跨室壁复极离散度增加与室性心律失常发生机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分局部给药跨室壁氯化钾单相动作电位记录电极的研制
     目的:研制可局部给药跨室壁氯化钾单相动作电位(MAP)记录电极(KCl MAP电极),以稳定同步记录三层心肌的MAP;探讨电极的放置方法、记录MAP的稳定性和持续时间;探讨通过电极局部给药的可行性;为在体犬跨室壁复极不均一性与室性心律失常机制的研究提供理想的技术手段。
     方法:由5F动脉鞘管和0.2mm的绝缘银丝,组构成3对MAP记录电极,鞘芯腔内注入含30%氯化钾琼脂糖凝胶即制成KCl MAP电极。用自制的电极记录在体犬左心室前壁跨窒壁MAP,观察通过电极局部给予异丙肾上腺素对三层心肌细胞动作电位时程(APD)及跨室壁复极离散度(TDR)的影响和心律失常的诱发情况。
     结果:KCl MAP电极能稳定记录三层心肌MAP 120min以上,随时间的延长动作电位振幅(APA)逐渐降低但不影响复极特性的分析;局部给予异丙肾上腺素(10~(-5)mg/ml)能显著降低中层心肌细胞的APD_(90)(236.9±3.8ms vs 211.3±3.0ms)和TDR(35.7±4.8 ms vs 24.9±3.9 ms),中层心肌细胞易于诱发早期后除极及触发活动并引起室性心律失常。
     结论:KCl MAP电极可理想地用于跨室壁心肌复极特性的研究;异丙肾上腺素降低正常犬的TDR,其诱发室性心律失常的机制与后除极和触发活动有关。
     第二部分局部异丙肾上腺素诱发在体犬室性心律失常电生理机制的研究
     目的观察在体犬心室肌局部给予异丙肾上腺素后所产生的电生理现象,从跨室壁复极离散度(TDR)的角度探讨局部交感神经张力不均一性增加的致室性心律失常(VA)机制。
     方法经自制跨室壁氯化钾单相动作电位记录电极(KCl MAP电极)于左心室前壁局部给予异丙肾上腺素(Iso)模拟局部交感神经张力增加,记录三层心肌的单相动作电位(MAP),分析动作电位时程(APD)、图形特征和TDR的变化,观察室性心动过速(VT)的诱发情况和VT发作时的室壁激动顺序。
     结果局部Iso的直接作用可降低三层心肌的APD,中层心肌细胞的APD降低更为明显使得TDR明显降低(31.8±2.1ms vs 22.6±3.3ms,P<0.05);诱发中层心肌细胞早期后除极(EAD)时TDR比无EAD时显著增加(41.0±2.2msvs 22.6±3.3ms,P<0.05);EAD多起源于中层心肌细胞且呈快频率依赖性,连续的EAD可触发VT;不同部位EAD诱发VT的室壁激动顺序不同,起源于中层心肌细胞的EAD触发VT时的室壁激动顺序为外层到中层最后激动内层心肌,起源于内层心肌细胞的EAD触发VT时的室壁激动顺序为内层到中层最后到外层心肌。
     结论局部Iso的不均一性增加可引起有相互关联的心肌细胞自律性增加、EAD及TDR增加,易于在三层心肌之间形成折返,可能是其致室性心律失常的电生理学基础。
     第三部分钠通道阻断剂对模拟在体犬LQT_3跨室壁复极离散度影响的实验研究
     目的观察心率减慢时模拟在体犬长QT综合症第3型(LQT_3)动作电位时程(APD)和跨室壁复极离散度(TDR)的变化及钠通道阻断剂美西律(Mexiletine)对这种变化的影响,为先天性LQT_3窒性心律失常的防治提供实验依据。
     方法采用自制电极同步记录在体犬左心室前壁跨室壁单相动作电位(MAP),同时记录体表心电图,静脉注射海葵毒素(ATX-Ⅱ)模拟在体犬LQT_3,消融窦房结后通过改变心房起搏周长(PCL)控制心室率。分析用药前后三层心肌的APD、TDR和心电图形态的变化。
     结果静脉注射ATX-Ⅱ(3μg/kg)后成功模拟出在体犬LQT_3模型,体表心电图表现为ST段明显延长,T波起始部位延迟出现,呈现不对称性高尖T波形态,与先天性LQT_3的心电图特点相似;PCL为500ms和1000ms时ATX-Ⅱ使TDR均显著性增加(分别为20±4 ms vs 41±9ms和39±5ms vs 83±10ms,P<0.05),但PCL为1000ms比500ms时TDR的增加幅度(△TDR)更为明显(44±13ms vs 20±12ms,P<0.05),伴随起源于中层心肌细胞的早期后除极和自发性室性心动过速发生;静脉注射Mexiletine(20μg/kg)能逆转ATX-Ⅱ的这种电生理作用。
     结论LQT_3室性心律失常的发生呈慢心室率依赖性,Mexiletine可能对先天性LQT_3猝死的防治有一定的作用。
Part one Researches on Potassium Chloride Transmural Recording Electrode of Monophasic Action Potential with Local Administration of Agents
    Objective: To design a kind of monophasic action potential(MAP)
    recording electrode (KCl MAP electrode) which has the capability of agents administration locally, to steadily record the MAP of three myocardial layers synchronously; to probe into the methods of the electrode placement, the stability and duration of MAP recorded by the KCl MAP electrode; to probe into the feasibility of agents administration through the KCl MAP electrode; and to provide an ideal technique for the researches of transmural heterogeneity of repolarization and the mechanism of ventricular arrhythmia of canine in vivo.
