两亲性偶氮苯嵌段共聚物的制备及其在溶液中的行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性偶氮苯聚合物既具有偶氮苯结构独特的光致顺反异构化行为,又具有两亲性嵌段共聚物的微相分离和纳米聚集特征,因而成为光敏感功能高分子材料的有效来源。本论文利用可逆加成断裂链转移自由基(RAFT)聚合方法开展了具有不同取代基的偶氮苯乙烯基单体的活性可控聚合研究。利用获得的偶氮苯均聚物,进行了单体甲基丙烯酸二甲胺基乙酯(DMAEMA)和甲基丙烯酸聚氧乙烯醚酯(PEGMA)单体的扩链反应,制备了相应的两亲性偶氮苯嵌段共聚物,对聚合物的溶液性质进行了考察,具体工作如下:
     (1)使用α-二硫代萘甲酸异丁腈酯(2-cyanoprop-2-yl 1-dithionaphthalate, CPDN)作为RAFT试剂,偶氮二异丁腈(2,2'-azobisisobutyronitrile, AIBN)作为引发剂,分别以[6-(4-偶氮苯基)苯氧基]甲基丙烯酸正己酯(6-(4-Phenylazophenoxy)hexyl methacrylate, PHMA),(6-[4-(4-甲氧基偶氮苯基)苯氧基]}甲基丙烯酸正己酯(6-[4-(4-methoxyphenylazo) phenoxy]hexylmethacrylate,MHMA) (6-[4-(4-氰基偶氮苯基)苯氧基]甲基丙烯酸正己酯和(6-[4-(4-cyanophenylazo)phenoxy] hexyl methacrylate,CHMA)为单体,在苯甲醚中通过可逆加成-断裂链转移(RAFT)聚合方法,制备了结构精致的相应偶氮苯均聚物(PAzoMA),PPHMA、PMHMA和PCHMA。三种单体的RAFT聚合过程显示典型的“活性”/可控特征。另外,将获得的偶氮苯均聚物作为大分子RAFT试剂进行了单体DMAEMA的扩链反应,成功地合成了偶氮苯两亲性嵌段共聚物(PAzoMA-b-PDMAEMA)。聚合物的分子量和结构利用GPC和1H NMR方法进行了表征。研究了聚合物溶液的光致异构化行为、在选择性溶剂中的自组装行为和热性能等。
     (2)利用RAFT方法,以制备的偶氮苯均聚物PPHMA以及类似的甲氧基(PMHMA)和腈基(PCHMA)取代的偶氮苯聚合物为大分子RAFT试剂进行PEGMA的扩链反应,成功合成了相应的两亲性嵌段共聚物PPHMA-b-P(PEGMA),PMHMA-b-P(PEGMA)和PCHMA-b-P(PEGMA),扩链反应过程表现出典型的活性可控特征。对嵌段共聚物的热行为、组装行为和溶液中的光致异构化行为等进行了研究。结果显示嵌段共聚物PPHMA-b-P(PEGMA)可以在水-THF体系中发生光照诱导的自组装,形成相应的聚集体,并出现了荧光发射行为。结果表明聚合物在溶液中的聚集态的形成和体积的变化有可能和偶氮基元的荧光性质的改变有关。
Amphiphilic azobenzene-containing block copolymer combined the properties of azobenzene and amphiphilic block copolymer, which showed interesting photo-responsive behaviors in solution. These polymers attacked more and more researching interest for their novel ability as the building block of photo-sensitive materials. In this thesis, the RAFT polymerization behavior of three azobenzene vinyl monomers containing different substitutes was investigated firstly. Then, the amphiphilic block copolymers of these azobenzene polymers with DMAEMA and PEGMA were synthesized through the chain extension method. The properties of these polymers in solution were investigated thereafter. The details were showed as following:
     (1) Three well-defined azobenzne homopolymers, e.g. poly{6-[4-phenylazo -phenoxy)hexylmethacrylate} (PPHMA), poly{6-[4-(4-methoxyphenylazo) phenoxy]hexylmethacrylate} (PMHMA) and poly{6-[4-(4-cyanophenylazo) phenoxy] -hexylmethacrylate} (PCHMA), were synthesized via RAFT polymerization using CPDN as the RAFT agent and AIBN as the initiator. The polymerization showed characteristics of living/controlled behavior. Using these azobenzene homopolymers as the macro-RAFT agents, the amphiphilic diblock copolomers were prepared by chain extension using DMAEMA as the second monomer. The polymer structure was characterized via NMR technique. The light responsive behaviors of the homopolymer and their diblock copolymers in their solution were also investigated.
     (2) The amphiphilic azobenzene block copolymer, poly(6-(4-phenylazophenoxy) hexylmethacrylate-b-poly((2-dimethylamino)ethyl methacrylate)) (P(PHMA)-b- (PEGMA)) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization technique. The polymerization behavior showed that it was conducted in a controlled living manner. The obtained amphiphilic block copolymer showed strong fluorescence emission in water/tetrahydroforan(THF) solution with minor relationship with UV-vis irradiation. Further investigation showed that such copolymer emitted strong fluorescence in THF after UV-vis irradiation. The change of fluorescence emission behavior of the amphiphilic block copolymer both in water/THF and THF solution was caused by the formation and size changing of aggregation originated by the photo-isomerization of azobenzene chromophore.
