超支化聚合物的制备及对棉纤维的功能化改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然棉纤维,因具有手感柔软、可再生性、生物可降解性和吸湿性能优异等优点,被广泛应用于纺织领域,但在活性染料染色过程中,往往需要加入30~150g/l的无机盐来提高上染率和固色率,容易对环境造成污染;同时在服用过程中极易附着微生物,并为其繁殖和传播创造条件,从而造成纤维强力的损伤、产生污点和褪色、产生令人不愉快的气味,甚至造成疾病的传播,影响人体的健康。因此本文的研究目的就是制备一种水溶性超支化聚合物HBP-NH2及其季铵盐HBP-HTC,并将其应用于棉纤维的功能化改性,以提高棉纤维的染色性能和赋予其抗菌性能。
     以丙烯酸甲酯和二亚乙基三胺为原料,通过缩聚反应制备了HBP-NH2;然后以2,3-环氧丙基三甲基氯化铵(GTMAC)为改性剂,继续与HBP-NH2反应,制备了HBP-HTC。分别采用FTIR、1HNMR和GPC对产物结构和分子量分布进行了分析,并讨论了HBP-NH2和HBP-HTC的溶解性能、紫外吸收性能及热性能等。
     采用HBP-NH2水溶液直接改性棉织物以提高其染色性能,应用于部分活性染料的无盐染色,HBP-NH2直接法改性棉织物(HCF)取得了和未改性棉织物传统有盐染色相当的得色量、色牢度、匀染性能和透染性能。为了进一步提高棉织物的染色性能,先用NaIO4将棉织物轻微选择性氧化,然后与HBP-NH2反应,制得HBP-NH2接枝法改性棉织物(HGCF);FTIR分析表明,氧化棉纤维中的醛基和HBP-NH2发生了反应,并以共价键结合;在优选的工艺条件下,HCF和HGCF表面HBP-NH2的吸附量约为1.52 mg/g和3.68 mg/g;应用于活性染料无盐染色,HGCF的K/S值、耐摩擦色牢度、耐洗色牢度和匀染性能均令人满意。同时研究了水溶液中HCF和HGCF纤维表面的ζ电位、活性染料染色热力学、染色动力学以及HCF和HGCF染色色光的变化等。
     以E. coli和S. aureus为例研究了HBP-HTC水溶液的抑菌性能,HBP-HTC的最小抑菌浓度约为20 ppm;采用HBP-HTC水溶液浸渍法处理棉织物以赋予其抗菌性能,测试结果表明,HBP-HTC整理棉织物对S. aureus和E. coli的抑菌率分别为99.92%和99.66%;洗涤20次后,仍保留99.00%的抑菌率,体现了一定的耐久性。
     以HBP-NH2和AgNO3为原料一步法制备了纳米银胶体溶液;分别采用FTIR、DLS、TEM、UV-vis和XRD表征纳米银的形成;纳米银的平均粒径约为5~30 nm。以S. aureus和E. coli为例研究纳米银胶体溶液的抗菌性能,纳米银最小抑菌浓度为3μg/ml。采用20 mg/l纳米银胶体溶液对棉织物进行抗菌整理,抗菌棉织物对S. aureus和E. coli的抑菌率分别为99.01%和99.26%,洗涤20次后,仍保留98.77%的抑菌率,体现了优异的耐洗性能;同时采用SEM和XPS分析了纤维表面纳米银的形态和化学状态。
     研究结果表明,超支化聚合物可应用于棉纤维的功能化改性,这不仅拓宽了超支化聚合物的应用领域,同时也为其它纺织纤维的功能化改性提供了一种新的思路。
Cotton, a most important natural textile, is widely used in clothing fields for its excellent properties such as regeneration, bio-degradation, softness, affinity to skin, and hygroscopic property. However, when dyeing cotton fabric with reactive dyes, large quantities of salt (30-150 g/l) are needed to overcome the static repulsion between cotton fibers and reactive dyes in order to promote dyeability and simultaneously result in heavy environmental pollution. In addition, cotton fabric is susceptible to micro-organisms, such as bacteria and fungi. When multiplying in cotton fabric, micro-organisms not only cause physicochemical degradation such as discoloration, mechanical strength loss, and foul odor generation, but also may adversely affect human health. The purpose of the present work is to synthesize a water-soluble amino-terminated hyperbranched polymer (HBP-NH2) and 2-Hydroxypropyltrimethylammonium chloride hyperbranched polymer (HBP-HTC). Then apply the HBP-NH2 and HBP-HTC to fuctional modification of cotton fabric to improve its dyeability and provide it with antimicrobial properties.
     The HBP-NH2 was synthesized from methyl acrylate and diethylene triamine by polycondensation. Then the HBP-HTC was synthesized from HBP-NH2 and 2, 3-Epoxypropyltrimethylammonium chloride (GTMAC) as a grafting agent in aqueous solution. Their molecular weights and possible structure were characterized by Gel permeation chromatography (GPC), Fourier transform infrared spectrophotometry (FTIR) and Nuclear magnetic resonance spectroscopic (1H-NMR) respectively. Dissolution characteristic, thermal performance and UV absorbing capability of the HBP-NH2 and HBP-HTC were also studied for their application in textile fields.
