鄂尔多斯高原藏锦鸡儿(Caragana tibetica)的生态适应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱和半干旱生态系统是一类非常重要的生态系统类型,它覆盖着世界陆地面积的1/3,储存着>30%的全球有机碳含量,但该生态系统较为脆弱,对气候变化和人类活动较为敏感,极易发生退化和破坏。水分是干旱和半干旱区域的限制性因子,对这里植物的生存和生产、生态系统的结构和生产力、植被动态起着决定性的作用。鄂尔多斯高原是我国干旱、半干旱区一个相对独立的自然单元,也是一个十分特殊和敏感的生态过渡带。藏锦鸡儿(Caragana tibetica)群落在该区是分布在草原和荒漠过渡带上的重要群落类型,也是非常重要的牧草场。本文通过分析鄂尔多斯高原藏锦鸡儿的群落特征、种群特征、生物学特征、以及藏锦鸡儿的沙堆效应,探讨藏锦鸡儿对干旱环境的适应特征,研究结果显示:
     1、藏锦鸡儿群落特征表现为:(1)其分布面积约为3684平方公里,可划分出15个群丛。(2)藏锦鸡儿的盖度约为11%,密度为42株每100平方米;草本层的Simpson和Shannon-Wiener多样性指数在7.3左右。(3)藏锦鸡儿群落包含种子植物88种,隶属于26科,58个属;含属、种最多的科是禾本科(Gramineae),其次为菊科(Compositae)和豆科(Leguminosae);含种最多的属是蒿属(Artemisia),其次为针茅属(Stipa);其中包含强旱生植物7种、典型旱生植物52种。
     2、通过分析代表性群落-藏锦鸡儿-无芒隐子草+短花针茅群落可知,藏锦鸡儿群落结构较为稳定。(1)垂直结构表现为:地上部分,优势层片藏锦鸡儿的高度在25 cm左右,丛生禾草无芒隐子草(Cleistogenes songorica)和短花针茅(Stipa breviflora)共建亚优势层片的高度在5-10 cm左右;地下部分,藏锦鸡儿根系分布在2 m左右,为双层根系类型,并发育一定不定根,小根和细根集中分布在20-60 cm和140-170 cm的土层中,草本层的根系集中分布在0-30 cm的土层。(2)水平结构表现为:在10 m×10 m的范围内,藏锦鸡儿为随机分布,狭叶锦鸡儿(Caragana stenophylla)、阿氏旋花(Convolvulus ammannii)、燥原荠(Ptilotrichum canescens)为聚集分布,短花针茅、无芒隐子草、单叶黄芪(Astragalus efoliolatus)、冷蒿(Artemisia frigida)随着取样范围的增加先呈聚集分布而后为随机分布。(3)藏锦鸡儿与其它多年生植物问没有相关关系,不存在种问竞争。(4)藏锦鸡儿引起了群落内土壤全氮、有机碳、土壤水分的空间异质性分布,但这对群落内其它多年生植物的分布格局没有影响。藏锦鸡儿富集的土壤养分并不被其它多年生植物所利用。
     2、藏锦鸡儿种群分布格局随着降水量的递减发生了变化。随着降水量的减少,藏锦鸡儿种群中存活藏锦鸡儿和成熟藏锦鸡儿在一定范围内的均匀分布格局被随机分布格局所取代。
     3、藏锦鸡儿形态特征为近半椭圆形的垫状特征,平均灌幅为57 cm×44 cm,灌丛高为22 cm;藏锦鸡儿的根和茎都存在劈裂现象。
     4、藏锦鸡儿沙堆效应体现固沙效应和沃岛效应,固沙效应表现为:藏锦鸡儿群落每平方米固定0.031 m3的风沙;藏锦鸡儿聚集的主要是细沙粒,占沙堆土壤机械组成的73%。沃岛效应表现为:藏锦鸡儿沙堆内的土壤平均有机质和全磷含量均高于沙堆外的。在沙堆内,土壤有机质和全磷含量随着土层深度的增加呈先增加后减小的趋势,在地面以上的20 cm处达到最大;土壤水分呈递增趋势。
     藏锦鸡儿对干旱环境表现出较强的适应能力,灌丛沙堆的形成促进了藏锦鸡儿的生长和发育。藏锦鸡儿群落虽然有相对较高的稳定性,但是鉴于现在藏锦鸡儿普遍退化较严重和藏锦鸡儿显著的生态功能,对藏锦鸡儿群落应合理利用,在夏秋季节可作为放牧草场,冬春季应加强保护。通过本研究我们更加系统的认识了干旱环境中植物与环境之间的相互关系,对干旱区的生态恢复及资源的可持续利用具有深远的意义。
Arid and semiarid ecosystems are very important ecosystem types. They cover one third of land area in the world, produce more than 35% of global land net primary production and possess an excess of 30% of global organic carbon reserves. However, these ecosystems are more vulnerable and susceptible to degradation under climate changes and human activities. Water is a limited factor in these regions, and plays a crucial role in terms of plant survival and production, the structure and productivity of ecosystem and dynamics of vegetation. Ordos plateau is a relatively independent natural unit in arid and semiarid areas of China, and also a highly unique and susceptible ecotone. Caragana tibetica community is an important community type in the ecotones between steppe and desert of this region, and acts as a crucial pasture. In this study, we analyzed characteristics of C. tibetica in terms of community, population and biology, and also analyzed the effects of the nebkhas it induced to explore its adaptive characters to the arid environment. Our results were shown as follows:
     1. Caragana tibetica community belonged to the vegetation type of steppe desert. (1) Caragana tibetica community covered an area of about 3684 km2, and could be separated into 15 association. (2) The coverage of C. tibetica was about 11% and there were about 42 C. tibetica individuals per unit 100 m2; the Simpson and Shannon-Wiener diversity indices of herbs were both about 7.3. (3) There were 88 seed plant species in the C. tibetica community, which belonged to 26 family and 58 genera. Among these plants, family Gramineae contained the largest number of genus and species, and then followed by the family Compositae. The genus Artemisia had the largest number of species and the genus Stipa took the second place. In addition, there were 7 strong xeric species and 52 typical xeric species in C. tibetica community.
     2. Caragana tibetica community showed a stable structure. (1) The vertical structure was shown that:for the aboveground parts of the community, the height of dominant synusia was about 25 cm, and that of sub-dominant synusia consisting of bunchgrasses Cleistogenes songorica and Stipa breviflora ranged from 5 to 10 cm; for the belowground parts of the community, C. tibetica had bimodal root activity profile and most roots concentrated in the 0-200 cm soil layers with a certain amount of adventitious roots growing. The small roots and fine roots separately concentrated in 20-60 cm and 140-170 cm soil layers. The root system of herbs mainly distributed in 0-30 cm soil layer. (2) The horizontal structure was shown that:at the spatial scale of 10 m×10 m, C. tibetica individuals showed random pattern, while Caragana stenophylla, Convolvulus ammannii and Ptilotrichum canescens showed aggregation patterns. With the spatial scales increasing, Stipa breviflora, Cleistogenes songorica, Astragalus efoliolatus and Artemisia frigida firstly showed aggregation patterns and then exhibited random patterns. (3) Caragana tibetica did not show associations with other perennial species, and no interspecies competition was found among them. (4) Caragana tibetica caused the spatial heterogenous distributions of soil total nitrogen, soil organic carbon and soil moisture, which however did not influence the distribution patterns of other perennial species in the community. Therefore, soil nutrients accumulated by C. tibetica could not be used by other perennial plants.
     3. The distribution patterns of C. tibetica populations varied with the decrease of the precipitation. With the precipitation decreasing, the uniform distribution patterns of both the live and mature C. tibetica individuals at a certain scale were replaced by the random patterns.