引文
[1] (a)Zollinger H., Azo and Diazo Chemistry. New York: Interscience, 1961; (b)Zollinger H., Colour Chemistry, Synthesis, Properties, and Applications of Organic Dyes. Deinheim: VCH, 1987
    [2] (a)Kwolek S., Morgan P., Schaefgen J., Encyclopedia of Polymer Science and Engineering, 9. New York: John-Wiley, 1985; (b)Mohlmann G., van der Vorst C., Side Chain Liquid Crystal Polymers. Glasgow: Plenum and Hall, 1989
    [3] Eaton,D. F. Nonlinear optical materials, Science, 1991, 253, 281-287
    [4] Rau, H. Photoisomerization of Azobenzene. In Photochemistry and Photophysics, Rabeck, F. J., Ed.; CRC: Boca Raton, FL, 1990, 11, 119-141
    [5] Rau, H. Radiationless Deactivation of Azo Compounds and Light Fastness of Azo Dyes. Berichte der Bunsen-Gesellschaft, 1968, 72, 408-414
    [6] Rau, H. In Photochemistry and Photophysics; Rabeck, J. F ed., CRC Press Inc.: Boca Raton, 1990, 2, 119
    [7]樊美公;光化学基本原理与光子学材料科学,科学化学出版社2001, 173-180.
    [8] Delange J. J.; Robertson J. M.; Woodward I. X-Ray Crystal Analysis of Trans-Azobenzene. Proc. R. Soc. London, Sect. A, 1939, 171, 398-410.
    [9] Natansohn A.; Rochon P. Photoinduced Motions in Azo-Containing Polymers, Chem. Rev. 2002, 102, 4139-4175.
    [10] Zhao, Y.; Ikeda, T. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals, Wiley, New Jersey, 2009
    [11] Kronek, J.; Luston, J.; Bohme, F.; Komber, H. Azo-Group Labelled Polyester by End-Capping with 2-ozazoline Derivatives- Photochemical Properties. Macromol. Symp., 2001, 170, 301-310.
    [12] Kronek, J.; Luston, J.; Bohme, F.; Komber, H. Azo-Group Labelled Polyester by End-Capping with 2-Ozazoline Derivatives- Preparation. Macromol. Symp., 2001, 164, 105-115.
    [13] Bobrovsky, A.; Ponomarenko, S.; Boiko, N.; Shibaev, V.; Rebrov, E.; Muzafarov, E.; Stumpe, J. Photochemistry and Photoorientational Phenomena in CarbosilaneDendrimers with Terminal Azobenzene Groups. Macromol. Chem. Phys., 2002, 203, 1539–1546.
    [14] Kimio, S.; Mitsuyoshi, K.; Toshiyuki, K.; Toshio, S. Characteristic Phase Transition of Aqueous Solution of Poly(n-isopropylacrylamide) Functionalized with Spirobenzopyran. Macromolecules, 2004, 13, 4949-4955.
    [15] Ikeda, T.; Ooya, T.; Yu, N. Regulaton of Pseudo-Polyrotaxane Formation Betweenα-Cyclodextrins and Azobenzene-Terminated Poly(ethylene glycol). Polym. J., 1999, 31, 658-663.
    [16] Bobrovsky, A. Y.; Pakhomov, A. A.; Zhu, X. M.; Shibaev, V. P.; Stumpe, J. Photochemical and Photoorientational Behavior of Liquid Crytalline Carbosilane Dendrimer with Azobenzene Terminal Groups. J. Phys. Chem., 2002, 106, 540-546.
    [17] Percec, V.; Kim, H. J.; Barboiu, B. Scope and Limitations of Functional Sulfonyl Chlorides as Initiators for Metal-Catalyzed "Living" Radical Polymerization of Styrene and Methacrylates. Macromolecules, 1997, 30, 8526-8528,
    [18] Wang, G.; Zhu, X. L.; Cheng, Z. P.; Zhu, J. Azobenzene-Based Initiator for Atom Transfer Radical Polymerization of Methyl Methacrylate. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 2358-2367.
    [19] Viau, L.; Bidault, S.; Maury, O.; Brasselet, S.; Ledoux, I.; Zyss, J.; Ishow, E.; Nakatani, K.; Bozec, H. L. All-Optical Orientation of Photoisomerizable Octupolar Zinc(II) Complexes in Polymer Films. J. Am. Chem. Soc., 2004, 126, 8386-8387.
    [20] Zhang, W. D.; Zhang, W.; Cheng, Z. P.; Zhou, N. C.; Zhu, X. L.; Atom Transfer Radical Polymerization of Methyl Methacrylate High Efficiently Initiated by Azo-containing Iniferter. J. Macromol. Sci. Part A: pure and appl. Chem. 2008, 45, 850-856.
    [21] Wan, X. M.; Zhu, X. L.; Zhu, J.; Zhang, Z. B.; Cheng, Z. P. A Novel Dithiocarbamate Bearing Azobenzene Group Suitable for the RAFT Polymerization of Methyl Methacrylate. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 2886-2896.