     In order to improve the dyeability of the cotton fabric with reactive dyes, the cotton fabric was pretreated with HBP-NH2 aqueous solution directly. The dyed HBP-NH2 pretreated cotton fabric (HCF) exhibited similar K/S value even in the absence of electrolyte when dyed with some reactive dyes. The washing fastness, rubbing fastness and levelling properties of the dyed HCF in salt-free dyeing were also good in comparison to the dyed CF in conventional dyeing. To further improve the dyeability of the cotton fabric and achieve salt-free dyeing with reactive dyes, the oxidized cotton farbics were obtained firstly by selective oxidation of cotton fabric with sodium periodate aqueous solution. Subsequently, the HBP-NH2 grafted oxidized cotton fabric (HGCF) was prepared by the reaction between the oxidized cotton fabric and the HBP-NH2 as a grafting agent in aqueous solution. Fourier transform infrared spectrophotometry (FTIR) indicated that all the aldehyde group of the oxidized cotton fibers have reacted with amino groups of HBP-NH2. Under the selected conditions, the amount of the HBP-NH2 adsorbed or grafted onto the HCF and HGCF is about 1.52 mg/g and 3.68 mg/g respectively.The dyed HGCFs with reactive dyes in salt-free dyeing displayed markedly enhanced colour strength, and the washing fastness, rubbing fastness and leveling properties were satisfactory. In order to reveal the mechanism of salt-free dyeing on HCF and HGCF with reactive dyes, theζ-potential of HCF and HGCF in the liquid phase, dyeing thermodynamics, dyeing dynamics and hue changes of HCF and HGCF dyed with reactive dyes were examined.
     The antimicrobial activity the HBP-HTC aqueous solution was studied against Gram-negative bacteria E. coli and Gram-positive bacteria S. aureus. The minimum inhibitory concentration of the HBP-HTC aqueous solution is about 20 ppm. The cotton fabric was treated with HBP-HTC aqueous solution by the impregnation method to provide it with antimicrobial properties. The antimicrobial activities of the HBP-HTC treated cotton fabrics were evaluated quantitatively. The results indicated that the HBP-HTC treated cotton fabric showed 99.92% of bacterial reduction to S. aureus and 99.66% of bacterial reduction to E. coli, respectively. The antimicrobial activities of the HBP-HTC treated cotton fabrics were maintained at over 99.00% reduction level even after being exposed to 20 consecutive home laundering conditions.
     Nano-silver colloidal solutions were prepared in one step by mixing AgNO3 aqueous solution and HBP-NH2 aqueous solution. The formation of silver colloid nanoparticles was characterized by Fourier Transform Infrared Spectrophotometry (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), UV/Visible Absorption Spectrophotometry and X-ray Diffraction (XRD). The produced silver colloidal nanoparticles have average sizes ranged from 5 to 30 nm. The antimicrobial activity of the nano-silver colloidal solutions was evaluated quantitatively against E. coli and S. aureus. The minimum inhibitory concentration of the nano-silver colloidal solution is about 3μg/ml. To provide cotton fabrics with antibacterial properties, cotton fabric samples were treated with 20 mg/l nano-silver colloidal solution by the impregnation method. The silver-treated cotton fabrics showed excellent and durable antimicrobial effect against both S. aureus and E. coli. Still over 98.77 % of bacterial reduction was maintained even after exposure to 20 consecutive home laundering conditions. In addition, the Ag-clusters on the cotton fabrics were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).
     All these studies indicated that hyperbranched polymer can be applied to functional modification of cotton. And these studies may widen the application fields of the hyperbranched polymer and provide a new idea for functional modification of other fibres or fabrics.
引文
[1] Flory PJ. Molecular size distribution in three dimensional polymers:Ⅵbranched polymer containing A-R-Bf-1 type units [J]. Journal of American Chemical Society, 1952, 74: 2718 - 2723.
    [2] Kim YH, Webster OW. Hyperbranched polyphenylenes [J]. Polymeric Preprints, 1988, 29(2): 310 - 311.
    [3] Kim YH, Webster OW. Water-soluble hyperbranched polyphenylene: a unimolecular micelle [J]. Journal of the American Chemists Society, 1990, 112: 4592-4593.
    [4] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications [J]. Progress in Polymer Science, 2004, 29: 183 - 275.
    [5]曹民干,余骏,吴磊.超支化聚合物的制备及其应用[J].塑料, 2006, 35(3): 45 - 49.
    [6]曲忠先,焦剑,王轶洁等.超支化聚合物的研究进展[J].材料导报, 2006, 20(3): 25 - 28.
    [7] Ishizu K, Takahashi D, Takeda H. Novel synthesis and characterization of hyperbranched polymers [J]. Polymer, 2000, 41: 6081 - 6086.
    [8]赵辉,罗运军,宋海香.超支化聚合物研究进展(Ⅱ)超支化聚合物的合成[J].热固性树脂, 2004, 19 (5) : 31 - 34.
    [9]魏焕郁,施文芳.超支化聚合物的结构特征、合成及其应用[J].高等学校化学学报, 2001, 22 (2) : 338 - 344.