    Methords: The KCl MAP electrode with three pair of electrodes was made
    up of 5F arterial sheath and insulated silver thread (0.2mm in diameter), the low melting point agarose gel containing 30% of potassium chloride was immitted into the core of the sheath. Transmural MAP of canine in vivo were recorded with the self-made KCl MAP electrode; the impact of local Isoprenaline on action potential duration(APD) of three layer myocardium, transmural dispersion of repolarization(TDR) and the inducing of ventricular arrhythmia were researched.
    Results: Transmural MAP could be recorded by the KCl MAP electrode more than 120 minutes with the amplitude of action potential (APA) decreasing gradually but the analysis of the repolarization character not being affected. The APD of mid-myocardial (236.9±3.8ms vs 211.3±3.0ms) and TDR (35.7 ± 4.8 ms vs 24.9 ±3.9 ms) were decreased remarkably by Isoprenaline (10~(-5)mg/ml), Ventricular arrhythmia induced by early after-depolarization and triggered activity was prone to incurred at mid-myocardial.
    Conclusion: It is an ideal method for the KCl MAP electrode to be applied
    to the researches of transmural repolarization; TDR could be decreased by Isoprenaline and the mechanism of ventricular arrhythmia incurred by Isoprenaline is related to after-depolarization and triggered activity.
    
    
    
    
    
    Part two
    Electrophysiological Mechanism of Ventricular Arrhythmia Induced
    by Local Isoprenaline in Situ
    Objective To observe the electrophysiological phenomena incurred by the
    administration of Isoprenaline(Iso) into canine left anterior ventricular wall in vivo and to probe into the mechanism of ventricular arrhythmia(VA) induced by the inhomogeneity increase of sympathetic nervous tension.
    Methods The self-made potassium chloride monophasic action potential
    recording electrodes (KCl MAP electrodes ) were pluged into the canine left anterior ventricular wall, where Iso was administered through the KCl MAP electrode to mimic the increase of local sympathetic nervous tension, monophasic action potentials (MAP) of the three layers (endocardium, midmyocardium and epicardium) at left anterior ventricular wall were recorded simultaneously before and after Iso been administered. The monophasic action potential duration (APD), the figure character of MAP , the transmural dispersion of repolarization (TDR) and the activation sequence of transmural anterior ventricular wall were analyzed.
    Results The APD of all three layers could be decreased directly by Iso with
    the TDR decreased remarkablely (31.8 ±2.1ms vs 22.6 ±3.3ms, P<0.05) , a significant increase of TDR (41.0±2.2ms vs 22.6±3.3ms, P<0.05) had been observed when EAD at midmyocardium been induced by Iso. The dependence of EAD on rapid ventricular frequency was observed, and VA could be triggered by consecutive EAD which mainly originated from midmyocardium. Different transmural activation sequence was observed when EAD originated from different layer of left anterior ventricular wall, the sequence was from epicardium to midmyocardium and then to endocardium when VT triggered by EAD originated from midmyocardium while the sequence was from endocardium to midmyocardium and then to epicardium when EAD originated from endocardium.
    Conclusion The auto-rhythmicity, EAD and TDR could be increased
    relatively by the inhomogeneity increase of Iso, when reentry was easily incurred between the three layer of myocardium, all these might be the electrophysiology bases of VA induced by local Iso.
    
    
    
    
    
    
    Part three
    Effects of Mexiletine on Transmural Dispersion of Repolarization of Left Anterior Ventricular Wall in Canine Model of LQT_3 in Vivo Objective To investigate the changes of action potential duration(APD) and transmural dispersion of repolarization(TDR) in canine model of long-QT syndrome type3(LQT_3) in vivo during bradycardia, to probe into the the impact of the sodium channel block-Mexiletine on this changes, and to provide experimental evidence for the prevention and treatment of ventricular arrhythmia in congenital LQT3.