    [22] Yu, L.; Zhang, B.; Chen, X.; Zhang, W.; Wu, J.; Chen, Z.; Zhu, X. Synthesis of Tetrazole-Containing Azo Polymers with Properties of Photo-Induced Birefringence and Surface-Relief-Gratings Via RAFT Polymerization. J. Polym. Sci. Part A:Polym. Chem. 2008, 46: 682-691.
    [23] Ma, F.; Zhou, N. C.; Zhu, J.; Zhang, W.; Fan, L. J.; Zhu, X. L.; Light-Driven Fluorescence Enhancement of Phenylazo Indazole-Terminated Polystyrene. Europ. Polym. J., 2009, 45, 2131-2137.
    [24] Erdogan, T.; Durmaz, H.; Hizal, G.; Tunca,U. Photoresponsive Poly(methyl methacrylate)2-(polystyrene)2 Miktoarm Star Copolymer Containing an Azobenzene Moiety at the Core. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 1396–1403.
    [25] Peptu, C.; Bogdan, V. H.; Simionescu, B. C.; Adamus, G.; Kowalczuk, M.; Nunzi, J. M. Disperse Red 1 End cCapped Oligoesters. Synthesis by Noncatalyzed Ring Opening Oligomerization and Structural Characterization J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 534-547.
    [26] Li, Y. B.; Deng, Y. H.; Tong, X. L.; Wang, X. G. Amphiphilic Azo Polymer Spheres Colloidal Monolayers, and Photoindced Chromophore Orientiation. Langmuir, 2005, 21, 6567-6571.
    [27] Zhang, L. Z.; Li, Y.; Liang, Z. X. New Crosslinked Polymer System with High and Stable Optical Nonlinearity. React. Funct. Polym., 1999, 40, 255-262.
    [28] Niesel, F. T.; Rubner, J.; Springer, T. Thermal and Ferroelectic Properties of two Series of Coloured Chiral Liquid Crystalline Side Group Copolymers. Macromol. Chem. Phys., 1995, 196, 103-112.
    [29] Moebius, G.; Ringsdorf, H.; Pietsch, U. Light-Induced Modifications of Langmuir-Blodgett Multilayer Assemblies Containing Amphotropic Azocopolymers. Thin Solid Films, 1994, 247, 235-239.
    [30] Holme, N. C. R.; Nikolova, L.; Ramanujam, P. S.; Hvilsted, S. An Analysis of the Anisotropic and Topographic Gratings in a Side-Chain Liquid Crystalline Azobenzene Polyester. Appl. Phys. Lett., 1997, 70, 1518-1520.
    [31] Wu, Y. L.; Demachi, Y.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T. Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 1. Effect of Light Intensity on Alignment Behavior. Macromolecules, 1998, 31, 349-354.
    [32] Toshchevikov, V.; Saphiannikova, M.; Heinrich, G. Microscopic Theory ofLight-Induced Deformation in Amorphous Side-Chain Azobenzene Polymers. J. Phys. Chem. B, 2009, 113, 5032-5045.
    [33] Gao, J. G.; Sun, Y. Y.; Zhou, J. L.; Zheng, Z.; Chen, H. W.; Su, W.; Zhang, Q. J.; Preparation of Ag Nanoparticles Termini-Protected Side-Chain Liquid Crystalline Azobenzene Polymers by RAFT Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 5380-5386.
    [34] Fujii, T.; Shiotsuki, M.; Inai, Y.; Sanda, F.; Masuda, T. Synthesis of Helical Poly(N-propargylamides) Carrying Azobenzene Moieties in Side Chains. Reversible Arrangement-Disarrangement of Helical Side Chain Arrays upon Photoirradiation Keeping Helical Main Chain Intact. Macromolecules, 2007, 40, 7079-7088.
    [35] Zettsu, B. N.; Ubukata, T.; Seki, T.; Ichimura, K. Soft Crosslinkable Azo Polymer for Rapid Surface Relief Formation and Persistent Fixation. Adv. Mater., 2001, 13, 1693-1697.
    [36] Marcos, M.; Alcala, R.; Barberá, J.; Romero, P.; Sanchez, C.; Serrano, J. L. Photosensitive Ionic Nematic Liquid Crystalline Complexes Based on Dendrimers and Hyperbranched Polymers and a Cyanoazobenzene Carboxylic Acid. Chem. Mater., 2008, 20, 5209-5217
    [37] Nishizawa, K.; Nagano, S.; Seki, T. Novel Liquid Crystalline Organic-Inorganic Hybrid for Highly Sensitive Photoinscriptions. Chem. Mater., 2009, 21, 2624-2631.
    [38] Ohe, C.; Kamijo, H.; Arai, M.; Adachi, M.; Miyazawa, H.; Itoh, K.; Seki, T. Sum Frequency Generation Spectroscopic Study on Photoinduced Isomerization of Poly(vinyl alcohol) Containing Azobenzene Side Chain at the Air-Water Interface J. Phys. Chem. C, 2008, 112, 172-181.