    [10] Frechet JMJ, Henmi M, Gitsov I, et, al. Self-condensing vinyl polymerization: an approach to dendritic materials [J]. Science, 1995, 269: 1080 - 1083.
    [11] Suzuki M, Yoshida S, Shiraga K, et, al. New ringopening polymerization via a p-allylpalladium complex [J]. Macromolecules, 1998, 31: 1716 - 1719.
    [12] Sunder A, Hanselmann R, Frey H, et, al. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization [J]. Macromolecules, 1999, 32: 4240 - 4246.
    [13] Kudo H, Nishikubo T. Synthesis of hyperbranched polyether: anionic ring-opening polymerization of 3-ethyl-3-( hydroxymethyl) oxetane using potassium tert-butoxide as an initiator [J]. Polymer Preprints, 2002, 43: 1087 - 1088.
    [14] Chang HT, Frechet JJ. Proton transfer polymerization: a new approach to hyperbranched polymers [J]. Journal of American Chemical Society, 1999, 121: 23l3 - 2314.
    [15] Gong CG, Frechet JMJ. Proton transfer polymerization in the preparation of hyperbranched polyesters with epoxide chainends and internal hydroxyl functionalities [J]. Macromolecules, 2000, 33: 4997-4999.
    [16] Tomalia DA, Hedstrand DM, Ferritto MS. Comb-bust dendrimer topology: new macromolecular architecture derived from dendritic grafting [J]. Macromolecules, 1991, 24: 1435 - 1438.
    [17] Gauthier M, Moeller M. Uniform highly branched polymers by anionic grafting: arborescent graft polymer [J]. Macromolecules, 1991, 24: 4548 - 4553.
    [18]王治国,童身毅.超支化聚合物在涂料中的应用[J].中国涂料, 2003, 2: 27 - 29.
    [19]毛淑才,瞿金清,陈焕钦.超支化聚合物及其在环保涂料中的应用[J].化工新型材料, 2005, 33(8): 27 - 30.
    [20] Johansson M, Malmstrǒm E, Jansson A, et, al. Novel concept for low temperature curing powder coatings based on hyperbranched polyesters [J]. Journal of Coatings Technology, 2000, 72: 49 - 54.
    [21] Van Benthem RATM. Novel hyperbranched resins for coating applications [J]. Progress in Organic Coatings, 2000, 40: 203 - 214.
    [22] Mancyzk K, Szewczyk P. Highly branched high solids alkyd resins [J]. Progress in Organic Coatings, 2002, 44: 99 - 109.
    [23] Zhu SW, Shi WF. Flame retardant mechanism of hyperbranched polyurethane acrylates used for UV curable flame retardant coatings [J]. Polymer Degradation and Stability, 2002, 75: 543 - 7.
    [24] Lange J, Stenroos E, Johansson M, Malmstrǒm E. Barrier coatings for flexible packaging based on hyperbranched resins [J]. Polymer, 2001, 42: 7403 - 7410.
    [25]寇会光,施文芳.超支化聚(胺-酯)的合成及其光固化性能研究[J].高分子学报, 2000, 10: 554 - 558.
    [26] Van B, Rolf ATM. Novel hyperbranched resins for coating applications [J]. Progress in Organic Coating, 2000, 40: 203 - 214.
    [27]李爱英,常杰云,王凯全等.超支化聚合物在共混改性中的应用[J].塑料科技, 2005, 169(5): 54 - 58.
    [28] Mulkern TJ, Beck-Tan NC. Processing and characterization of reactive polystyrene/hyperbranched polyester blends [J]. Polymer, 2000, 41: 3193 - 3203.
    [29] Xu G, Shi WF, Gong M. Photopolymerization and toughening performance in polypropylene of hyperbranched polyurethane acrylate [J]. European Polymer Journal, 2004, 40: 483 - 491.
    [30] Xu G, Shi WF, Shen SJ. Curing kinetics of epoxy resins with hyperbranched polyesters ad toughening agents [J]. Journal of Polymer Science, partB: Polymer Physics, 2004, 42: 2649-2656.
    [31] Liu HB, Uhrich KE. Drug release characteristics of munimolecular polymeric miclles [J]. Journal of Controlled Release, 2000, 68: 167 - 174.
    [32] Miller LL, Duan RG, Tully DC, et, al. Electrically conducting dendrimers [J]. Journal of the American Chemical Society, 1997, 119: 1005 - 1010.
    [33] Tao XT, Zhang YD, Maruyama S, et, al. Linear, macrocyclic, and hyperbranched polymers for electroluminescent applications [J]. Organic Light-Emitting Materials and Devices II, 1998, 3476: 278 - 286.
    [34] Bao CY, Jin M, Lu R, et, al. Hyperbranched poly( amine-ester) temp lates for the synthesis of Au nanoparticles [J]. Materials Chemistry and Physics, 2003, 82: 812 - 817.
    [35] Tan S, Erol M, Attygalle A, et, al. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/hepes solutions [J]. Langmuir. 2007, 23(19): 9836 -9843.
    [36] Peter E. Froehling. Dendrimers and dyes-a review [J]. Dyes and Pigments, 2001, 48: 187 - 195.