    Methords The monophasic action potential(MAP) of endocardium,
    mid-myocardium and epicardium at the anterior ventricular wall were recorded synchronously in vivo by the self-made electrode, and the body surface electrocardiogram was recorded at the same time, Sea Anemone Toxin (ATX- Ⅱ) was administered intravenously to mimic LQT3 model, the heart rate was controlled by altering atrium pacing cycle length(PCL) after the sinoatrial node been ablated by 40% formaldehyde.
    Results The LQT3 model had been made successfully by the intravenous
    injection of ATX- Ⅱ (3 μg/kg). The TDR had been increased remarkably by the ATX-Ⅱ when the PCL was both 500ms and 1000ms (20 ±4 ms vs 41 ± 9ms and 39 ±5ms vs 83 ± 10ms, both P<0.05), but the net increase of TDR(ΔTDR) was more remarkable when the PCL was 1000ms compared with 500ms(44±13ms vs 20 ± 12ms, P<0.05), with the occurrence of early after depolarization(EAD) originated from mid-myocardium and spontaneity ventricular tachycardia. This kind of electrophysiological effect of ATX- Ⅱ could be reversed by Mexiletine(20μ g/kg).
    Conclusion The occurrence of ventricular tachycardia in LQT_3 model is
    bradycardia dependent, Mexiletine is probably an effective medicine in the prevention and treatment of the sudden cardiac death of congenital LQT_3.
引文
[1] Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res, 1991, 68(6): 1729-1741.
    [2] Drouin E, Charpentier F, Gauthier C, et al. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol, 1995, 26(1): 185-192.
    [3] Poelzing S, Akar FG, Baron E, et al. Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall. Am J Physiol Heart Circ Physiol, 2004, 286: H2001-H2009.
    [4] Burdon-Sauderson J, and Page FJM. On the time-relations of the excitatory progress in the ventricle of the frog[J]. J Physiol (Lond), 1882, 2: 385-412.
    [5] Hoffman BF, Cranefield PF, Lepeschkin E, et al. Comparison of cardiac monophasic action potentials recorded by intracellular and suction electrodes[J]. Am J Physiol, 1959, 196: 1297-1301.
    [6] Franz MR, Burkhoff D, Spurgeon H, et al. In vitro validation of a new cardiac catheter technique for recording monophasic action potentials. Eur Heart J, 1986, 7(1):34-41.
    [7] 李泱,马杰,肖建民,等.应用自制复合电极同步记录兔左心室游离壁三层心肌的单相动作电位.中国心脏起搏与心电生理杂志,2003,17(2):142—145.
    [8] Knollmann BC, Tranquillo J, Sirenko SG, et al. Microelectrode study of the genesis of the monophasic action potential by contact electrode technique[J]. J Cardiovasc Electrophysiol, 2002, 13:1246-1252.
    [9] Janosi A, Ghali JK, Herlitz J, et al. Metoprolol CR/XL in postmyocardial infarction patients with chronic heart failure: experiences from MERIT-HF. Am Heart J, 2003, 146(4): 721-728.
    [10] Torp-Pedersen C, Poole-Wilson PA, Swedberg K, et al. Effects of metoprolol and carvedilol on cause-specific mortality and morbidity in patients with chronic heart failure—COMET. Am Heart J, 2005, 149(2):370-376.
    [11] Cao JM, Fishbein MC, Han JB, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation, 2000, 101(16):1960-1969.
    [12] Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 2001 Jan 2;103(1):89-95.
    [13] Priori SG, Napolitano C, Cantu F, et al. Differential response to Na+ channel blockade, beta-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome. Circ Res, 1996, 8(6):1009-1015.
    [1] Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardiumof the canine ventricle[J]. The M cell. Circ Res, 1991, 68:1729-1741.
    [2] 刘中民,张代富.心律失常的分子研究.见:刘中民,张代富主译:分子心脏病学.北京:人民卫生出版社,2002.283-293.
    [3] Spach MS. Alignment of myocardial cells and its role in the genesis of cardiac arrythmias[J]. Pacing Clin Electrophysiol, 1990, 13:1535-1540.
    [4] Spear JF, Moore EN. Modulation of arrhythmias by isoproterenol in a rabbit heart model of d-sotalol-induced long Q-T intervals[J]. Am J Physiol Heart Circ Physiol, 2000, 279:H15-25.
    [5] Burdon-Sauderson J, Page FJM. On the time-relations of the excitatory progress in the ventricle of the frog[J]. J Physiol (Lond), 1882, 2: 385-412.
    [6] Hoffman BF, Cranefield PF, Lepeschkin E, et al. Comparison of cardiac monophasic action potentials recorded by intracellular and suction electrodes[J]. Am J Physiol, 1959, 196: 1297-1301.
    [7] Franz MR. Current status of monophasic action potential recording: theories, measurements and interpretations[J]. Cardiovasc Res, 1999, 41: 25-40.