    [39] Tong, X.; Wang, G.; Sokdera, A.; Zhao, Y. How Can Azobenzene Block Copolymer Vesicles Be Dissociated and Reformed by Light? J. Phys. Chem. B, 2005, 109, 20281-20287.
    [40] Tateishi, Y.; Tanaka, K.; Nagamura, T. Kinetics of Photoinduced E to Z Isomerization of Azobenzene in Polystyrene Films: Thickness, Molecular Weight and Temperature Effects. J. Phys. Chem. B, 2007, 111, 7761-7766.
    [41] Sobolewska, A.; Miniewicz, A. On the Inscription of Period and Half-PeriodSurface Relief Gratings in Azobenzene-Functionalized Polymers. J. Phys. Chem. B, 2008, 112, 4526-4535.
    [42] Zhao, Y.; Stoddart,J. F. Azobenzene-Based Light-Responsive Hydrogel System. Langmuir, 2009, 25, 8442-8446.
    [43] Tian, Y. Q.; Watanabe, K.; Kong, X. X.; Abe, J.; Iyoda, T., Synthesis, Nanostructures, and Functionality of Amphiphilic Liquid Crystalline Block Copolymers with Azobenzene Moieties, Macromolecules 2002, 35, 3739-3747.
    [44] He, X.; Yan, D., Branched Azobenzene Side-Chain Liquid-Crystalline CopolymersObtained by Self-Condensing ATRP Copolymerization, Macromol. Rapid Commun., 2004, 25, 949-953.
    [45] Sin, S. L.; Gan, L. H.; Hu, X.; Tam, K. C.; Gan, Y. Y., Photochemical and Thermal Isomerizations of Azobenzene-Containing Amphiphilic Diblock Copolymers in Aqueous Micellar Aggregates and in Film, Macromolecules. 2005, 38, 3943-3948.
    [46] Han, Y. K.; Dufour, B.; Wu, W.; Kowalewski, T.; Matyjaszewski, K. Synthesis and Characterization of New Liquid-Crystalline Block Copolymers with p-Cyanoazobenzene Moieties and Poly(n-butyl acrylate) Segments Using Atom-Transfer Radical Polymerization, Macromolecules 2004, 37, 9355-9365.
    [47] He, X.; Zhang, H.; Yan, D. Synthesis of Side-Chain Liquid-Crystalline Homopolymers and Triblock Copolymers with P-methoxyazobenzene Moieties and Poly(ethylene glycol) as Coil Segments by Atom Transfer Radical Polymerization and Their Thermotropic Phase Behavior, J. Polym. Sci., PartA: Polym. Chem., 2003, 41, 2854-2864.
    [48] Tong, X.; Cui, L.; Zhao, Y. Confinement Effects on Photoaligment, Photochemical Phase Transition and Thermochromic Behavior of Liquid Crystalline Azobenzene-Containing Diblock Copolymes. Macromolecules. 2004, 37, 3101-3112.
    [49] Ravi, P.; Sin, S. L.; Gan, H. L. New Water Soluble Azobenzene-Containing Diblock Copolymers: Synthesis and Aggregation Behavior. Polymer. 2005, 46: 137-146.
    [50] Su, W.; Han, K.; Luo, Y. H.; Wang, Z.; Li, Y. M.; Zhang, Q. J., Formation and Photoresponsive Properties of Giant Microvesicles Assembled from Azobenzene-Containing Amphiphilic Diblock Copolymers, Macromol. Chem. Phys. 2007, 208, 955-963.
    [51] Zhang, Y.; Cheng, Z.; Chen, X.; Zhang, W.; Wu, J.; Zhu, J.; Zhu, X. L., Synthesis and Photoresposive Behaviors of Well-Defined Azobenzene-Containing Polymers via RAFT Polymerization, Macromolecules. 2007, 40, 4809-4817.
    [52] Yu, L.; Zhang, B.; Chen, X.; Zhang, W.; Wu, J.; Chen, Z.; Zhu, X., Synthesis of Tetrazole-Containing Azo Polymers with Properties of Photo-Induced Birefringence and Surface-Relief-Gratings Via RAFT Polymerization, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 682-691.
    [53] Zhang, Y.; Zhang, W.; Chen, X.; Cheng, Z.; Wu, J.; Zhu, J.; Zhu, X. Synthesis of Novel Three-Arm Star Azo Side-Chain Liquid Crystalline polymer via ATRP and Photoinduced Surface Relief Gratings. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 777-789.
    [54] Sun, B.; Zhu, X.; Zhu, J.; Cheng, Z.; Zhang, Z., A Nover Synthetic Method for the Well-Defined Polymer Containing Benzotriazole and Bisazobenzene Chromophore, Macromol. Chem. Phys. 2007, 208, 1101-1109.
    [55] Lee, T. S.; Kim, D.; Jiang, X. L.; Li, L.; Kumar, J.; Tripathy, S. Photoinduced Surface Relief Gratings in High-Tg Main-Chain Azoaromatic Polymer Films. J. Polym. Sci. Part A: Polym. Chem., 1998, 36, 283-289
    [56] Xu, Z.; Drnoyan, V.; Natanshn, A.; Rochon, P. Novel Polyesters with Amino-Sulfone Azobenzene Chromophores in the Main Chain. J. Polym. Sci. Part A: Polym. Chem., 2000, 38, 2245-2253.