    [37] Baars MWPL, Froehlin PE, Meijer EW. Liquid-liquid extractions using poly (propylene imine) dendrimers with an apolar periphery [J]. Chemical Communications, 1997, 20: 1959 - 1960.
    [38]方宇,唐黎明,邱藤等.超两亲性超支化聚(酯-胺)在染料相转移中的应用[J].高分子学报, 2004, 2: 309 - 312.
    [39] Patent WO/PCT98/12376(DSM).
    [40] Burkinshaw SM, Froehling PE, Mignanelli M. The effect of hyperbranched polymers on the dyeing of polypropylene fibres [J]. Dyes and Pigments, 2002, 53: 229 - 235.
    [41] Patent WO/PCT97/19987(DSM).
    [42] Burkinshaw SM, Mignanelli M, Froehling PE, et, al. The use of dendrimers to modify the dyeingbehaviour of reactive dyes on cotton [J]. Dyes and Pigments.2000, 47: 259 - 267.
    [43]徐厚才,罗运军,李国平等.低代数聚酰胺-胺树形分子在棉纤维染色中的应用研究[J].印染助剂, 2005, 22(7): 20 - 23.
    [44]周贵忠,谭惠民,罗运军等.聚酰胺-胺树形分子在染料废水处理中的应用研究[J].环境科学与技术, 2003, 6(1): 1 - 2.
    [45]谢孔良,孙燕.活性染料无盐染色技术研究进展[J].纺织导报, 2005, (7): 78 - 82.
    [46]张永金,张波兰.棉纤维活性染料无盐染色理论研究进展[J].印染, 2001, 8: 47 - 49.
    [47]陈莉.棉改性技术的研究进展[J].现代纺织技术, 2006, (6): 50 - 52.
    [48]陈宇岳,许云辉,王华锋.棉纤维绿色改性研究进展及其产品开发[J].纺织导报, 2005, (1): 6 - 11.
    [49]宋心远.活性染料低盐和无盐染色[J].印染助剂, 2006, (12): 1 - 3.
    [50]赵丽丽,朱方龙.智能纺织品概述[J].国外纺织技术, 2003(12):1 - 5.
    [51] Lewis DM, Sun LJ. Quaternary reactive dyes containing a thioether-ethyl sulphone group [J]. Coloration Technology, 2003, 119: 286 - 291.
    [52] Evas GE, Shore J, Stead CV. Dyeing behavior of cotton after pretreatment with reactive quatemary compounds [J]. JSDC, 1984, 100: 304 - 315.
    [53] Peter JH, Adham HT. Improving the environmental and economic aspects of cotton dyeing using a cationised cotton [J]. Coloration Technology, 2001, 117: 282 - 288.
    [54] Wu TS, Chen KM. New cationic agents for improving the dyeability of cellulose fibers [J]. JSDC,1993, 109:153 - 158.
    [55]余逸男,陈永林.纤维素纤维阳离子化改性剂PECH-amine的研制[J].纺织学报, 2001,12(3): 138 - 140.
    [56]杨锦宗.活性染料与反应性染色[J].大连理工大学学报. 1999, 39(2): 235 - 242.
    [57]余逸男.阳离子改性剂聚环氧氯丙烷胺化物的应用[J].纺织学报, 2001, 22(4): 4 - 5.
    [58] Lewis DM著.郑敏译.活性染料的研究进展和应用[J].国外纺织技术, 2002, 2: 33 - 36.
    [59] Lim SH. and Hudson SH. Application of a Fiber-reactive Chitosan Derivative to Cotton Fabric as a Zero-Salt dyeing Auxiliary [J]. Coloration Technology, 2004, 120: 108 - 113.
    [60]郑庆康,朱谱新.反应性阳离子化剂的合成[J].印染助剂. 2001, 18(4): 5 - 8.
    [61] Guo GY, Chen YL. Improving the dyeability of cotton with cotton with reactive dyes [J]. American Dyestuff Reporter, 1994, 83: 58 - 66.
    [62] Seong SH, Ko SW. Synthesis, application and evaluation of cationising agents for cellulloseic fibers [J]. JSDC, 1998, 114: 124 - 129.
    [63] Ma W, Zhang SH, Tang BT et, al. Pretreatment of cotton with poly (vinylamine chloride) for salt-free dyeing with reactive dyes [J]. Coloration Technology, 2005, 121: 193 - 198.
    [64] Richard S. Blackburn, Stephen M. Burkinshaw. Treatment of cotton with cationic, nucleophilic polymers to enable reactive dyeing at neutral pH without electrolyte addition [J]. Journal of Applied Polymer Science, 2003, 89: 1026 - 1031.
    [65] Zhang M, Ju BZ. Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing [J]. Carbohydrate Polymers, 2007, 69(1): 123 - 129.
    [66] Zhang SF. Continous dyeing of cationised cotton with reactive dyes [J]. Coloration Technology, 2005, 121(4): 183 - 186.
    [67] Gupta D, Haile A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan [J]. Carbohydrate Polymers.2007, 69: 164 - 171.