     4. Morphologically, C. tibetica showed dwarf and near hemi-oval shape, and its average canopy was 57 cm in length and 44 cm in width. Both the root and stem of C. tibetica had the ability of split.
     5. Caragana tibetica nebkhas showed the sand-fixing and fertile island effects. (1) In C. tibetica community, the amount of sand trapped by C. tibetica per unit area was 0.0313 m3m-2. Caragana tibetica primarily accumulated fine sand, which accounted for 74% of the soil in the nebkhas. (2) The contents of soil organic matter and total phosphorus and soil moisture inside nebkhas were higher than those outside the nebkhhas. Inside the nebkhas, contents of soil organic matter and total phosphorus first increased and then decreased with increasing soil depth with the maximum value occurring in the layer of 20 cm, but soil moisture increased steadily.
     In a word, C. tibetica showed strong abilities to adapt arid environment, and the formation of nebkhas facilitated its growth and development. Yet, despite of the stability of C. tibetica community, more attentions should be paid on its rational utilization in view of current serious destruction and significant ecological functions of the species. In summer and autumn its community could be used as pasture while in winter and spring the protective measures should be considered to take. Our study provided more systematical understandings of the relationship between arid environment and plant, which will have profound significance for ecological restoration and sustainable utilization of resources.
引文
[1]Brooker RW. Plant-plant interactions and environmental change[J]. New Phytologist.2006,171 (2):271-284.
    [2]McCue K, Hanson A. Drought and salt tolerance:towards understanding and application[J]. Trends in biotechnology.1990,8:358-362.
    [3]Bray EA. Plant responses to water deficit[J]. Trends in Plant Science.1997,2(2):48-54.
    [4]Hsiao TC. Plant responses to water stress[J]. Annual Review of Plant Physiology.1973,24(1):519-570.
    [5]Nilsen ET, Orcutt DM. Physiology of plants under stress. Abiotic factors[J]. Physiology of plants under stress. Abiotic factors.1996.
    [6]Smirnoff N. Plant resistance to environmental stress[J]. Current Opinion in Biotechnology.1998,9(2):214-219.
    [7]Larcher W. Physiological plant ecology:ecophysiology and stress physiology of functional groups:Springer; 2003.
    [8]Milchunas D, Lauenroth W. Inertia in plant community structure:state changes after cessation of nutrient-enrichment stress[J]. Ecological Applications.1995,5(2):452-458.
    [9]宋炳煜.植物生态生理学.呼和浩特:内蒙古大学;2009.
    [10]Studies OOoIE. Arid ecosystem interactions. Boulder, CO:Office of Interdisciplinary Earth Studies; 1991.
    [11]UNESCO. World Map of Arid Regions. United Nations Educational. Paris, France:Scientific and Cultural Organization; 1977.
    [12]Schlesinger WH. Biogeochemistry:an analysis of global change. New York, USA:Academic Press, New York; 1997.
    [13]Petit J, Jouzel J, Raynaud D et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature.1999,399(6735):429-436.
    [14]Noy-Meir I. Desert ecosystems:environment and producers[J]. Annual Review of Ecology and Systematics. 1973,4(1):25-51.
    [15]Boyer J. Plant productivity and environment[J]. Science.1982,218(4571):443-448.
    [16]Aguiar MR, Sala OE. Patch structure, dynamics and implications for the functioning of arid ecosystems[J]. Trends in Ecology & Evolution.1999,14(7):273-277.
    [17]Bhark EW, Small EE. Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan desert, New Mexico[J]. Ecosystems.2003:185-196.
    [18]Rango A, Tartowski SL, Laliberte A et al. Islands of hydrologically enhanced biotic productivity in natural and managed arid ecosystems[J]. Journal of Arid Environments.2006,65(2):235-252.
    [19]Thurow TL, Blackburn WH, Taylor Jr CA. Hydrologic characteristics of vegetation types as affected by livestock grazing systems, Edwards Plateau, Texas[J]. Journal of Range Management.1986:505-509.
    [20]Levitt J. Responses of plants to environmental stresses. New York:Academic Press; 1972.
    [21]Turner N. Crop water deficits:a decade of progress[J]. Advances in Agronomy.1986,39:1-51.
    [22]Ludlow MM. Strategies of response to water stress. In:KreebKH, Richter H, Hinckley TM, eds. Structural and functional responses to environmental stresses. Hague:Balogh Scientific Books; 1989:269-281.
    [23]王勋凌.植物生态解剖学研究进展[J].植物学通报.1993,10:1-10.
    [24]Gollan T, Schurr U, Schulze E. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap[J]. Plant, Cell & Environment.1992,15(5):551-559.
    [25]Gowing D, Davies W, Jones H. A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh[J]. Journal of Experimental Botany.1990,41(12):1535.
    [26]Schurr U, Gollan T, Schulze E. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap[J]. Plant, Cell & Environment.1992,15(5):561-567.
    [27]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J]. 植物生理学通讯.1995,31(4): 293-297.
    [28]Mansfield T, Atkinson C. Stomatal behaviour in water stressed plants. In:Alscher R, Cumming J, eds. Stress Responses in Plants:Adaptation and Acclimation Mechanisms New
    York:Wiley-Liss; 1990:241-264.
    [29]Schulze E. Whole-plant responses to drought[J]. Australian Journal of Plant Physiology.1986,13:127-141.
    [30]李正理,李荣敖.我国甘肃九种早生植物同化枝的解剖观察[J].植物学报.1981,23(03):181-185.
    [31]刘家琼.我国荒漠不同生态类型植物的旱生结构[J].植物生态学与地植物学丛刊.1982,6(04):314-319.
    [32]杨九艳,杨劫,杨明博等.鄂尔多斯高原锦鸡儿属植物叶表皮特征及生态适应性[J].植物生态学报.2005,29(06):961-967.
    [33]高松,苏培玺,严巧娣等.C4荒漠植物猪毛菜与木本猪毛菜的叶片解剖结构及光合生理特征[J].植物生态学报.2009,33(02):347-354.
    [34]杨九艳,杨劼,杨明博等.鄂尔多斯高原锦鸡儿属植物叶的解剖结构及其生态适应性[J].干旱区资源与环 境.2005,19(03):175-179.
    [35]王勋陵,王静.植物形态结构与环境.兰州:兰州大学出版社;1989.
    [36]Ehleringer J, Forseth I. Solar tracking by plants[J]. Science.1980,210(4474):1094-1098.
    [37]Larcher W. Temperature stress and survival ability of Mediterranean sclerophyllous plants[J]. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology:Official Journal of the Societa Botanica Italiana.2000,134(3):279-295.
    [38]刘家琼,邱明新,蒲锦春等.我国荒漠典型超旱生植物——红砂[J].植物学报.1982,24(05):485-488.
    [39]赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报.1981,23(04):278-283.
    [40]中国科学院内蒙古宁夏综合考察队.内蒙古植被.北京:科学出版社;1985.
    [41]Jarvis P, McNaughton K. Stomatal control of transpiration:scaling up from leaf to region. In:A M, ED F, eds. Advances in ecological research. London:Academic Press; 1986:1-50.
    [42]Maroco J, Pereira J, Manuela Chaves M. Growth, photosynthesis and water-use efficiency of two C4Sahelian grasses subjected to water deficits[J]. Journal of Arid Environments.2000,45(2):119-137.
    [43]陈庆诚,孙仰文,张国梁.疏勒河中下游植物群优势种生态-形态解剖特征的初步研究[J].兰州大学学报.1961,2:61-69.
    [44]刘玉冰,张腾国,李新荣等.红砂(Reaumuria soongorica)忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积[J].中国科学C辑:生命科学.2006,36(04):328-333.