    [57] Che, P. C.; He, Y. N.; Wang, X. G. Hyperbranched Azo-Polymers Synthesized by Azo-Coupling Reaction of an AB2 Monomer and Postpolymerization Modification. Macromolecules, 2005, 38, 8657-8663.
    [58] Wu, L.; Natansohn, A.; Rochon, Paul.; Photoinduced Birefringence and Surface Relief Gratings in Novel Polyurethanes with Azobenzene Groups in the Main Chain. Macromolecules, 2001, 34, 7822-7828.
    [59] (a) Xue, X. Q; Zhu, J; Zhang Z. B; Zhou, N. C; Tu, Y. F; Zhu X. Soluble Main-Chain Azobenzene Polymers via Thermal 1,3-Dipolar.Cycloaddition: Preparation and Photoresponsive Behavior, Macromolecules. 2010, 43, 2704–2712.; (b) Xue, X. Q; Zhu, J; Zhang, W; Zhang, Z. B; Zhu, X. L.Preparation and characterization of novel main-chain azobenzene polymers via step-growth polymerization based on click chemistry. 2009, 50, 4512-4519.
    [60] Zhao, J.; Si, J. H.; Wang. Y. G. et al. Light-Induced Noncentrosymmetry in Acceptor-Donor-Substituted Azobenzene Solutions. Optics Letters, 1995, 20, 1955-1957.
    [61] Wang, G.; Tong, X.; Zhao, Y. Preoaration of Azobenzene-Containing Amphiphilic Didlock Copolymers for Light-Responsive Micellar Aggregates Macromolecules, 2004, 37, 8911-8917.
    [62] Ven, D.; Mooter, G.; Maris, B. et al. Use of Azo Polymers for Colon-Specific Drug Delivery. J. Pharm. Sci., 1997, 6, 1321-1427.
    [63] Vollmer, M. S. Clark, T. D.; Steinem, C. M. et al. Photoswitchable Hydrogen-Bonding in Self-Organized Cylindrical Peptide Systems. Angew Chem. Int. Ed Engl., 1999, 38, 1598-1601.
    [64] Kronek, J.; Luston, J.; Bohme, F.; Komber, H. Azo-Group Labelled Polyester by End-Capping with 2-ozazoline Derivatives- Photochemical Properties. Macromol. Symp., 2001, 170, 301-310.
    [65] Natansohn A.; Rochon P.; Gosselin J.; Xie S. Azo Polymers for Reversible Optical Storage. 1. Poly[4'- [ [2- (acryloyloxy)ethyll ethylaminol-4-nitroazo benzene], Macromolecules, 1992, 25, 2268-2273.
    [66] Wu Y.; Natansohn A.; Rochon P. Photoinduced Birefringence and Surface Relief Gratings in Polyurethane Elastomers with Azobenzene Chromophore in the Hard Segment, Macromolecules, 2004, 37, 6090- 6095.
    [67] Natansohn A., Rochon P., Photoinduced Motions in Azo-Containing Polymers. Chem. Rev., 2002, 102, 4139-4175;
    [68] Seki T., Smart Photoresponsive Polymer Systems Organized in Two Dimensions. Bull Chem. Soc. Jpn., 2007, 80, 2084-2102;
    [69] Shibaev VP., Bobrovsky A., Boiko N., PhotoactiveLiquid Crystalline Polymer Systems with Light Controllable Structure and Optical Properties., Prog. Polym. Sci., 2003, 28, 729-836;
    [70] Rau, H. Spectroscopic Properties of Organic Azo Compounds. Angew. Chem., Int. Ed, 1973, 12, 224-235
    [71] Shimomura, M.; Kunitake, T. Fluorescence and photoisomerization of azobenzene-containing bilayer membranes. J. Am. Chem. Soc. 1987, 109, 5175-5183.
    [72] Han, M.; Hara, M. Intense Fluorescence from Light-Driven Self-Assembled Aggregates of Nonionic Azobenzene Derivative. J. Am. Chem. Soc. 2005, 127, 10951-10955.
    [73] Han, M.; Hirayama, Y.; Hara, M. Fluorescence Enhancement from Self-Assembled Aggregates: Substituent Effects on Self-Assembly of Azobenzenes. Chem. Mater. 2006, 18, 2784-2786.
    [74] Tsuda, K.; Dol, G. C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J. W.; Meijer, E. W.; Schryver, F. C. Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-Assembled Supramolecular Structures. J. Am. Chem. Soc. 2000, 122, 3445-3452.
    [75] Bo, Q.; Zhao, Y. Fluorescence from an Azobenzene-Containing Diblock Copolymer Micelle in Solution. Langmuir. 2007, 23, 5746-5751.
    [76] Kunitake, T.; Okahata, Y.; Shimomura, M.; Yasunami, S.; Takarabe, K. Formation of Stable Bilayer Assemblies in Water from Single-Chain Amphiphiles. Relationship Between the Amphiphile Structure and the Aggregate Morphology. J. Am. Chem. Soc. 1981, 103, 5401-5413.