    [68] Rattanaphani S, Chairat M, Bremner JB, Rattanaphani V. An adsorption and thermodynamic study of lac dyeing on cotton pretreated with chitosan [J]. Dyes and Pigments, 2007, 72: 88 - 96.
    [69]侯文杰,张淑芬.交联染色用非醛交联剂的发展与展望[J].印染, 2002(4): 37 - 40.
    [70] Nahed S, Ahmed E. The ues of sodium edate in the dyeing of cotton with reactive dyes [J]. Dyes and Pigments, 2005, 65(3): 221 - 225.
    [71] Prabu HG, Sundrarajan M. Effect of the bio - salt t risodium cit rate in the dyeing of cotton [J]. Coloration Technology, 2002(118): 131 - 134.
    [72]管宇,桂明胜.聚羧酸钠盐在纯棉织物活性染料染色中的应用[J].印染, 2006 ,32(6): 4 - 6.
    [73] Lim SH, Hudson SM, Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish [J]. Coloration Technology, 2004, 56: 227 - 234.
    [74]朱亚伟,任学宏,胡韵.纺织品抗菌后整理加工现状[J].印染助剂, 2005, 22(1): 10 - 14.
    [75]杨娜,严玉蓉,赵耀明.银系抗菌剂及其在纺织材料中的应用[J].化纤与纺织技术, 2004, 3: 20 - 23.
    [76]何秀玲,郭腊梅.纳米载银无机抗菌剂及其在纺织品上的应用[J].上海纺织科技, 2003, 31(6): 54 - 56.
    [77]张荣,龙柱.壳聚糖与环氧丙基三甲基氯化铵接枝物的制备及其应用[J].造纸化学品, 2007, 19(2): 19 - 22.
    [78]张昕,高保娇,朱勇等.季铵化聚乙烯亚胺的抗菌性能研究[J].高分子学报, 2007, 7: 627 - 632.
    [79]李健婷,刘艳芳,彭雪萍.超支化吉米奇( Gemini)季铵盐的合成、性能与应用[J].精细与专用化学品, 2006, 14(增刊): 40 - 41.
    [80]何秀玲,郭腊梅.纳米载银抗菌剂的制备及其对棉织物整理的研究[J].印染助剂, 2004, 21(2): 32 - 34.
    [81]关芳兰.壳聚糖载银抗菌整理剂的改性及整理效应的研究[J].印染助剂, 2007, 24(10): 33 - 35.
    [82] Gao C, Xu YM, Zhang HM, et, al. AB+Cn. approach to aliphatic hyperbranched polyamides [J]. Polymer Preprints, 2003, 44(1): 845 - 846.
    [83] Gao C, Yan DY. The approach to water-soluble hyperbranched polyamides with terminal amino groups and the prepared hyperbranched polymers. Chinese Applied Patent, 02111578.8, 2002.
    [84]计兵,杨金田.丁二酸酐和二乙基三胺合成端氨基超支化聚酰胺的研究[J].通化师范学院学报, 2006, 27(2): 61 - 63.
    [85]曾宏波,邢晓东,王晓工.超支化聚季铵盐及其制备方法,中国发明专利, 02128905.0; 2003.
    [86]熊曙昕.用莫尔法和佛尔哈德法测定食品中氯化钠方法误差讨论[J].青海环境, 2000, 10(1): 39 - 42
    [87]朱涛,李崇明.佛尔哈德法测定复混肥料中氯离子的含量[J].化肥工业, 2002, 29(1): 23-27
    [88]肖玲,樊木,杜予民等.羟丙基三甲基氯化铵壳聚糖制备的可控性研究[J].分析科学学报, 2004, 20(4): 357 - 359.
    [89]林友文,许晨,卢灿辉. O-2′-羟丙基三甲基氯化铵壳聚糖的合成与表征[J].合成化学, 2000, 8(2): 167 - 170.
    [90]肖金秋,修景海,吴祖望. SN型活性染料在羊毛纤维上匀染性研究[J].大连理工大学学报, 2003, 43(5): 586 - 590.
    [91]何雪梅,唐人成.酸性染料在纺织用甲壳胺纤维上的吸附[J].染料与染色, 2005, 42(2): 46 - 48.
    [92]高树珍.羊毛酸性染料超声波染色动力学研究[J].印染, 2004, 17: 9 - 12.
    [93]郭熙桃,赵耀明,宁平等.复合胺改性PA6纤维的染色动力学与热力学研究[J].合成纤维工业, 2006, 29(5): 27 - 32.
    [94]任信.弱酸性、中性染料对氨纶的染色及其在氨纶上的吸附等温线[J].苏州大学学报(工科版), 2005, 25(3): 63 - 68.
    [95]刘昌龄译.变性棉织物用活性染料染色动力学研究.印染译丛, 1998, (4) :17 - 20.
    [96]武利顺,王庆瑞.纤维素的选择性氧化反应及其体系[J].人造纤维,2000, 157(3): 27 - 31.
    [97] Jurczak J, Gryko D, Kobrzycka E, et, al. Effective and mild method for preparation of optically active 2-amino aldehydes via TEMPO oxidation[J]. Tetrahedron, 1998, 54: 6051.