    [8] Knollmann BC, Tranquillo J, Sirenko SG, et al. Microelectrode study of the genesis of the monophasic action potential by contact electrode technique[J]. J Cardiovasc Electrophysiol, 2002, 13:1246-1252.
    [9] Franz MR, Chin MC, Sharkey HR, et al. A new single catheter technique for simultaneous measurement of action potential duration and refractory period in vivo[J]. J Am Coll Cardiol, 1990, 16: 878-886.
    [10] Nesterenko W, Weissenburger J. Experimental evidence for re-interpretation of basis for the monophasic action potential: A new technique with large amplitude and stable transmural signals[J]. Circulation, 1995, 92: I-299.
    [11] Weissenburger J, Nesterenko W, Antzelevitch C. Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: torsades de pointes develops with halothane but not pentobarbital anesthesia[J]. J Cardiovasc Electrophysiol, 2000, 11: 290-304.
    [12] 李泱,马杰,肖建民,等.应用自制复合电极同步记录兔左心室游离壁三层心肌的单相动作电位.中国心脏起搏与心电生理杂志,2003,17(2):142—145.
    [13] Zhou X, Huang J, Ideker RE. Transmural recording of monophasic action potentials[J]. Am J Physiol Heart Circ Physiol, 2002, 282: H855-861.
    [14] Verrier RL, Antzelevitch C. Autonomic aspects of arrhythmogenesis: the enduring and the new[J]. Curr Opin Cardiol, 2004, 19: 2-11.
    [15] Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome[J]. J Am Coll Cardiol, 2000, 35:778-786.
    [1] Yoshioka K, Gao DW, Chin M, et al. Heterogeneous Sympathetic Innervation Influences Local Myocardial Repolarization in Normally Perfused Rabbit Hearts. Circulation, 2000, 101:1060—1066.
    [2] Biffi M, Fallani F, Boriani G, et al. Abnormal cardiac innervation in patients with idiopathic ventricular fibrillation. Pacing Clin Electrophysiol, 2003, 26(1 Pt 2):357-360.
    [3] Zhou X, Huang J, Ideker RE. Transmural recording of monophasic action potentials. Am J Physiol Heart Circ Physiol, 2002, 282: H855-H861.
    [4] 徐大文,张存泰,李泱,等.自主神经系统对在体犬跨室壁复极不均一性影响的研究.中华心血管病杂志,2002,30:504-507.
    [5] Gullestad L, Wikstrand J, Deedwania P, et al. What resting heart rate should one aim for when treating patients with heart failure with a beta-blocker? Experiences from the Metoprolol Controlled Release/Extended Release Randomized Intervention Trial in Chronic Heart Failure (MERIT-HF). J Am Coll Cardiol, 2005, 45(2):252-259.
    [6] Ghali JK, Herlitz J, Czuriga I, et al. Metoprolol CR/XL in postmyocardial infarction patients with chronic heart failure: experiences from MERIT-HF. Am Heart J, 2003, 146(4):721-728.
    [7] Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol, 2000, 35:778-786.
    [8] Volders PG, Stengl M, van Opstal JM, et al. Probing the contribution of IKs to canine ventricular repolarization: key role for beta-adrenergic receptor stimulation. Circulation, 2003, 107(21):2753-2760.
    [9] Volders PG, Kulcsar A, Vos MA, et al. Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc Res, 1997, 34(2):348-359.
    1 Shimizu W. The long QT syndrome: therapeutic implications of a genetic diagnosis. Cardiovasc Res, 2005, 67(3):347-356.
    2 Oginosawa Y, Nagatomo T, Abe H, et al. Intrinsic mechanism of the enhanced rate-dependent QT shortening in the R1623Q mutant of the LQT3 syndrome. Cardiovasc Res, 2005, 65(1):138-147.
    3 Zhou X, Huang J, Ideker RE. Transmural recording of monophasic action potentials. Am J Physiol Heart Circ Physiol, 2002, 282: H855-H861.
    4 徐大文,张存泰,李泱,等.自主神经系统对在体犬跨室壁复极不均一性影响的研究.中华心血管病杂志,2002,30:504-507.
    5 Shimizu W, Antzelevitch C. Effects of a K(+) channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long-QT syndrome. Circulation. 2000, 102(6):706-712.
    6 el-Sherif N, Fozzard HA, Hanck DA. Dose-dependent modulation of the cardiac sodium channel by sea anemone toxin ATXII. Circ Res, 1992, 70(2):285-301.
    7 Zygmunt AC, Eddlestone GT, Thomas GP, et al. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol Heart Circ Physiol. 2001, 281(2):H689-697.
    8 Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol, 2000, 35:778-786.
    9 Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation. 1997, 96(6):2038-2047.
    10 Shimizu W, Antzelevitch C. Cellular basis for long QT, transmural dispersion of repolarization, and torsade de pointes in the long QT syndrome. J Electrocardiol, 1999, 32 Suppl:177-184.