    [77] Kunitake, T.; Okahata, Y.; Nakashima, N.; Shimomura, S.; Kano, K.; Ogawa, T. Unique Properties of Chromophore-Containing Bilayer Aggregates: Enhanced Chirality and Photochemically Induced Morphological Change. J. Am. Chem. Soc. 1980, 102, 6642-6644.
    [78] Kunitake, T.; Nakashima, N.; Morimitsu, K. Enhanced Circular Dichroism and Fluidity of Disk-like Aggregates of a Chiral, Single-chain Amphiphile. Chem. Lett.1980, 9, 1347-1350.
    [79] Shimomura, M.; Hashimoto, H.; Kunitake, T. Formation of Monolayer and Bilayer Membranes from Amphiphilic Anthracene Derivatives. Peculiar Spectroscopic Behavior and Chromophore Orientation. Chem. Lett. 1982, 11, 1285-1288.
    [80] Shimomura, M.; Ando, R.; Kunitake, T. Orientation and Spectral Characteristics of the Azobenzene Chromophore in the Ammonium Bilayer Assembly. Ber. Bunsenges. Phys. Chem. 1983, 87, 1134-1143.
    [81] Kunitake T.; Tawaki S.; Nakashima N. Excimer Formation and Phase Separation of Hydrocarbon and Fluorocarbon Bilayer Membranes. Bull. Chem. Soc. Jpn. 1983, 56, 3235-3242.
    [82] Xu, J.; Zhang, W. Zhou, N.; Zhu, J.; Cheng, Z.; Zhu, X. Synthesis of Azobenzene-Containing Polymers via RAFT Polymerization and Investigation on Intense Fluorescence from Aggregates of Azobenzene-Containing Amphiphilic Diblock Copolymers, J. Polym. Sci, Part A: Polym. Chem., 2008, 46, 5652-5662.
    [83] (a)Kumar, G.; Neckers, D. C. Photochemistry of azobenzene-containing polymers. Chem. Rev. 1989, 89, 1915-1937.; (b) Brown, D.; Natansohn, A.; Rochon, P. Azo Polymers for Reversible Optical Storage. 5. Orientation and Dipolar Interactions of Azobenzene Side Groups in Copolymers and Blends Containing Methyl Methacrylate Structural Units. Macromolecules. 1995, 28, 6116-6123. (c) Stephan, Z. Z.; Dietrich, H. Holographic Data Storage in Amorphous Polymers . Adv. Mater. 1998, 10, 855-859. (d) Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139-4175. (e) Delaire, J. A.; Nakatani, K. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials. Chem. Rev. 2000, 100, 1817-1845. (f) Barrett, C. J.; Mamiya, J.; Yagerc, K. G.; Ikeda, T. Photo-Mechanical Effects in Azobenzene-Containing Soft Materials. Soft Matter. 2007, 3, 1249-1261. (g) Zhao, Y.; He, J. Azobenzene-Containing Block Copolymers: the Interplay of Light and Morphology Enables New Functions. Soft Matter. 2009, 5, 2686-2693.
    [84] (a)Gibons, W. M.; Shannon, P. J.; Sun, S. T.; Swetlin, B. J. Surface-Mediated Alignment of Nematic Liquid Crystals with Polarized Laser Light. Nature. 1991,351, 49-50. (c) Hore, D.; Natansohn, A.; Rochon, P. Anomalous Cis Isomer Orientation in a Liquid Crystalline Azo Polymer on Irradiation with Linearly-Polarized Light. J. Phys. Chem. B. 2003, 107, 2197-2204. (d) Hafiz, H. R.; Nakanishi, F. Photoresponsive Liquid Crystal Display Driven by New Photochromic Azobenzene-Based Langmuir–Blodgett Films. Nanotechnology. 2003, 14, 649-654. (e) Rasmussen, P. H.; Ramanujam, P. S.; Hvilsted, S.; Berg, R. H. A Remarkably Efficient Azobenzene Peptide for Holographic Information Storage. J. Am. Chem. Soc. 1999, 121, 4738-4743.
    [85] Ishow, E.; Lebon, B.; He, Y. N.; Wang, X. G.; Bouteiller, L.; Galmiche, L.; Nakatani, K. Structural and Photoisomerization Cross Studies of Polar Photochromic Monomeric Glasses Forming Surface Relief Gratings. Chem. Mater. 2006, 18, 1261-1267 (b) Beth, L. L.; Stefan, A. M.; Hanrry, A. A. Large Spectral Birefringence in Photoaddressable Polymer Films. Adv. Mater. 2004, 16, 1746-1750. (c) Zeng, Q.; Li, Z. A.; Li, Z.; Ye, C.; Qin, J. G..; Tang, B. Z. Convenient Attachment of Highly Polar Azo Chromophore Moieties to Disubstituted Polyacetylene through Polymer Reactions by Using“Click”Chemistry. Macromolecules. 2007, 40, 5634-5637. (d) Yu, H.; Shishido, A.; Iyoda, Y.; Ikeda, T. Novel Wormlike Nanostructures Self-Assembled in a Well Defined Liquid Crystalline Diblock Copolymer with Azobenzene Moieties. Macromol. Rapid Commun. 2007, 28, 927-931.