    [45]刘家琼,蒲锦春,刘新民.我国沙漠中部地区主要不同生态类型植物的水分关系和早生结构比较研究[J].植物学报.1987,29(06):662-673.
    [46]Schenk HJ. Clonal splitting in desert shrubs[J]. Plant Ecology.1999,141(1):41-52.
    [47]Fahn A. Some anatomical adaptations of desert plants[J]. Phytomorph.1964,14:93-102.
    [48]高润宏,金洪,张巍等.阿拉善荒漠特有珍稀濒危植物绵刺克隆生长构型研究[J].干旱区资源与环境.2001,15(04):92-96.
    [49]王迎春,李骁.强旱生小灌木绵刺劈裂生长过程中的水分特征[J].植物生态学报.2007,31(03):476-483.
    [50]董鸣.异质性生境中的植物克隆生长:风险平摊[J].植物生态学报.1996,20(6):543-548.
    [51]常朝阳,张明理.锦鸡儿属植物幼茎及叶的解剖结构及其生态适应性[J].植物研究.1997,17(001):65-71.
    [52]胡云,燕玲,李红.14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境.2006,20(01):202-208.
    [53]黄振英,吴鸿.30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报.1997,21(6):521-530.
    [54]张泓,陈丽春,胡正海.骆驼蓬营养器官的旱生结构[J].植物生态学报.1992,16(3):243-250.
    [55]祝建,张泓,马德滋等.旱生植物驼绒藜茎的异常次生结构及其发育[J].西北植物学报.1992,12(2):135-140.
    [56]胡正海.植物异常结构解剖学.北京:高等教育出版社;1993.
    [57]Jackson R, Sperry J, Dawson T. Root water uptake and transport:using physiological processes in global predictions[J]. Trends in Plant Science.2000,5(11):482-488.
    [58]Cahill JF. Interactions between root and shoot competition vary among species[J]. Oikos.2002,99:101-112.
    [59]Cahill JF. Lack of relationship between below-ground competition and allocation to roots in 10 grassland species[J]. Journal of Ecology.2003,91:532-540.
    [60]Casper BB, Jackson RB. Plant competition underground[J]. Annual Review of Ecology and Systematics.1997, 28:545-570.
    [61]Rubio G, Walk T, Ge Z et al. Root gravitropism and below-ground competition among neighbouring plants:a modelling approach[J]. Annals of Botany.2001,88(5):929.
    [62]汤章城.植物对水分胁迫的反应和适应性Ⅱ.植物对干旱的反应和适应性[J].植物生理学通讯.1983,4:1-7.
    [63]Schenk HJ, Jackson RB. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems[J]. Journal of Ecology.2002,90(3):480-494.
    [64]赵法,赵晓英,靳万贵等.乌鲁木齐周边3种野生灌木对干旱胁迫的响应[J].植物研究.2010,30(6):692-696.
    [65]张道远,尹林克,潘伯荣.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠.2003,23(3):252-256.
    [66]蒋礼学,李彦.三种荒漠灌木根系的构形特征与叶性因子对干旱生境的适应性比较[J].中国沙漠.2008,28(06):1118-1124.
    [67]蒋高明.植物生理生态学.北京:高等教育出版社;2004.
    [68]安守芹,张称意,王玉魁等.四种沙生植物营养器官的比较解剖研究[J].中国草地学报.1996,3:30-36.
    [69]蒋志荣.沙冬青抗旱机理的探讨[J].中国沙漠.2000,20(1):71-74.
    [70]汤章城.植物干旱生态生理的研究[J].生态学报.1983,3(3):196-204.
    [711 Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought —from genes to the whole plant[J]. Functional Plant Biology.2003,30:239-264.
    [72]Morgan J. Osmoregulation and water stress in higher plants[J]. Annual Review of Plant Physiology.1984,35(1): 299-319.
    [73]Anderson C, Kohorn B. Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance[J]. Journal of Plant Physiology.2001,158(9):1215-1219.
    [74]Bray E. Molecular responses to water deficit[J]. Plant Physiology.1993,103(4):1035.
    [75]Hamilton III E, Heckathorn S. Mitochondrial adaptations to NaCl. Complex Ⅰ is protected by anti-oxidants and small heat shock proteins, whereas complex Ⅱ is protected by proline and betaine[J]. Plant Physiology.2001, 126(3):1266.
    [76]Hanson A. Interpreting the metabolic responses of plants to water stress[J]. HortScience.1980,15(5).
    [77]Rathinasabapathi B, Sigua C, Ho J et al. Osmoprotectant β-alanine betaine synthesis in the Plumbaginaceae: S-adenosyl- 1-methionine dependent N-methylation of β-alanine to its betaine is via N-methyl and N,N-dimethyl β-alanines[J]. Physiologia Plantarum.2000,109(3):225-231.
    [78]Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress:clues from transgenic plants[J]. Plant, Cell & Environment.2002,25(2):163-171.
    [79]Samuel D, Kumar T, Ganesh G et al. Proline inhibits aggregation during protein refolding[J]. Protein Science. 2000,9(8):1604.
    [80]Chaudhary S, Crossland L. Identification of tissue-specific, dehydration-responsive elements in the Trg-31 promoter[J]. Plant molecular biology.1996,30(6):1247-1257.
    [81]Yamaguchi-Shinozaki K, Koizumi M, Urao S et al. Molecular Cloning and Characterization of 9 cDNAs for Genes That Are Responsive to Desiccation in Arabidopsis thaliana:SequenceAnalysis of One cDNA Clone That Encodes a Putative Transmembrane Channel Protein[J]. Plant and Cell Physiology.1992,33(3):217.
    [82]Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic stress[J]. The Plant Cell.1990, 2(6):503.
    [83]Wilkinson S, Davies W. ABA-based chemical signalling:the co-ordination of responses to stress in plants[J]. Plant, Cell & Environment.2002,25(2):195-210.
    [84]Davies W, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual Review of Plant Biology.1991,42(1):55-76.
    [85]李博.生态学.北京:高等教育出版社;2000.
    [86]He F, Legendre P, LaFrankie J. Distribution patterns of tree species in a Malaysian tropical rain forest[J]. Journal of Vegetation Science.1997,8:105-114.
    [87]Nathan R. Long-distance dispersal of plants[J]. Science.2006,313:786-788.
    [88]Phillips DL, MacMahon JA. Competition and spacing patterns in desert shrubs[J]. Journal of Ecology.1981,69: 97-115.
    [89]Kenkel N. Pattern of self-thinning in jack pine:testing the random mortality hypothesis[J]. Ecology.1988,69(4): 1017-1024.
    [90]Nathan R, Muller-Landau HC. Spatial patterns of seed dispersal, their determinants and consequences for recruitment[J]. Trends in Ecology & Evolution.2000,15(7):278-285.
    [91]Howe HF, Smallwood J. Ecology of seed dispersal[J]. Annual Review of Ecology and Systematics.1982,13: 201-228.
    [92]Harper JL. Population biology of plants. London:Academic press; 1977.
    [93]Cain ML, Milligan BG, Strand AE. Long-distance seed dispersal in plant populations[J]. American Journal of Botany.2000,87(9):1217.
    [94]Schupp EW. Quantity, quality and the effectiveness of seed dispersal by animals[J]. Plant Ecology.1993,107(1): 15-29.
    [95]Silvertown J, Law R. Do plants need niches? Some recent developments in plant community ecology[J]. Trends in Ecology & Evolution.1987,2(1):24-26.
    [96]Ellner S, Shmida A. Why are adaptations for long-range seed dispersal rare in desert plants?[J]. Oecologia.1981, 51(1):133-144.
