(2004)1749-1755
    18李国星,抻长平,李玮,刘威安,卢红霞.陶瓷材料断裂韧性测试方法.郑州大学物理工程学院河南建材,2003:15-17
    19 M.O.Prado,N.B.Messi,T.S.Plivelic,I.L.Torriani,A.M.Bevilacqua,M.A.Arribere.The effects of radiation on the density of an aluminoborosilicate glass.Journal of Non-Crystalline Solids 289(2001)175-184
    20 I.Rozenstrauha,D.Bajare,R.Cimdins,L.Berzina,J.Bossert,A.R.Boccaccini.The influence of various additions on a glass-ceramicmatrix composition based on industrial waste.Ceramics International 32(2006)115-119
    21 Alan. C. Carius. Using cBN abrasives. Tooling & Production, 2000(66):45-49
    22 Juchem. H. O, Cooley. B. A. Vitrified bond ABN tools and their advantages. Industrial Diamond Review,1983(43):3l0-3l4
    23 Nathan. P. Navarro. CBN and vitrified bond: A new focus. Machine and Tool Blue Book,1986(81):51-52
    24 Russell Kaiser. CBN wheels put production grinding on a roll. Cutting Tool Engineering,1990(42):29-34
    25 Alan Carius. The CBN outlook. American Machinist,1999(143):64
    26 Verholen. Vitrified Bond CBN Wheels. Industrial Diamond Review, 1986(6):121-122
    27王艳辉,王明智.镀Ti立方氮化硼(CBN)与玻化SiO2-Na2O-B2O3结合剂的作用.无机材料学报,1995(3):10-12
    28卞景盛,吴建中.新型金属陶瓷结合剂CBN砂轮.金刚石与磨料磨具工程,1998,107(5):26-27
    29王秦生.金刚石烧结制品.北京:中国标准出版社,2000:100-112
    30 M. J. Jackson, C. J. Davis, M. P. Hitchiner. High-speed Grinding with CBN Grinding Wheels-Application and Future Technology. Journal of Materials Processing Technology,2001(110):78-88
    31 Z. A. Zoya, R. Krishnamurthy. The Performance of cBN Tools in the Machining of Titanium Alloys. Journal of Materials Processing Technology, 2000(100):80-86
    32 Cressie. E. Holcombe. Ceramic-bonded Abrasive Grinding Tools. United States Patent, 5366524,1994
    33王光祖,院兴国主编.超硬材料.郑州:河南科学技术出版社,2006:203-206
    34金志治,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2001:60-62
    35黄秉麟.陶瓷磨具制造(上).机械工业委员会机床工具工业局,1988:219-220
    36钟素兰.陶瓷磨具制造(下).机械工业委员会机床工具工业局,1988:586-591
    37 Qi, Dongxin and Lundberg. Low Temperature Bond for Abrasive Tools. United States Patent 5863308,1999
    38 Gary M.Huzinec. Vitreous Bond Compositions for Abrasive Articles. United States Patent 6123744,2000
    39 Sigalas, Iacovos and Robert. Abrasive Body. United States Patent 5649984,1997
    40 M.J.Jackon, B.Mills. Materials Selection Applied to Vitrified Aluminum & cBN Grinding Wheels. Journal of Materials Processing Technology,2000,108:114-124
    41 Thomoas J.Clark. Coating for Improved Retention of cBN in Vitreous Bond Matrices. United States Patent 5300129,1994
    42刘时康.陶瓷工艺原理.广州:华南理工大学出版社,1982:355-363
    43李荣久.陶瓷-金属复合材料(第二版).北京:冶金工业出版社,2004(3):95-105
    44 Philippe D.St.Pierre. Refractory Metal Oxide Coated Abrasive and Grinding Wheels Made Thereform. United States Patent 5104422,1992
    45 Michael Seal, Leonardo. Etched Metal Coated Diamond Grains in Grinding Wheels. United States Patent 3528788,1967
    46 Matearrese. Dual-coated Diamond Pellets and Saw Blade Segments Made Therewith. United States Patent 5143523,1992
    47 Pipkin, Novel J.Metal Coating of Abrasive Particles. United States Patent 4399167,1983
    48 D.Lynn.Julien. Titanium-nitride and Titanium-carbide Coated Grinding Tools and Metal Therefor. United States Patent 5308367,1994
    49 C-P.Kinges. Diamond Coating and CBN Coatings for Tools. International Journal of Refractory Metals & Hard Materials,1993,16:171-176
    50夏晓风.砂轮结合剂的组成对磨削性能的影响(译文).三磨科技,2002(1):35-46
    51温熙宇,王明智等.有色金属涂层的CBN砂轮陶瓷结合剂研究磨料磨具与磨削,1995,86(2):5-7
    52侯永改,王改民.影响低温烧成陶瓷结合剂强度因素的探讨.陶瓷研究,2001,16(2):5-7
    53李合庆.陶瓷砂轮及其制造方法(译文).磨料磨具通讯,2001(8):4-10
    54 Weiguang Chi, Dongliang Jiang, Zhengren Huang.Sintering Behavior of Porous SiC Ceramics.Ceramics International,2004(6):869-874
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.