    [98] Calvini P, Gorassini A, Luciano G, et, al. FTIR and WAXS analysis of periodate oxycellulose: Evidence for a cluster mechanism of oxidation [J]. Vibrational Spectroscopy, 2006, 40(2): 177 - 183.
    [99]孙宾,武利顺,梁伯润.医用可吸收氧化纤维素及其氧化体系研究进展[J].中国纺织大学学报, 2000, 26(4): 110 - 114.
    [100] Blair SD, Backhouse CM, Harper R, et, al. McCollum CN. Comparison of absorbable materials for surgical haemostasis [J]. British Journal of Surgery, 2005, 75: 969 - 971.
    [101]吉冈敏雄.组织修复用纤维[J].纤维学会志, 1998(11): 401.
    [102] Yagi M, Kato S, Nishitoba T, et, al. Effect of chitosan-coated dialdehyde cellulose, a newly developed oral adsorbent, on glomerulonephritis induced by Anti-Thy-1 antibody in rats[J]. Journal of Nephrol Dialy Transplant, 1998, 78:433 - 439.
    [103] Boeden HF, Pommerening K, Becker M, et, al. Bead cellulose derivatives as supports for immobilization and chromatographic purification of proteins[J]. Journal of Chromatography, 1991, 552(1-2): 389 - 414.
    [104]叶君,熊犍,梁文芷.邻苯二亚胺纤维素水溶液的荧光行为[J].应用化学, 1998, 15(5): 50 - 52.
    [105] Makekawa E, Koshijima T. Preparation and Structural Consideration of Nitrogen-Containing Derivatives Obtained from Dialdehyde Celluloses [J]. Journal of Applied Polymer Science, 1991, (42): 169 - 178.
    [106]许云辉,陈宇岳,林红.氧化纤维素的研究进展及发展趋势[J].苏州大学学报, 2006, 26(2) :1 - 6.
    [107]赵希荣,夏文水.高碘酸钠氧化棉布纤维反应条件的研究[J].纤维素科学与技术. 2003, 11(3): 17 - 21.
    [108]许云辉,林红,陈宇岳.选择性氧化棉纤维的聚集态结构[J].纺织学报, 2006, 27(11):1 - 5.
    [109] Fan Q G, Lewis D M, Tapley K N. Characterization of Cellulose Aldehyde Using Fourier Transform Infrared Spectroscopy [J]. Journal of Applied Polymer Science, 2001, (82): 1195 - 1202.
    [110]许云辉,林红,陈宇岳.选择性氧化棉纤维的聚集态结构[J].纺织学报, 2006, 27(11):1 - 5.
    [111] Liu XD, Nishi N, Tokura S, et, al. Chitosan coated cotton fiber: preparation and physical properties [J]. Carbohydrate Polymers, 2001, 44: 233 - 238.
    [112]许云辉,黄晨,陈宇岳等.棉纤维经胶原蛋白涂覆处理后的结构[J].纺织学报, 2007, 28(6):1 - 4.
    [113]许云辉,陈宇岳,黄晨.胶原蛋白涂覆棉纤维的研究[J].纺织学报, 2007, 28(5):22 - 27.
    [114]姚理荣,林红,陈宇岳.经胶原蛋白处理的氧化棉性状比较[J].苏州科技学院学报(工程技术版). 2007, 20(2): 70 - 74.
    [115]杨莉,林红,陈宇岳等.氧化棉纤维经角蛋白溶液处理后的结构及性能研究[J].南通大学学报(自然科学版), 2007, 20(2): 58 - 61.
    [116] Marte RL, Owens ML. Rapid determination of carbonyl content in acrylonitrile [J]. Analytical Chemistry, 1956, 28(8): 1312 - 1314.
    [117]钱军民,李旭祥.高碘酸钠氧化纤维素的研究[J].现代化工, 2001, 21(7): 27 - 30.
    [118]徐厚才,罗运军,谭惠民等.树形聚酰胺胺与Cu2+的络合作用[J].分析测试学报, 2001, 20(3): 1 - 4.
    [119]安登魁.药物分析[M],济南:济南出版社, 1992: 66.
    [120] Nurdinn N, Helary G, Sauvet G.Biocidal polymars active by contact III: Ageing of biocidal polyurethane coatings in water [J]. Journal of Application Polymer Science, 1993, 50: 671 - 678.
    [121] Kenawy ER, Abdel-Hay FI, El-Shanshoury AERR, El-Newehy MH.Biologically active po lym ers:Synthesis and antimicrobial activity of modified glycidyl methacrylate po lymars having a quaternary ammonium and phosphonium groups[J]. Journal of Controlled Release, 1998, 50: 145 - 152.
    [122]江山,王立,俞豪杰.新型有机高分子抗菌剂[J].高分子通报, 2002(6): 57 - 62.
    [123] Jeong JH, Byoun YS, Lee YS.Poly (styrene-alt-maleic anhydride)-4-aminophenol conjugate: synthesis and antibacterial activity [J]. Reactive and Functional Polymers, 2002, 50: 257 - 263.