    [97]Willson MF. The ecology of seed dispersal. In:Fenner M, ed. Seeds:the ecology of regeneration in plant communities. Wallingford, UK.:CAB International; 2000:85-110.
    [98]Watkinson A. Density-dependence in single-species populations of plants[J]. Journal of Theoretical Biology. 1980,83(2):345-357.
    [99]Watkinson A. Yield-density relationships:the influence of resource availability on growth and self-thinning in populations of Vulpia fasciculata[J]. Annals of Botany.1984,53(4):469.
    [100]Willey R, Heath S. The quantitative relationships between plant population and crop yield[J]. Advances in Agronomy.1969,21(38):1-321.
    [101]Shinozaki K, Kira T. Intraspecific competition among higher plants. Ⅶ. Logistic theory of the CD effect[J]. Journal of Institutes and Polytechnics, Osaka City University Series D.1956,7:35-72.
    [102]Hardwick R, Andrews D. A simple model of the relationship between plant density, plant biomass, and time[J]. Journal of applied ecology.1983,20(3):905-914.
    [103]Li B, Watkinson AR, Hara T. Dynamics of competition in populations of carrot (Daucus carota)[J]. Annals of Botany.1996,78(2):203-214.
    [104]Yoda K, Kira T, Ogawa H et al. Intraspecific competition among higher plants. XI. Self-thinning in overcrowded pure stands under cultivated and natural conditions[J]. Journal of Biology Osaka City University 1963,14:107-129.
    [105]Zeide B. Analysis of the 3/2 power law of self-thinning[J]. Forest Science.1987,33(2):517-537.
    [106]Weller DE. Will the Real Self-Thinning Rule Please Stand Up?--A Reply to Osawa and Sugita[J]. Ecology.1990, 71(3):1204-1207.
    [107]Lonsdale W. The self-thinning rule:dead or alive?[J]. Ecology.1990:1373-1388.
    [108]Osawa A, Sugita S. The self-thinning rule:another interpretation of Weller's results[J]. Ecology.1989,70(1): 279-283.
    [109]Benjamin L, Hardwick R. Sources of variation and measures of variability in even-aged stands of plants[J]. Annals of Botany.1986,58(6):757.
    [110]Hara T. Dynamics of size structure in plant populations[J]. Trends in Ecology & Evolution.1988,3(6):129-133.
    [111]Weiner J, Thomas SC. Size variability and competition in plant monocultures[J]. Oikos.1986,47(2):211-222.
    [112]Turner MD, Rabinowitz D. Factors affecting frequency distributions of plant mass:the absence of dominance and suppression in competing monocultures of Festuca paradoxa[J]. Ecology.1983,64(3):469-475.
    [113]李博,陈家宽,A.R.沃金森.植物竞争研究进展[J].植物学通报.1998,15(04):18-29.
    [114]惠刚盈,李丽,赵中华等.林木空间分布格局分析方法[J].生态学报.2007,27(11):4717-4728.
    [115]兰国玉,雷瑞德.植物种群空间分布格局研究方法概述[J].西北林学院学报.2003,18(02).
    [116]李海涛.植物种群分布格局研究概况[J].植物学通报.1995,12(2):19-26.
    [117]刘建军,钱西舟,沈志.荒漠植被种群分布格局的研究——一种新的三角形插值法[J].植物生态与地植物学学报.1991,15(03):274-285.
    [118]马克明,祖元刚.植被格局的分形特征[J].植物生态学报.2000,24(01):111-117.
    [119]王本洋,余世孝.种群分布格局的多尺度分析[J].植物生态学报.2005,29(02):235-241.
    [120]谢江波.多尺度上多物种的多格局及其尺度推绎[硕士]:石河子大学;2008.
    [121]杨持.植物种群分布格局的强度与纹理[J].内蒙古大学学报(自然科学版).1988,19(04):662-668.
    [122]杨持.植物种群分布格局的动态变化规律[J].内蒙古大学学报(自然科学版).1991,22(01):101-106.
    [123]杨持,郝敦元,杨在中.羊草草原群落水平格局研究Ⅱ.二维网函数插值法[J].生态学报.1984,4(3):345-353.
    [124]杨持,郝敦元,杨在中.羊草草原群落水平格局研究Ⅰ.二维网函数插值法[J].生态学报.1984,4(03):345-353.
    [125]杨在中,郝敦元,杨持.植物群落种群分布格局研究的新方法[J].生态学报.1984,4(03):237-247.
    [126]张金屯.植物种群空间分布的点格局分析[J].植物生态学报.1998,22(04):344-349.
    [127]周灿芳,余世孝,郑业鲁等.种群分布格局测定的样方尺度效应[J].广西植物.2003,23(01):19-22.
    [128]Mcintire EJB, Fajardo A. Beyond description:the active and effective way to infer processes from spatial patterns[J]. Ecology.2009,90(1):46-56.
    [129]Schiffers K, Schurr FM, Tielb rger K et al. Dealing with virtual aggregation-a new index for analysing heterogeneous point patterns[J]. Ecography.2008,31(5):545-555.
    [130]Protazio JMB. Spatial Pattern Analysis Applied to Plant Ecology[J].2007.
    [131]Fortin M-J, Dale M. Spatial analysis:A guide for ecolodists. New york:Cambridge university press; 2005.
    [132]Wiegand T, Moloney KA. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos.2004, 104(2):209.
    [133]Liebhold AM, Gurevitch J. Integrating the statistical analysis of spatial data in ecology[J]. Ecography.2002, 25(5):553.
    [134]Murrell DJ, Purves DW, Law R. Uniting pattern and process in plant ecology[J]. Trends in Ecology & Evolution. 2001,16(10):529-530.
    [135]Grimm V, Frank K, Jeltsch F et al. Pattern-oriented modelling in population ecology[J]. Science of the Total Environment, The.1996,183(1-2):151-166.
    [136]Legendre P, Fortin M. Spatial pattern and ecological analysis[J]. Vegetatio.1989,80(2):107-138.
    [137]Diggle P. Statistical analysis of spatial point patterns. London, UK:Academic Press; 1983.
    [138]Ripley B. Spatial Statistics. New York:Wiley; 1981.
    [139]Perry GLW, Miller BP, Enright NJ. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology[J]. Plant Ecology.2006,187(1):59-82.
    [140]Gatrell AC, Bailey TC, Diggle PJ et al. Spatial point pattern analysis and its application in geographical epidemiology[J]. Transactions of the Institute of British Geographers 1996,21:256-274.
    [141]Clark PJ, Evans FC. Distance to nearest neighbor as a measure of spatial relationships in populations[J]. Ecology.1954,35:445-453.
    [142]Greig-Smith P. The use of random and contiguous quadrats in the study of the structure of plant communities[J]. Annals of Botany.1952,16:293-316.
    [143]Kolasa J, Rollo CD. Introduction:the heterogeneit of heterogeneity:A glossary. In:Kolasa J, Pickett STA, eds. Ecological heterogeneity. New York:Springer-Verlag; 1991:1-23.
    [144]邬建国.景观生态学-格局、过程、尺度与等级.北京:高等教育出版社;2007.
    [145]Levin SA. The problem of pattern and scale in ecology:the Robert H. MacArthur award lecture[J]. Ecology. 1992,73:1943-1967.
    [146]Allen TFH, Hoekstra TW. The confusion between scale-defined levels and conventional levels of organization in ecology[J]. Journal of Vegetation Science.1990,1:5-12.
    [147]Kotliar NB, Wiens JA. Multiple scales of pat chiness and patch structure:a hierarchical framework for the study of heterogeneity[J]. Oikos.1990,59:253-260.