    [86] Chen, X. B.; Zhang, Y. H.; Liu, B. J. Zhang, J. J.; Wang, H.; Zhang, W. Y.; Chen, Q. D.; Pei, S. H.; Jiang, Z. H. J. Novel Photoactive Hyperbranched Poly(aryl ether)s Containing Azobenzene Chromophores for Optical Storage. Mater. Chem. 2008, 18, 5019-5026. (b) Li, W. H.; Nagano, S.; Seki, T. Photo-Crosslinkable Liquid-Crystalline Azo-Polymer for Surface Relief Gratings and Persistent Fixation. New J. Chem. 2009, 33, 1343-1348. (c) Wang, D. R.; Ye, G.; Zhu, Y.; Wang, X. G. Photoresponsive Azobenzene-Containing Dendrimers with Multiple Discrete States. Macromolecules. 2009, 42, 2651-2657. (d) Kulikovska, O.; Goldenberg, L. M.; Kulikovsky, L.; Stumpe, Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures. J. Chem. Mater. 2008, 20, 3528-3534.
    [87] Tung, C. H.; Guan, J. Q. Modification of Photochemical Reactivity by Nafion. Photocyclization and Photochemical Cis?Trans Isomerization of Azobenzene. J. Org. Chem. 1996, 61, 9417;
    [88] Lei, Z.; Vaidyalingam, A.; Dutta, P. K. Energetics of Cation Radical Formation at the Proximal Active Site Tryptophan of Cytochrome c Peroxidase and Ascorbate Peroxidase. J. Phys. Chem. B. 1998, 102, 8557;
    [89] Simonmura, M.; Kunitake, T. Fluorescence and Photoisomerization of Azobenzene-Containing Bilayer Membranes. J. Am. Chem. Soc. 1987, 109, 5175
    [90] Tsuda, K.; Dol, G. C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J. W.; Meijer, E. W.; Schryver, F. C. Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-Assembled Supramolecular Structures. J. Am. Chem. Soc. 2000, 122, 3445;
    [91] Han, M.; Hirayama, Y.; Hara, M. Fluorescence Enhancement from Self-Assembled Aggregates: Substituent Effects on Self-Assembly of Azobenzenes. Chem. Mater. 2006, 18, 2784;
    [92] Bo, Q.; Zhao, Y. Fluorescence from an Azobenzene-Containing Diblock Copolymer Micelle in Solution, Langmuir, 2007, 23, 5746-5751
    [93] Moffitt, M.; Khougaz, K.; Eisenberg A. Acc. Micellization of Ionic Block Copolymers. Chem. Res. 1996, 29, 95-102.
    [94] Wang, G.; Tong, X.; Zhao, Y. Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates. Macromolecules, 2004, 37, 8911-8917.
    [95] Ding, L.; Mao, H.; Xu, J.; He, J.; Ding, X.; Russell, T. P.; Robello, D. R.; Mis, M. Morphological Study on an Azobenzene-Containing Liquid Crystalline Diblock Copolymer. Macromolecules, 2008, 41, 1897-1900.
    [96] Su, W.; Zhao, H.; Wang, Z.; Li, Y.; Zhang, Q. Novel ABC2-Type Liquid-Crystalline Block Copolymers with Azobenzene Moieties Prepared by Atom Transfer Radical Polymerization. Eur. Polym. J. 2007, 43, 657-662.
    [97] Wang, D.; Ye, G.; Zhu, Y.; Wang, X. Photoinduced Mass-Migration Behavior of Two Amphiphilic Side-Chain Azo Diblock Copolymers with Different LengthFlexible Spacers, Macromolecules. 2009, 42, 2651-2657.
    [98] Schramm, O. G;Pavlov, G. M; Erp, H. P; Meier M. A. R; Hoogenboom R;Schubert, U. S. A Versatile Approach to Unimolecular Water-Soluble Carriers: ATRP of PEGMA with Hydrophobic Star-Shaped Polymeric Core Molecules as an Alternative for PEGylation. Macromolecules. 2009, 42, 1808-1816.
    [99] (a)Wang, J. S; Matyjaszewski K. Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process. Macromolecules. 1995, 28, 7901-10. (b) Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of Methyl Methacrylate with the CarbonTetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules. 1995, 28, 1721-3. (c) Matyjaszewski K, Xia J. Kinetics and Mechanism of RAFT Polymerization. Chem. Rev. 2001, 101, 2921-90. (d) Kamigaito M, Ando T, Sawamoto T. Kinetics and Mechanism of RAFT Polymerization. Chem. Rev. 2001, 101, 3689-745.
    [100] (a) Chiefari J; Chong, Y. K; Ercole F, Krstina J; Jeffery J; Le, P. T. Living Free-Radical Polymerization by Reversible Addition?Fragmentation Chain Transfer: The RAFT Process. Macromolecules. 1998, 31, 5559-62. (b) Chong, Y. K; Le, P. T; Moad, G; Rizzardo E, Thang, S. H. Tailored Polymers by Free Radical Processes. Macromolecules. 1999, 32, 2071-4. (c) Moad, G.; Rizzardo, E; Thang, S. H. Radical Addition–Fragmentation Chemistry in Polymer Synthesis. Polymer. 2008, 49, 1079-131.