    [124] Kenawy ER. Biologically active polymers. IV. Synthesis and antimicrobial activity of polymers containing 8-hydroxyquinoline moiety. Journal of Applied Polymer Science, 2001, 82: 1364 - 1374.
    [125]张艳艳,马启敏,江志华.壳聚糖季铵盐的合成及性质研究[J].中国海洋大学学报, 2005, 35 (3): 459~462. [126 Jia Z, Shen D, Xu W. Synthesisand antibacterial activities of quaternary ammonium salt of chitosan [J]. Carbohydrate Research, 2001(1), 333: 1 - 6.
    [127] Yamamoto O, Komatsu M. Effect of lattice constant of zinc oxide on antibacterial characteristics [J]. Journal of Materials Science, 2004, (15): 847~851.
    [128] Klasen HJ. A historical review of the use of silver in the treatment of burns, I. Earlyuses [J]. Burns, 2000, 26 (2) :117 - 130.
    [129] Hugo WB, Russell AD.Types of antimicrobial agents [C] // Russell AD, Hugo WB, Ayliffe GAJ.Principles and Practice of Disinfection, Preservation and Sterilisation. Oxford: Blackwell Scientific Publications, 1982: 8 - 106.
    [130] Demling RH, DeSanti L. Effects of silver on wound management [J]. Wounds, 2001, 13 (1 Suppl A ) : 5 - 14.
    [131]刘吉平,田军编.纺织科学中的纳米技术[M].北京:织工业出版社, 2003.
    [132]石宏亮.利用纳米技术开发抗菌纤维的探讨[J].产业用纺织品, 2001, (6): 13 - 15.
    [133] Ovington LG.The truth about silver [J]. Ostomy Wound Manage, 2004, 50 (9 A suppl): 1S - 10S.
    [134] Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silvercompounds [J]. FEMS Microbiology Reviews, 2003, 27 (2-3): 341- 353.
    [135] Morones JR, Elechiguerra JL, Camacho A, et, al. The bactericidal effect of silver nanoparticles [J]. Nanotechnology, 2005, 16: 2346 - 2353.
    [136] Baker C, Pradhan A, Pakstis L, et, al. Shah SI. Synthesis and antibacterial properties of silver nanoparticles [J]. J. Nanosci Nanotechnol, 2005, 5(2): 244 - 249.
    [137] Chen X, Schluesener H. Nanosilver: a nanoproduct in medical application [J]. J. Toxicology Letters, 2008, 176: 1 - 12.
    [138] Alt V, Bechert T, Steinru?ke P, et, al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement [J]. Biomaterials, 2004, 25(18): 4383 - 4391.
    [139] Gosheger G, Hardes J, Ahrens H, et, al. Silver-coated megaendoprostheses in a rabbit model-an analysis of the infection rate and toxicological side effects [J]. Biomaterials, 2004, 25(24): 5547 - 5556.
    [140] Rupp ME, Fitzgerald T, Marion N, et, al. Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance [J]. American Journal of Infection Control, 2004, 32: 445 - 450.
    [141] Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter [J]. International Journal of Antimicrobial Agents, 2004, 23: S75 - S78.
    [142] Strathmann M, Wingender J. Use of an oxonol dye in combination with confocal laser scanning microscopy to monitor damage of Staphylococcus aureus cells during colonization of silver-coated vascular grafts [J]. International Journal of Antimicrobial Agents, 2004, 24 (3): 36 - 42.
    [143] Ohashi S, Saku S, Yamamoto K. Antibacterial activity of silver inorganic agent YDA filler [J]. Journal of Oral Rehabilitation, 2004, 31(4): 364 - 367.
    [144] Bosetti M, MassèA, Tobin E, et, al. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity [J]. Biomaterials, 2002, 23(3): 887 - 892.
    [145] Gauger A, Mempel M, Schekatz A, et, al. Silver-coated textiles reduce Staphylococcus aureus colonization in patients with atopic eczema [J]. Dermatology, 2003, 207(1): 15 - 21.
    [146] Lee HJ, Jeong SH. Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics [J].Textile Research Journal, 2005, 75(7): 551 - 556.
    [147] Yuranova T, Rincon AG, Bozzi A, et, al. Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 161(1): 27 - 34.
    [148] Jeong SH, Yeo SY, Yi SC. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of Materials Science, 2005, 40(20): 5407 - 5411.
    [149] Yuranova T, Rincon AG, Pulgarin C, et, al. Performance and characterization of Ag-cotton and Ag/TiO2 loaded textiles during the abatement of E. coli [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181(2): 363 - 369.
    [150] Sona WK, Youk JH, Park WH. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles[J]. Carbohydrate Polymers, 2006, 65(4): 430 - 434.
    [151] Chou WL, Yu DG, Yang MC. The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment [J]. Polymers for Advanced Technologies, 2005, 16: 600 - 607.
    [152] Chou KS, Lu YC, Lee HH. Effect of alkaline ion on the mechanism and kinetics of chemical reduction of silver [J]. Materials Chemistry & Physics, 2005, 94(2-3): 429 - 433.
    [153] Shchukin DG, Radtchenko IL, Sukhorukov GB. Photoinduced reduction of silver inside microscale polyelectrolyte capsules [J]. ChemPhysChem, 2003, 4(10): 1101 - 1103.