    [148]Barot S, Gignoux J, Menaut JC. Demography of a savanna palm tree:predictions from comprehensive spatial pattern analyses[J]. Ecology.1999,80(6):1987-2005.
    [149]Pielou E. Segregation and symmetry in two-species populations as studied by nearest-neighbour relationships[J]. Journal of Ecology.1961,49(2):255-269.
    [150]Dixon P. Testing spatial segregation using a nearest-neighbor contingency table[J]. Ecology.1994,75(7): 1940-1948.
    [151]Diggle PJ. Statistical analysis of spatial point patterns. London UK:Arnold; 2003.
    [152]Davis JH, Howe RW, Davis GJ. A multi-scale spatial analysis method for point data[J]. Landscape Ecology. 2000,15(2):99-114.
    [153]Thompson H. Distribution of distance to nth neighbour in a population of randomly distributed individuals[J]. Ecology.1956,37(2):391-394.
    [154]Galiano E. Pattern detection in plant populations through the analysis of plant-to-all-plants distances[J]. Plant Ecology.1982,49(1):39-43.
    [155]Dale MRT. Spatial pattern analysis in plant ecology. Cambridge:Cambridge University Press; 1999.
    [156]Ripley BD. Modelling spatial patterns[J]. Journal of the Royal Statistical Society. Series B (Methodological). 1977,39(2):172-212.
    [157]Lotwick H, Silverman B. Methods for analysing spatial processes of several types of points[J]. Journal of the Royal Statistical Society. Series B (Methodological).1982,44(3):406-413.
    [158]Haase P. Can isotropy vs. anisotropy in the spatial association of plant species reveal physical vs. biotic facilitation?[J]. Journal of Vegetation Science.2001,12(1):127-136.
    [159]Ward JS, Parker GR, Ferrandino FJ. Long-term spatial dynamics in an old-growth deciduous forest[J]. Forest ecology and management.1996,83(3):189-202.
    [160]Condit R, Ashton PS, Baker P et al. Spatial patterns in the distribution of tropical tree species[J]. Science.2000, 288(5470):1414.
    [161]Stoyan D, Kendall WS, Mekce J. Stochastic geometry and its applications. Chichester, UK:John Wiley & Sons; 1995.
    [162]Baddeley A, M ller J, Waagepetersen R. Non-and semi-parametric estimation of interaction in inhomogeneous point patterns[J]. Statistica Neerlandica.2000,54(3):329-350.
    [163]Getis A, Franklin J. Second-order neighborhood analysis of mapped point patterns[J]. Perspectives on Spatial Data Analysis.2010:93-100.
    [164]Perry JN. Spatial analysis by distance indices[J]. Journal of Animal Ecology.1995,64(3):303-314.
    [165]Besag J. Contribution to the discussion of Dr. Ripley's paper[J]. Journal of the Royal Statistical Society.1977, 39:193-195.
    [166]Wang XG, Wiegand T, Hao ZQ et al. Species associations in an old-growth temperate forest in north-eastern China[J]. Journal of Ecology.2010,98(3):674-686.
    [167]赵成章,高福元,王小鹏等.黑河上游高寒退化草地狼毒种群小尺度点格局分析[J].植物生态学报.2010,34(11):1319-1326.
    [168]李立,陈建华,任海保等.古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析[J].植物生态学报.2010,34(03):241-252.
    [169]Raventos J, Wiegand T, De Luis M. Evidence for the spatial segregation hypothesis:a test with nine-year survivorship data in a Mediterranean shrubland[J]. Ecology.2010,91(7):2110-2120.
    [170]Wiegand T, Martinez I, Huth A. Recruitment in Tropical Tree Species:Revealing Complex Spatial Patterns[J]. American Naturalist.2009,174(4):E106-E140.
    [171]Skarpe C. Spatial patterns and dynamics of woody vegetation in an arid savanna[J]. Journal of Vegetation Science.1991,2(4):565-572.
    [172]Haase P, Pugnaire FI, Clark SC et al. Spatial patterns in a two-tiered semi-arid shrubland in southeastern Spain[J]. Journal of Vegetation Science.1996:527-534.
    [173]Prentice I, Werger M. Clump spacing in a desert dwarf shrub community[J]. Plant Ecology.1985,63(3): 133-139.
    [174]King TJ, Woodell SRJ. The causes of regular pattern in desert perennials[J]. Journal of Ecology.1973,61: 761-765.
    [175]Woodell SRJ, Mooney HA, Hill AJ. The behaviour of Larrea divaricata (creosote bush) in response to rainfall in California[J]. Journal of Ecology.1969,57:37-44.
    [176]Greig-Smith P, Chadwick M. Data on Pattern Within Plant Communities:III. Acacia-Capparis Semi-Desert Scrub in the Sudan[J]. Journal of Ecology.1965,53(2):465-474.
    [177]Yeaton RI, Cody ML. Competition and spacing in plant communities:the northern Mohave Desert[J]. Journal of Ecology.1976,64:689-696.
    [178]Yeaton RI, Travis J, Gilinsky E. Competition and spacing in plant communities:the Arizona upland association[J]. Journal of Ecology.1977,65:587-595.
    [179]McAuliffe JR. Markovian dynamics of simple and complex desert plant communities[J]. The American Naturalist 1988,131:459-490.
    [180]Verdu M, Valiente-Banuet A. The nested assembly of plant facilitation networks prevents species extinctions[J]. American Naturalist.2008,172(6):751-760.
    [181]Lopez RP, Larrea-Alcazar D, Zenteno-Ruiz F. Spatial pattern analysis of dominant species in the Prepuna: Gaining insight into community dynamics in the semi-arid, subtropical Andes[J]. Journal of Arid Environments. 2010.
    [182]Lopez RP, Valdivia S, Sajines N et al. The role of nurse plants in the establishment of shrub seedlings in the semi-arid subtropical Andes[J]. Oecologia.2007,152:779-790.
    [183]Franco AC, Nobel PS. Interactions between seedlings of Agave deserti and the nurse plant Hilaria rigida[J]. Ecology.1988,69:1731-1740.
    [184]Greenlee JT, Callaway RM. Abiotic stress and the relative importance of interference and facilitation in montane bunchgrass communities in western Montana[J]. American Naturalist.1996,148:386-396.
    [185]Barnes PW, Archer S. Tree-shrub interactions in a subtropical savanna parkland:Competition or facilitation?[J]. Journal of Vegetation Science.1999,10:525-536.
    [186]Nobel PS. Temperature, water availability, and nutrient levels at various soil depths:consequences for shallow-rooted desert succulents, including nurse plant effects[J]. American Journal of Botany.1989,76: 1486-1492.
    [187]Ibanez I, Schupp EW. Positive and negative interactions between environmental conditions affecting Cercocarpus ledifolius seedling survival[J]. Oecologia.2001,129:543-550.
    [188]Rebollo S, Milchunas DG, Noy-Meir I. Refuge effects of a cactus in grazed short-grass steppe[J]. Journal of Vegetation Science.2005,16:85-92.
    [189]Reichenberger G, Pyke DA. Impact of early root competition on fitness components of four semiarid species[J]. Oecologia.1990,85:159-166.
    [190]Holmgren M, Scheffer M, Huston M. The interplay of facilitation and competition in plant communities[J]. Ecology.1997,78(7):1966-1975.
    [191]Riginos C, Milton SJ, Wiegand T. Context-dependent interactions between adult shrubs and seedlings in a semi-arid shrubland[J]. Journal of Vegetation Science.2005,16(3):331-340.
    [192]Greig-Smith P. Pattern in vegetation[J]. Journal of Ecology.1979,67(3):755-779.
    [193]Greig-Smith P. Quantitative plant ecology:Univ of California Pr; 1984.