    [1] Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res, 1991,68(6): 1729-1741.
    [2] Antzelevitch C, Yan GX, Shimizu W. Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome. J Electrocardiol, 1999,32 Suppl: 158-165.
    [3] Furukawa T, Myerburg RJ, Furukawa N, et al. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res, 1990, 67(5):1287-1291.
    [4] Fedida D,Giles WR.Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol, 1991,442:191-209.
    [5] Clark RB,Bouchard RA,Salinas-Stefanon E, et al. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res, 1993,27(10):1795-1799.
    [6] Drouin E, Charpentier F, Gauthier C, et al. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol, 1995,26(1): 185-192.
    [7] Nabauer M, Beuckelmann DJ, Uberfuhr P, et al. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation, 1996,93(1):168-177.
    [8] Sommer JR, Johnson EA. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol, 1968,36(3):497-526.
    [9] Oosthoek PW, Viragh S, Lamers WH, et al. Immunohistochemical delineation of the conduction system. II: The atrioventricular node and Purkinje fibers. Circ Res, 1993,73(3):482-491.
    [10] Antzelevitch C, Sicouri S, Litovsky SH, et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res, 1991,69(6):1427-1449.
    [11] Sicouri S, Antzelevitch C. Drug-induced afterdepolarizations and triggered activity occur in a discrete subpopulation of ventricular muscle cells (M cells) in the canine heart: quinidine and digitalis. [J]. J Cardiovasc Electrophysiol,1993,4(1):48-58.
    [12] Abildskov JA, Rush S, Burgess MJ, et al. Graphic studies concerning the body surface distribution of T potentials. Am Heart J, 1972,83(2):283-285.
    [13] Yan GX, Antzelevitch C. Cellular basis for the electrocardiography J wave. Circulation,1996,93:372-379.
    [14] Yan GX, Kowey PR. ST segment elevation and sudden cardiac death: from the Brugada syndrome to acute myocardial ischemia. J Cardiovasc Electrophysiol,2000,11(12):1330-1332.
    [15] Yan GX, Joshi A, Guo D, et al. Phase 2 reentry as a trigger to initiate ventricular fibrillation during early acute myocardial ischemia. Circulation, 2004,110(9):1036-1041.
    [16] Yan GX, Antzelevitch C. Cellular basis of the normal T wave and the electrocardiographic manifestations of the Long-QT syndrome. Circulation,1998,98:1928-1936.
    [17] Kitamura H, Ohnishi Y, Okajima K, et al. Onset heart rate of microveolt-level T-warve alternans provides clinical and prognostic value in nonischemic dilated cardiomyopathy. J Am Coll Cardiol, 2002, 39:295-300.
    [18] Ikeda T, Saito H, Tanno K, et al. T-wave alternans as a predictor for sudden cardiac death after myocardial infarction. Am J Cardiol,2002, 89:79-82.
    [19] Bloomfield DM, Hohnloser SH, Cohen RJ. Interpretation and classification microvolt T wave alternans tests. J Cardiovasc Electrophysiol,2002,13: 502-512.
    [20] Lepeschkin E. The U wave of the electrocardiogram. Mod Concepts Cardiovasc Dis, 1969, 38(8):39-45.
    [21] Surawicz B. U wave: facts, hypotheses, misconceptions, and misnomers. J Cardiovasc Electrophysiol, 1998, 9(10):1117-1128.
    [22] StoletniyLN, Pai SM, Platt ML, et al. QT dispersion as a noninvasive predictor of inducible ventricular tachycardia. J Electrocardiol, 1999, 32(2): 173-177.
    [23] Anastasiou-Nana MI, Nanas JN, Karagounis LA, et al. Relation of dispersion of QRS and QT in patients with advanced congestive heart failure to cardiac and sudden death mortality. Am J Cardiol, 2000, 85(10): 1212-1217.
    [24] Spargias KS, Lindsay SJ, Kawar GI, et al. QT dispersion as a predictor of long-term mortality in patients with acute myocardial infarction and clinical evidence of heart failure. Eur Heart J, 1999, 20(16): 1158-1165.
    [25] Roden DM, Lazzara R, Rosen M, et al. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation, 1996, 94(8): 1996-2012.
    [26] Kurita T, Ohe T, Marui N, et al. Bradycardia-induced abnormal QT prolongation in patients with complete atrioventricular block with torsades de pointes. Am J Cardiol, 1992, 69(6):628-633.
    [27] Schwartz PJ, Locati EH, Napolitano C, et al. The long QT syndrome. In: Zipes DP, Jalife J, eds. Cardiac electrophysiology: from cell to bedside. Philadelphia: WB Sauders, 1995: 788-811.
    [28] Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation, 1998, 98 (21): 2314-2322.