    [154] Khanna PK, Subbarao VVVS. Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium [J]. Materials Letters, 2003, 57: 2242 - 2245.
    [155] Choo HP, Liew KY, Liu HF, et, al. Hydrogenation of palm olein catalyzed by polymer stabilized Pt colloids [J]. Journal of Molecular Catalysis. A: Chemical, 2001, 165(1-2): 127 - 134.
    [156] Shin HS, Yang HJ, Kim SB, et, al. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone inγ-irradiated silver nitrate solution [J]. Journal of Colloid And Interface Science, 2004, 274(1): 89 - 94.
    [157] Radziuk D, Skirtach, A, Sukhorukov G, Shchukin D, M?hwald H. Stabilization of Silver Nanoparticles by Polyelectrolytes and Poly(ethylene glycol) [J]. Macromolecular Rapid Communications, 2007, 28(7): 848 - 855.
    [158] Andersson M, Pedersen JS, Palmqvist AEC. Silver nanoparticle formation in microemulsions acting both as template and reducing agent [J]. Langmuir, 2005, 21: 11387 - 11396.
    [159]刘亚,程博闻,韦媛辉.纳米银PP抗菌纺粘布的开发[J].纺织学报, 2006, 27 (2): 78 - 80.
    [160]邢彦军,宋阳,吉友美等.银系抗菌纺织品的研究进展[J].纺织学报, 2008, 29 (4): 325 - 331.
    [161]王鸿博,王锦嫣,王强.纳米银抗菌非织造布研究[J].纺织学报, 2006, 27 (7): 34 - 36.
    [162] Xing YJ, Yang XJ, Dai JJ. Antimicrobial finishing of cotton textile based on water glass by sol-gel method [J]. Journal of Sol-Gel Science and Technology, 2007, 43 (2): 187-19.
    [163] Tom?i? B, Simon?i? B, Orel B, et, al. Sol–gel coating of cellulose fibres with antimicrobial and repellent properties [J]. Journal of Sol-Gel Science and Technology, 2008, 47: 44 - 57.
    [164] Aymonier C, Schlotterbeck U, Antonietti L, et, al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties [J]. Chemical Communications, 2002, 24: 3018 - 3019.
    [165] Kuo PL, Chen CC, Jao MW. Effects of polymer micelles of alkylated. polyethylenimines on generation of gold nanoparticles [J]. The Journal of Physical Chemistry B, 2005, 109(19): 9445 - 9450.
    [166] Chen CC, Hsu CH, Kuo PL. Effects of alkylated polyethylenimines on the formation of gold nanoplates [J]. Langmuir, 2007, 23: 6801 - 6806.
    [167] Selvakannan PR, Kumar PS, More AS, et, al. One pot, spontaneous and simultaneous synthesis of gold nanoparticles in aqueous and nonpolar organic solvents using a diamine-containing oxyethylene linkage [J]. Langmuir, 2004, 20(2): 295 - 298.
    [168] Zhang WZ, Qiao XL,Chen JG. Synthesis and uv-vis spectral properties of silver nanoparticles [J]. Rare metal materials and engineering, 2007, 36(suppl 3): 64 - 70.
    [169] Schneider S, Halbig P, Grau H, et, al. Reproducible preparation of silver sols with uniform particle size for application in sur-face-enhanced Raman spectroscopy [J]. Photochemistry and photobiology, 1994(60): 605 - 610.
    [170] Sun YG, Xia YN. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm [J]. Analyst, 2003, 128(6): 686 - 691.
    [171] Zhang ZQ, Patel RC, Kothari R, et, al. Silver clusters and nanoparticles were prepared by reduction of silver nitrate by sodium borohydride in water, in the presence of polyacrylate ions [J]. Journal of Physical Chemistry B, 2000, 104: 1176 - 1182.
    [172] Petit C, Lixon P, Pileni M.P. In situ synthesis of silver nanocluster in AOT reverse micelles [J]. Journal of Physical Chemistry, 1993, 97(49): 12974 - 12983.
    [173] Kim HS, Ryu JH, Jose B, et, al. Formation of silver nanoparticles induced by poly (2, 6-dimethyl-1, 4-phenylene oxide) [J]. Langmuir, 2001, 17(19): 5817 - 5820.
    [174] Lu HW, Liu SH, Wang XL, et, al. Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+ [J]. Materials Chemistry and Physics, 2003, 81: 104 - 107.
    [175]文美兰. X射线光电子能谱的应用介绍[J].化工时刊, 2006, 20(8): 54~56.
    [176]薛茹,林种玉,王琪等. Ag+生物吸附的谱学研究[J].高等学校化学学报, 2006, 27(3): 553 - 555.
    [177]杨辉,王可,丁新更等.无机抗菌粉体中银价态与抗菌性能研究[J].硅酸盐学报, 2002,30(5): 585 - 596.
    [178] Yoshio O, Takashi I, Abhuit C. Bactericidal allophonic materials prepared from allophone soil I. preparation and characterization of silver/phosphorus-silver loaded allophonic specimens [J]. Journal Applied Clay Science, 2001(18): 123-134.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.