    [194]Hutchings MJ. The structure of plant populations. In:Crawley MJ, ed. Plant ecology. Oxford,UK:Blackwell; 1997:325-358.
    [195]Freckleton RP, Watkinson AR. On detecting and measuring competition in spatially structured plant communities[J]. Ecology Letters.2000,3:423-432.
    [196]Holland MM, Risser PG. Introduction:the role of landscape boundaries in the management and restoration of changing environments. In:Holland MM, Risser PG, Naiman RJ, eds. Ecotones:The Role of Landscape Boundaries in the Management and Restoration of Changing Environments. New York.:Chapman & Hall; 1991.
    [197]Gosz JR. Ecological functions in a biome transition zone:translating local responses to broad-scale dynamics. In:de Castri F, Hansen AJ, eds. Landscape Boundaries:Consequences for Biotic Diversity and Ecological Flows. New York:Springer; 1992.
    [198]Gosz JR. Ecotone hierarchies[J]. Ecological Applications.1993,3:369-376.
    [199]di Castri F, Hansen AJ, Holland MM. A new look at ecotones[J]. Biol. Int..1988, Special Issue,17.
    [200]Risser PG. The status of the science examining ecotones[J]. Bioscience.1995,45:318-325.
    [201]Lavoie C, Payette S. The long-term stability of the boreal forest limit in subarctic Quebec[J]. Ecology.1996,77: 1226-1233.
    [202]Minnick TJ, Coffin DP. Geographic patterns of simulated recruitment of two Bouteloua species:implications for distributions of dominants and ecotones[J]. Journal of Vegetation Science.1999,10:343-356.
    [203]Weltzin JF, McPherson GR. Facilitation of conspecific seedling recruitment and shifts in temperate savanna ecotones[J]. Ecological monographs.1999,69:513-534.
    [204]Anand M, Li BL. Spatiotemporal dynamics in a transition zone:patchiness, scale, and an emergent property[J]. Community Ecology.2001,2:161-169.
    [205]Loehle C, Li.B.-L., Sundell RC. Forest spread and phase transitions at forest-prairie ecotones in Kansas.U.S.A.[J]. Landscape Ecol..1996,11:903-910.
    [206]Timoney KP, La Roi GH, Dale MRT. Subarctic forest-tundra vegetation gradients:The sigmoid wave hypothesis[J]. Journal of Vegetation Science.1993,4:387-394.
    [207]Neilson RP. Transient ecotone response to climatic change:some conceptual and modelling approaches[J]. Ecological Applications.1993,3(3):385-395.
    [208]Schlesinger WH, Reynolds JF, Cunningham GL et al. Biological feedbacks in global desertification[J]. Science. 1990,247(4946):1043-1048.
    [209]Archer S. Tree-grass dynamics in a Prosopis-thornscrub savanna parkland:reconstructing the past and predicting the future[J]. Ecoscience. Sainte-Foy.1995,2(1):83-99.
    [210]Friedel M. Range condition assessment and the concept of thresholds:a viewpoint[J]. Journal of Range Management.1991:422-426.
    [211]Yanoff S, Muldavin E. Grassland-shrubland transformation and grazing:A century-scale view of a northern Chihuahuan Desert grassland[J]. Journal of Arid Environments.2008,72(9):1594-1605.
    [212]Betancourt JL. Long-and short-term climate influences on southwestern shrublands. In:Barrow JR, McArthur ED, Sosebee RE et al., editors. Shrubland Ecosystem Dynamics in a Changing Environment; 1996; Ogden, UT, USA:US Department of Agriculture, Forest Service Intermountain Research Station; 1996. p.5-9.
    [213]Grover HD, Musick HB. Shrubland encroachment in southern New Mexico, U.S.A.:An analysis of desertification processes in the American southwest [J]. Climatic Change.1990 17(2-3):305-330.
    [214]Peters DPC, Bestelmeyer BT, Herrick JE et al. Disentangling complex landscapes new insights into arid and semiarid system dynamics[J]. BioScience.2006,56(6):491-501.
    [215]Kroe-Dulay G, Odor P, Peters DPC et al. Distribution of plant species at a biome transition zone in New Mexico[J]. Journal of Vegetation Science.2004,15(4):531-538.
    [216]Peters DPC. Plant species dominance at a grassland-shrubland ecotone:an individual-based gap dynamics model of herbaceous and woody species[J]. Ecological Modelling.2002,152(1):5-32.
    [217]Anderson JE, Inouye RS. Landscape-scale changes in plant species abundance and biodiversity of a sagebrush steppe over 45 years[J]. Ecological monographs.2001,71:531-556.
    [218]Humphrey LD, Schupp EW. Seed banks of Bromus tectorum-dominated communities in the Great Basin. [J]. Western North American Naturalist.2001,61:85-92.
    [219]Evans RD, Rimer R, Sperry L et al. Exotic plant invasion alters nitrogen dynamics in an arid grassland[J]. Ecological Applications.2001,11:1301-1310.
    [220]Hinds WT. Energy and carbon balances in cheatgrass:an essay in autecology[J]. Ecological monographs.1975, 45:367-388.
    [221]Mack RN, Pyke DA. The demography of Bromus tectorum:variation in time and space[J]. Journal of Ecology. 1983,71:69-93.
    [222]Anderson RL. Downy brome (Bromus tectorum) emergence variability in a semiarid region[J]. Weed Technol. 1996,10:750-753.
    [223]Rice KJ, Black RA, Radamaker G et al. Photosynthesis, growth and biomass allocation in habitat exotypes of cheatgrass (Bromus tectorum)[J]. Functional Ecology.1992,6:32-40.
    [224]Link SO, Bolton H, Thiede ME et al. Responses of downy brome to nitrogen and water[J]. Journal of Range Management.1995,48:290-297.
    [225]Lowe PA, Lauenroth WK, Burke IC. Effects of nitrogen availability on the growth of native grasses exotic weeds[J]. Journal of Range Management.2002,55:94-98.
    [226]D'Antonio CM, Vitousek PM. Biological invasions by exotic grasses, the grass/fire cycle, and global change[J]. Annual Review of Ecology and Systematics.1992,23:63-87.
    [227]Kinter CL, Mack RN. Comparing phenotype and fitness of native, naturalized, and invasive populations of downy brome (cheatgrass, Bromus tectorum). In:Hild AL, Shaw NL, Meyer SE et al., eds. Seed and soil dynamics in shrubland ecosystems:Proceedings, Laramie WY. Ft. Collins CO, US.:USDA Forest Service Rocky Mountain Research Station; 2004:18-23.
    [228]McCulley R, Archer S, Boutton T et al. Soil respiration and nutrient cycling in wooded communities developing in grassland[J]. Ecology.2004,85(10):2804-2817.
    [229]Shmida A,.. In:(Eds.), Hot. Biogeography of the desert flora. In:Evenari M, Noy-Meir I, Goodall DW, eds. Hot Deserts and Arid Shrublands. Amsterdam, Netherlands:A. Elsevier; 1985:23-77.
    [230]Schenk HJ, Holzapfel C, Hamilton JG et al. Spatial ecology of a small desert shrub on adjacent geological substrates [J]. Journal of Ecology.2003,91(3):383-395.
    [2311 Tilman D. Resource Competition and Community Structure. Princeton,NJ Princeton Uni Press; 1982.
    [232]Grime JP. Competitive exclusion in herbaceous vegetation[J]. Nature.1973,242:344-347.
    [233]Bertness M, Callaway R. Positive interactions in communities[J]. Trends in Ecology & Evolution.1994,9(5): 191-193.
    [234]Goldberg DH, Novoplansky A. On the relative importance of competition in unproductive environments[J]. Journal of Ecology.1997,85:409-418.