    [101] Cheng Z. P., Zhu X. L., Kang E. T., Neoh K. G. Brush-Type Amphiphilic Diblock Copolymers from "Living"/Controlled Radical Polymerizations and Their Aggregation Behavior. Langmuir. 2005, 21, 7180-7185
    [102] Bo, Q.; Zhao, Y. Fluorescence from an Azobenzene-Containing Diblock Copolymer Micelle in Solution, Langmuir, 2007, 23, 5746-5751
    [103] Zhao, Y.; Ikeda, T. Smart Light-Responsive Materials: Azobenzene-Containin/g Polymers and Liquid Crystals, Macromolecular Chemistry and Physics. 2010, 4, 481
    [104]Wu, Y.; Kanazawa, A.; Shiono, T.; Ikeda, T.;Zhang, Q. Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 4. Dynamic Study of the Alignment Process. Polymer 1999, 40, 4787–4793.
    [105] Hafiz, H. R.; Nakanishi, F, Photoresponsive Liquid Crystal Display Driven by New Photochromic Azobenzene-Based Langmuir–Blodgett Films. Nanotechnology, 2003,14, 649–654.
    [106] Rochon, P.; Gosselin, J.; Natansohn, A.; Xie, S., Optically Induce and Erased Birefringence and Dichroism in Azoaromatic Polymer, Appl. Phys. Lett. 1992, 60, 4-5.
    [107] Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Laser-Induced Holographic Surface Relief Gratings on Nonlinear Optical Polymer Films. Appl. Phys. Lett. 1995, 66, 1166-1168.
    [108] Delaire, J. A.; Nakatani, K. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials. Chem. Rev. 2000, 100, 1817-1846
    [109] E. Huang, L. Rockford, T. P. Russell and C. J. Hawker, Nanodomain control in copolymer thin films. Nature, 1998, 395, 757–758.
    [110] F. S. Bates and G. H. Fredrickson, Block Copolymers-Designer Soft Materials. Phys. Today, 1999, 52, 32–38.
    [111] C. Park, J. Yoon and E. L. Thomas, Enabling Nanotechnology with Self Assembled Block Copolymer Patterns. Polymer, 2003, 44, 6725–6760.
    [112] T. P. Lodge, Block Copolymers: Past Successes and Future Challenges. Macromol. Chem. Phys., 2003, 204, 265–273
    [113] D. E. Discher and A. Eisenberg, Polymer Vesicles. Science, 2002, 297, 967–973.
    [114] J. Rodríguez-Hernández, F. Chécot,Y. Gnanou and S. Lecommandoux, Toward‘Smart’Nano-Objects by Self-Assembly of Block Copolymers in Solution. Prog. Polym. Sci, 2005, 30, 691–724.
    [115] Zhao, Y.; He, J., Azobenzene-containing Block Copolymers: the Interplay of Light and Morphology Enables New Functions. Soft Matter, 2009, 5, 2686–2693
    [116] R. Bohnert and H. Finkelmann, Liquid-Crystalline Side-Chain AB Block Copolymers by Direct Anionic Polymerization of a Mesogenic MethacrylateMacromol.Chem. Phys., 1994, 195, 689–700
    [117] A. Martin, C. Tefehne and W. Gronski, A Deuteron NMR Study on Order and Phase Behaviour of Liquid-Crystalline Copolymers. Macromol. Rapid Commun., 1996, 17, 305–311.
    [118] Tian, Y. Q.; Watanabe, K.; Kong, X. X.; Abe, J.; Iyoda, T. Synthesis, Nanostructures, and Functionality of Amphiphilic Liquid Crystalline Block Copolymers with Azobenzene Moieties. Macromolecules, 2002, 35, 3739–3747.
    [119] He, X.; Zhang, H.; Yan, D. Synthesis of Side-Chain Liquid-Crystalline Homopolymers and Triblock Copolymers with P-methoxyazobenzene Moieties and Poly(ethylene glycol) as Coil Segments by Atom Transfer Radical Polymerization and Their Thermotropic Phase Behavior, J. Polym. Sci., PartA: Polym. Chem., 2003, 41, 2854-2864.
    [120] Cui, L.; Tong, X.; Yan, X. H.; Liu, G. J.; Zhao, Y. Synthesis of Azobenzene-Containing Diblock Copolymers Using Atom Transfer Radical Polymerization and the Photoalignment Behavior. Macromolecules, 2004, 37, 7097–7104.
    [121] Han, Y. K.; Dufour, B.; Wu, W.; Kowalewski, T.;Matyjaszewski, K. Synthesis and Characterization of New Liquid-Crystalline Block Copolymers with p-Cyanoazobenzene Moieties and Poly(n-butyl acrylate) Segments Using Atom-Transfer Radical Polymerization .Macromolecules, 2004, 37,9355–9365.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.