    [29] Surawicz B. Electrophysiologic substrate of torsade de pointes: dispersion of repolarization or early afterdepolarizations? J Am Coll Cardiol, 1989, 14(1):172-184.
    [30] Boutjdir M, el-Sherif N. Pharmacological evaluation of early afterdepolarisations induced by sea anemone toxin (ATXII) in dog heart. Cardiovasc Res , 1991,25(10):815-819.
    [31] El-Sherif N, Turitto G. Torsade de pointes. Curr Opin Cardiol, 2003,18(1): 6-13.
    [32] El-Sherif N, Caref EB, Yin H, et al. The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome. Tridimensional mapping of activation and recovery patterns. Circ Res, 1996, 79(3): 474-492.
    [33] Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol, 1994 ,23(1):259-277.
    [34] Antzelevitch C, Shimizu W, Yan GX,et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol, 1999,10(8): 1124-1152.
    [35] Romano C, Gemme G, Pongiglione R. Raer Cardiac Arrythmias of the Pediatric Age. II. Syncopal Attacks due to Paroxysmal Ventricular Fibrillation. (Presentation of 1st Case in Italian Pediatric Literature.Clin Pediatr (Bologna), 1963,45:656-683.
    [36] Ward OC. A New Familial Cardiac Syndrome in Children. J Ir Med Assoc, 1964,54:103-106.
    [37] Jervell A, Lange-nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J, 1957 , 54(1): 59-68.
    [38] Moss AJ, Schwartz PJ. 25th anniversary of the International Long-QT Syndrome Registry: an ongoing quest to uncover the secrets of long-QT syndrome. Circulation, 2005,111(9):1199-1201.
    [39] Zipes DP. The long QT interval syndrome. A Rosetta stone for sympathetic related ventricular tachyarrhythmias. Circulation, 1991, 84(3): 1414-1419.
    [40] Schwartz PJ. The congenital long QT syndromes from genotype to phenotype: clinical implications.J Intern Med, 2006,259(1):39-47.
    [41] Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med, 2006,259(1):59-69.
    [42] Neyroud N, Tesson F, Denjoy I, et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet, 1997,15(2):186-189.
    [43] Splawski I, Tristani-Firouzi M, Lehmann MH,et al. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet, 1997,17(3):338-340.
    [44] Chen Q, Zhang D, Gingell RL,et al. Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome. Circulation, 1999,99(10):1344-1347.
    [45] Hoornt je T, Alders M, van Tintelen P, et al. Homozygous premature truncation of the HERG protein : the human HERG knockout. Circulation, 1999,100(12): 1264-1267.
    [46] Abbott GW, Goldstein SA, Sesti F. Do all voltage-gated potassium channels use MiRPs? Circ Res, 2001,88(10):981-983.
    
    [47] Dumaine R, Wang Q, Keating MT, et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res, 1996,78(5):916-924.
    [48] Chauhan VS, Tuvia S, Buhusi M,et al. Abnormal cardiac Na(+) channel properties and QT heart rate adaptation in neonatal ankyrin(B) knockout mice. Circ Res, 2000,86(4):441-447.
    [49] Moss AJ, Zareba W, Benhorin J, et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation, 1995,92(10):2929-2934.
    [50] Zhang L, Timothy KW, Vincent GM, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation, 2000,102(23):2849-2855.
    [51] Swan H, Viitasalo M, Piippo K,et al. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQTl and HERG potassium channel defects. J Am Coll Cardiol, 1999,34(3):823-829.
    [52] Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 2001 Jan 2;103(1):89-95.
    [53] Moss AJ, Robinson JL, Gessman L, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardio, 1999,84(8): 876-879.
    [54] Choi G, Kopplin LJ, Tester DJ,et al. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation, 2004,110(15):2119-2124.
    
    [55] Priori SG, Napolitano C, Cantu F, et al. Differential response to Na+ channel blockade, beta-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome. Circ Res, 1996 ,8(6): 1009-1015.
    [56] Compton SJ, Lux RL, Ramsey MR, et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation, 1996,4(5): 1018-1022.
    [57] Selzer A, Wray HW. Quinidine Syncope. Paroxysmal Ventricular Fibrillation Occurring during Treatment of Chronic Atrial Arrhythmias. Circulation, 1964,30:17-26.
    [58] Roden DM. Taking the "idio" out of "idiosyncratic": predicting torsades de pointes. Pacing Clin Electrophysiol, 1998,21(5):1029-1034.
    [59] Hohnloser SH,Woosley RL, Sotaiol. N EnglJ Med, 1994, 331(1):31-38.
    [60] Hohnloser SH, Zabel M, van de Loo A,et al. Efficacy and safety of sotaiol in patients with complex ventricular arrhythmias. Int J Cardiol, 1992, 37(3):283-291.