    [235]Callaway R, Walker L. Competition and facilitation:a synthetic approach to interactions in plant communities[J]. Ecology.1997,78(7):1958-1965.
    [236]Callaway RM. Competition and facilitation on elevation gradients in subalpine forests of the northern Rocky Mountains, USA[J]. Oikos.1998,82(3):561-573.
    [237]Holzapfel C, Mahall B. Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert[J]. Ecology.1999,80(5):1747-1761.
    [238]Brooker RW, Callaghan TV. The balance between positive and negative plant interactions and its relationship to environmental gradients:a model[J]. Oikos.1998,81(1):196-207.
    [239]Tilman D. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton,NJ:Princeton Uni Press; 1988.
    [240]Bruno JF, Stachowicz JJ, Bertness MD. Inclusion of facilitation into ecological theory[J]. Trends in Ecology & Evolution. 2003,18:119-125.
    [241]Callaway RM, Brooker RW, Choler P et al. Positive interactions among alpine plants increase with stress[J]. Nature.2002,417(6891):844-848.
    [242]Bertness MD, Ewanchuk PJ, Silliman BR. Anthropogenic modification of New England salt marsh landscapes[J]. Proceedings of the National Academy of Sciences of the United States of America.2002,99(3): 1395.
    [243]Begon Mea. Ecology. Oxford Blackwell; 1990.
    [244]Grime JP. Plant Strategies and Vegetation Processes. London:Willey; 1979.
    [245]Schenk HJ. Root competition:beyond resource depletion[J]. Journal of Ecology.2006,94(4):725-739.
    [246]Wilson SD, Tilman D. Plant competition and resource availability in response to disturbance and fertilization[J]. Ecology.1993,74(2):599-611.
    [247]Nobel PS. Root distributions and seasonal production in the Northwestern Sonoran Desert for a C3 subshrub, a C3 bunchgrass, and a CAM leaf succulent[J]. American Journal of Botany.1997,84:949-955.
    [248]Aarssen L. Ecological combining ability and competitive combining ability in plants:towards a general theory of coexistence in systems of competition[J]. American Naturalist.1983,122:707-731.
    [249]Tremmel D, Bazzaz F. How neighbor canopy architecture affects target plant performance[J]. Ecology.1993, 74(7):2114-2124.
    [250]Ross M, Harper JL. Occupation of biological space during seedling establishment[J]. Journal of Ecology.1972, 60(1):77-88.
    [251]Fischer R, Miles R. The role of spatial pattern in the competition between crop plants and weeds. A theoretical analysis[J]. Mathematical Biosciences.1973,18(3-4):335-350.
    [252]Watkinson A, Lonsdale W, Firbank L. A neighbourhood approach to self-thinning[J]. Oecologia.1983,56(2): 381-384.
    [253]Pacala SW, Silander J. Field tests of neighborhood population dynamic models of two annual weed species[J]. Ecological Monographs.1990,60(1):113-134.
    [254]DeAngelis DL, Gross LJ. Individual-based models and approaches in ecology:populations, communities and ecosystems. London:Chapman & Hall; 1992.
    [255]Brain P, Cousens R. The effect of weed distribution on predictions of yield loss[J]. Journal of applied ecology. 1990,27(2):735-742.
    [256]Fitter A, Stickland T. Architectural analysis of plant root systems.2. Influence of nutrient supply on architecture in contrasting plant species[J]. New Phytologist.1991,118(3):383-389.
    [257]Loik ME, Breshears DD, Lauenroth WK et al. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA[J]. Oecologia.2004,141(2):269-281.
    [258]Chesson P, Gebauer RLE, Schwinning S et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments[J]. Oecologia.2004,141(2):236-253.
    [259]Ogle K, Reynolds JF. Plant responses to precipitation in desert ecosystems:integrating functional types, pulses, thresholds, and delays[J]. Oecologia.2004,141(2):282-294.
    [260]Silvertown J, Dodd ME, Gowing DJG et al. Hydrologically defined niches reveal a basis for species richness in plant communities[J]. Nature.1999,400(6739):61-63.
    [261]Walter H. Natural savannahs as a transition to the arid zone. In:Burnett JH, ed. Ecology of tropical and subtropical vegetation. Edinburgh:Oliver and Boyd; 1971:238-265.
    [262]Burgess TL. Desert grassland, mixed shrub savanna, shrub steppe, or semidesert scrub? In:McClaran MP, Van Devender TR, eds. The desert grassland. Tucson:The University of Arizona Press; 1995:31-67.
    [263]Breshears DD, Barnes FJ. Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum:a unified conceptual model[J]. Landscape Ecology. 1999,14(5):465-478.
    [264]Eagleson PS. Ecohydrology:Darwinian expression of vegetation form and function. Cambridge:Cambridge University Press; 2002.
    [265]Lauenroth W, Urban D, Coffin D et al. Modeling vegetation structure-ecosystem process interactions across sites and ecosystems[J]. Ecological Modelling.1993,67(1):49-80.
    [266]Jeltsch F, Milton SJ, Dean W et al. Tree spacing and coexistence in semiarid savannas[J]. Journal of Ecology. 1996,84(4):583-595.
    [267]Reynolds JF, Kemp PR, Ogle K et al. Modifying the 'pulse-reserve' paradigm for deserts of North America: precipitation pulses, soil water, and plant responses[J]. Oecologia.2004,141(2):194-210.
    [268]Reynolds JF, Kemp PR, Tenhunen JD. Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert:a modeling analysis[J]. Plant Ecology.2000,150(1):145-159.
    [269]Belsky AJ. Influences of Trees on Savanna Productivity:Tests of Shade, Nutrients, and Tree-Grass Competition[J]. Ecology.1994,75(4):922-932.
    [270]Forseth I, Ehleringer J, Werk K et al. Field water relations of Sonoran Desert annuals[J]. Ecology.1984: 1436-1444.
    [271]Cable DR. Competition in the Semidesert Grass-shrub Type as Influneced by Root Systems, Growth Habits, and Soil Moisture Extraction[J]. Ecology.1969:27-38.
    [272]Brown JR, Archer S. Water relations of a perennial grass and seedling vs adult woody plants in a subtropical savanna, Texas[J]. Oikos.1990,57(3):366-374.
    [273]Lee C, Lauenroth W. Spatial distributions of grass and shrub root systems in the shortgrass steppe[J]. American midland naturalist.1994,132(1):117-123.
    [274]Knoop W, Walker B. Interactions of woody and herbaceous vegetation in a southern African savanna[J]. Journal of Ecology.1985,73(1):235-253.
    [275]Briones O, Monta a C, Ezcurra E. Competition between three Chihuahuan desert species:evidence from plant size(?)\distance relations and root distribution[J]. Journal of Vegetation Science.1996,7(3):453-460.
    [276]Jackson RB, Canadell J, Ehleringer JR et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia.1996,108(3):389-411.
    [277]Le Roux X, Bariac T, Mariotti A. Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna[J]. Oecologia.1995,104:147-155.
    [278]Hellmers H, Horton JS, Juhren G et al. Root systems of some chaparral plants in southern California[J]. Ecology.1955,36:667-678.
    [279]Montana C, Cavagnaro B, Briones O. Soil water by coexisting shrubs and grasses in the Southern Chihuahuan Desert, Mexico[J]. Journal of Arid Environment.1995,31:1-13.
    [280]Midwood AJ, Boutton TW, Archer SR et al. Water use by woody plants on contrasting soils in a savanna parkland:assessment with delta2H and delta18O[J]. Plant and Soil.1998,205:13-24.
    [281]BassiriRad H, Tremmel D, Virginia R et al. Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain[J]. Plant Ecology.1999,145(1):27-36.