    [61] Hohnloser SH, Klingenheben T, Singh BN,et al. Amiodarone-associated proarrhythmic effects. A review with special reference to torsade de pointes tachycardia. Ann Intern Med, 1994,121(7):529-535.
    [62] Merot J, Charpentier F, Poirier JM,et al. Effects of chronic treatment by amiodarone on transmural heterogeneity of canine ventricular repolarization in vivo: interactions with acute sotaiol. Cardiovasc Res, 1999,44(2):303-314.
    [63] You B, Pu J, Liu N,et al. Effect of lidocaine and amiodarone on transmural heterogeneity of ventricular repolarization in isolated rabbit hearts model of sustained global ischemia. J Huazhong Univ Sci Technolog Med Sci, 2005;25(4):400-403.
    [64] Sicouri S, Moro S, Litovsky S,et al. Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol, 1997,8(11): 1269-1279.
    [65] Pedersen OD, Brendorp B, Elming H,et al. Does conversion and prevention of atrial fibrillation enhance survival in patients with left ventricular dysfunction? Evidence from the Danish Investigations of Arrhythmia and Mortality ON Dofetilide/(DIAMOND) study. Card Electrophysiol Rev, 2003 ,7(3):220-224.
    [66] Sharma ND, Rosman HS, Padhi ID,et al. Torsades de Pointes associated with intravenous haloperidol in critically ill patients. Am J Cardiol,1998, 1(2):238-240.
    [67] McComb JM, Campbell NP, Cleland J. Recurrent ventricular tachycardia associated with QT prolongation after mitral valve replacement and its association with intravenous administration of erythromycin. Am J Cardiol, 1984,54(7):922-923.
    [68] Freedman RA, Anderson KP, Green LS,et al. Effect of erythromycin on ventricular arrhythmias and ventricular repolarization in idiopathic long QT syndrome. Am J Cardiol,1987,9(1):168-169.
    [69] Antzelevitch C, Sun ZQ, Zhang ZQ,et al. Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J Am Coll Cardiol,1996 ,28(7): 1836-1848.
    [70] Sakemi H, VanNatta B. Torsade de pointes induced by astemizole in a patient with prolongation of the QT interval. Am Heart J, 1993 , 125(5 Pt 1):1436-1438.
    [71] Woosley RL, Chen Y, Freiman JP,et al. Mechanism of the cardiotoxic actions of terfenadine. JAMA, 1993,269(12):1532-1536.
    [72] Wysowski DK, Corken A, Gallo-Torres H,et al. Postmarketing reports of QT prolongation and ventricular arrhythmia in association with cisapride and Food and Drug Administration regulatory actions. Am J Gastroenterol,2001,96(6):1698-1703.
    [73] Barbey JT, Lazzara R, Zipes DP. Spontaneous adverse event reports of serious ventricular arrhythmias, QT prolongation, syncope, and sudden death in patients treated with cisapride. J Cardiovasc Pharmacol Ther, 2002,7(2):65-76.
    [74] Priori SG, Barhanin J, Hauer RN,et al. Genetic and molecular basis of cardiac arrhythmias; impact on clinical management. Study group on molecular basis of arrhythmias of the working group on arrhythmias of the european society of cardiology. Eur Heart J, 1999 ,20(3): 174-195.
    [75] Viswanathan PC, Shaw RM, Rudy Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation, 1999,99:2466 - 2474.
    [76] Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium: in vitro and in vivo correlations. Circulation, 1996,94:1981 - 1988.
    [77] Lesh MD, Pring M, Spear JF. Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium: a computer modeling study. Circ Res, 1989.65:1426 - 1440.
    [78] Poelzing S, Akar FG, Baron E, et al. Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall. Am J Physiol Heart Circ Physiol, 2004, 286: H2001 - H2009.
    [79] Martinez AD, Hayrapetyan V, Moreno AP, et al. Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ Res, 2002,90:1100 - 1107.
    [80] Saffitz JE, Davis LM, Darrow BJ, et al. The molecular basis of anisotropy: role of gap junctions. J Cardiovasc Electrophysiol, 1995, 6:498 - 510.
    [81] Yamada KA, Kanter EM, Green KG, et al. Transmural istribution of connexins in rodent hearts. J Cardiovasc Electrophysiol, 2004,5:710 - 715.
    [82] Frazier DW, Krassowska W, Chen PS, et al. Transmural activations and stimulus potentials in three-dimensional anisotropic canine myocardium. Circ Res,1988,63:135 - 146.
    [83] Taccardi B, Macchi E, Lux RL, et al. Effect of myocardial fiber direction on epicardial potentials. Circulation, 1994,90:3076 - 3090.
    [84] Yan GX, Shimizu W, Antzelevitch C. Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation, 1998, 98:1921-1927.
    [85] Morley GE, Vaidya D, Samie FH, et al. Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J Cardiovasc Electrophysiol, 1999, 10:1361-1375.
    [86] Thomas SP, Kucera JP, Bircher-Lehmann L, et al. Impulse propagation in synthetic strands of neonatal cardiac myocytes with genetically reduced levels of connexin43. Circ Res, 2003, 92:1209-1216.
    [87] Eloff BC, Lerner DL, Yamada KA, et al. High resolution optical mapping reveals conduction slowing in connexin43 deficient mice. Cardiovasc Res, 2001, 51:681-690.
    [88] van Rijen HV, Eckardt D, Degen J, et al. Slow conduction and enhanced anisotropy increase the propensity for ventricular tachy- arrhythmias in adult mice with induced deletion of connexin43. Circulation, 2004, 109:1048-1055.
    [89] Rudy Y, Quan W. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue. Circ Res, 1987, 61:815-823.
    [90] Vira' gh S, Challice CE. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec, 1981, 201:157-168.
    [91] Zhuang JP, Yamada KA, Saffitz JE, et al. Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ Res, 2000, 87:316-322.
    [92] Heusch G, Schulz R. The relation of contractile function to myocardial perfusion: perfusion-contraction match and mismatch. Herz, 1999, 24:509-514.
    [93] Bogaert J, Rademakers FE. Regional nonuniformity of normal adult human left ventricle. Am J Physiol, 2001, 280:H610-H620.
    [94] Patel PM, Plotnikov A, Kanagaratnam P, et al. Altering ventricular activation remodels gap junction distribution in canine heart. J Cardiovasc Electrophysiol, 2001,12:570 - 577.
    [95] Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol, 2004, 287(4):H1762-770.
    [96] Li GR, Lau CP, Ducharme A, et al. Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol, 2002,283:H1031 - H1041.
    [97] Zareba W, Moss AJ. Noninvasive risk stratification in postinfarction patients with severe left ventricular dysfunction and methodology of the MADIT II noninvasive electrocardiology substudy. J Electrocardiol, 2003,36(Suppl):101 - 108.
    [98] Eloff BC, Gilat E, Wan X, et al. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy. Circulation,2003,108:3157 - 3163.
    [99] Epstein AE, Hallstrom AP, Rogers WJ,et al. Mortality following ventricular arrhythmia suppression by encainide, flecainide, and moricizine after myocardial infarction. The original design concept of the Cardiac Arrhythmia Suppression Trial (CAST). JAMA, 1993,270(20): 2451-2455.
    [100] Waldo AL, Camm AJ, deRuyter H,et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival With Oral d-Sotalol. Lancet, 1996,348(9019):7-12.
    [101] Julian DG, Camm AJ, Frangin G,et al. Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. European Myocardial Infarct Amiodarone Trial Investigators.Lancet, 1997,349(9053): 667-674.
    [102] Cairns JA, Connolly SJ, Roberts R,et al. Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Canadian Amiodarone Myocardial Infarction Arrhythmia Trial Investigators. Lancet, 1997, 349(9053):675-682.
    [103] Doval HC, Nul DR, Grancelli HO,et al. Randomised trial of low-dose amiodarone in severe congestive heart failure. Grupo de Estudio de la Sobrevida en la Insuficiencia Cardiaca en Argentina (GESICA) Lancet,1994,344(8921):493-498.
    [104] Singh SN, Fletcher RD, Fisher SG,et al. Amiodarone in patients with congestive heart failure and asymptomatic ventricular arrhythmia. Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure. N Engl J Med,1995 ,333(2):77-82.
    [105] Janosi A, Ghali JK, Herlitz J,et al. Metoprolol CR/XL in postmyocardial infarction patients with chronic heart failure: experiences from MERIT-HF. Am Heart J, 2003,146(4): 721-728.
    [106] Torp-Pedersen C, Poole-Wilson PA, Swedberg K,et al. Effects of metoprolol and carvedilol on cause-specific mortality and morbidity in patients with chronic heart failure — COMET. Am Heart J, 2005,149(2):370-376.
    [107] Moss AJ, Hall WJ, Cannom DS,et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med, 1996,335(26): 1933-1940.
    [108] Klein RC, Raitt MH, Wilkoff BL, et al. Analysis of implantable cardioverter defibrillator therapy in the Antiarrhythmics Versus Implantable Defibrillators (AVID) Trial.J Cardiovasc Electrophysiol, 2003 ,14(9):940-948.
    [109] Oseroff O, Retyk E, Bochoeyer A. Subanaiyses of secondary prevention implantable cardioverter-defibrillator trials: antiarrhythmics versus implantable defibrillators (AVID), Canadian Implantable Defibrillator Study (CIDS), and Cardiac Arrest Study Hamburg (CASH). Curt Opin Cardiol, 2004, 19(1):26-30.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.