    [282]Yoder CK, Nowak RS. Soil moisture extraction by evergreen and drought-deciduous shrubs in the Mojave Desert during wet and dry years[J]. Journal of Arid Environments.1999,42(2):81-96.
    [283]Breshears DD, Myers OB, Johnson SR et al. Differential use of spatially heterogeneous soil moisture by two semiarid woody species:Pinus edulis and Juniperus monosperma[J]. Journal of Ecology.1997,85(3):289-299.
    [284]Mordelet P, Menaut JC, Mariotti A. Tree and grass rooting patterns in an African humid savanna[J]. Journal of Vegetation Science.1997,8(1):65-70.
    [285]Ehleringer JR, Phillips SL, Schuster WSF et al. Differential utilization of summer rains by desert plants[J]. Oecologia.1991,88(3):430-434.
    [286]Dodd M, Lauenroth W, Welker J. Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community[J]. Oecologia.1998,117(4):504-512.
    [287]Schwinning S, Davis K, Richardson L et al. Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau[J]. Oecologia.2002,130(3):345-355.
    [288]Gebauer RLE, Ehleringer JR. Water and nitrogen uptake patterns following moisture pulses in a cold desert community[J]. Ecology.2000,81(5):1415-1424.
    [289]Flanagan L, Ehleringer J, Marshall J. Differential uptake of summer precipitation among co(?)\occurring trees and shrubs in a pinyon(?)\juniper woodland[J]. Plant, Cell & Environment.1992,15(7):831-836.
    [290]Donovan L, Ehleringer J. Water stress and use of summer precipitation in a Great Basin shrub community[J]. Functional Ecology.1994,8(3):289-297.
    [291]Lin G, Phillips SL, Ehleringer JR. Monosoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau[J]. Oecologia.1996,106(1):8-17.
    [292]Williams DG, Ehleringer JR. Intra-and interspecific variation for summer precipitation use in pinyon-juniper woodlands[J]. Ecological Monographs.2000,70(4):517-537.
    [293]Evans RD, Ehleringer JR. Water and nitrogen dynamics in an arid woodland[J]. Oecologia.1994,99(3): 233-242.
    [294]Reynolds JF, Virginia RA, Kemp PR et al. Impact of drought on desert shrubs:effects of seasonality and degree of resource island development[J]. Ecological Monographs.1999,69(1):69-106.
    [295]Golluscio R, Sala O, Lauenroth W. Differential use of large summer rainfall events by shrubs and grasses:a manipulative experiment in the Patagonian steppe[J]. Oecologia.1998,115(1):17-25.
    [296]Pelaez D, Distel R, Boo R et al. Water relations between shrubs and grasses in semi-arid Argentina[J]. Journal of Arid Environments.1994,27(1):71-78.
    [297]Roupsard O, Ferhi A, Granier A et al. Reverse phenology and dry-season water uptake by Faidherbia albida (Del.) A. Chev. in an agroforestry parkland of Sudanese west Africa[J]. Functional Ecology.1999,13(4): 460-472.
    [298]Huenneke LF, Anderson JP, Remmenga M et al. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems[J]. Global Change Biology.2002,8(3):247-264.
    [299]Pacala S, Levin S. Biologically generated spatial pattern and the coexistence of competing species. In:Tilman D, Kareiva P, eds. Spatial ecology:the role of space in population dynamics and interspecific interactions. Princeton, N.J.:Princeton University Press; 1997:204-232.
    [300]Pacala SW. Dynamics of plant communities. In:Crawley MJ, ed. Plant Ecology Oxford:Blackwell Science; 1997:532-555.
    [301]Shmida A, Ellner S. Coexistence of plant species with similar niches[J]. Plant Ecology.1984,58(1):29-55.
    [302]Odum EP, Barrett GW著,陆健健等译,eds.生态学基础.北京:高等教育出版社;2009.
    [303]Brown JH. Organisms as engineers:a useful frame work for studying effects on ecosystems?[J]. Trends in Ecology & Evolution.1995,10(2):51-52.
    [304]Alper J. Ecology:Ecosystem 'Engineers' Shape Habitats for Other Species[J]. Science.1998,280(5367):1195.
    [305]Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers[J]. Oikos.1994,69(3):373-386.
    [306]Gutierrez JL, Jones CG. Physical ecosystem engineers as agents of biogeochemical heterogeneity[J]. BioScience. 2006,56(3):227-236.
    [307]Jouquet P, Dauber J, Lagerl f J et al. Soil invertebrates as ecosystem engineers:intended and accidental effects on soil and feedback loops[J]. Applied Soil Ecology.2006,32(2):153-164.
    [308]Wilby A, Shachak M, Boken B. Integration of ecosystem engineering and trophic effects of herbivores[J]. Oikos. 2001,92(3):436-444.
    [309]Jones CG, Lawton JH, Shachak M. Positive and negative effects of organisms as physical ecosystem engineers[J]. Ecology.1997,78(7):1946-1957.
    [310]Wright J, Jones C. Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity[J]. Ecology.2008,85(8):2071-2081.
    [311]Franco-Pizana J, Fulbright T, Gardiner D. Spatial relations between shrubs and Prosopis glandulosa canopies[J]. Journal of Vegetation Science.1995,6(1):73-78.
    [312]Ludwig J, Cunningham G, Whitson P. Distribution of annual plants in North American deserts[J]. Journal of Arid Environment.1988,15(3):221-227.
    [313]Liu J, Dietz T, Carpenter SR et al. Complexity of coupled human and natural systems[J]. Science.2007, 317(5844):1513.
    [314]Crooks JA. Characterizing ecosystem-level consequences of biological invasions:the role of ecosystem engineers[J]. Oikos.2002,97(2):153-166.
    [315]Cuddington K, Hastings A. Invasive engineers[J]. Ecological Modelling.2004,178(3-4):335-347.
    [316]Zavaleta E, Kettley L. Ecosystem change along a woody invasion chronosequence in a California grassland[J]. Journal of Arid Environments.2006,66(2):290-306.
    [317]Wright JP, Gurney WSC, Jones CG. Patch dynamics in a landscape modified by ecosystem engineers[J]. Oikos. 2004,105(2):336-348.
    [318]Jones C, Gutierrez J, Groffman P et al. Linking ecosystem engineers to soil processes:a framework using the Jenny State Factor Equation[J]. European Journal of Soil Biology.2006,42:S39-S53.
    [319]Danin A. Plants of desert dunes. Berlin:Springer-Verlag; 1996.
    [320]Isselin-Nondedeu F, Bedecarrats A. Influence of alpine plants growing on steep slopes on sediment trapping and transport by runoff[J]. Catena.2007,71(2):330-339.
    [321]Pye K, Tsoar H. Aeolian sand and sand dunes. London:Unwin Hyman; 1990.
    [322]Wolfe SA, Nickling WG. The protective role of sparse vegetation in wind erosion[J]. Progress in physical geography.1993,17(1):50.
    [323]Cooke RU, Warren A, Goudie A. Desert geomorphology. London:UCL Press; 1993.
    [324]Langford RP. Nabkha (coppice dune) fields of south-central New Mexico, USA[J]. Journal of Arid Environments.2000,46(1):25-41.
    [325]Nickling WG, Wolfe SA. The morphology and origin of nabkhas, region of Mopti, Mali, West Africa[J]. Journal of Arid Environments.1994,28(1):13-30.
    [326]Tengberg A. Nebkha dunes as indicators of wind erosion and land degradation in the Sahel zone of Burkina Faso[J]. Journal of Arid Environments.1995,30(3):265-282.
    [327]Wang X, Wang T, Dong Z et al. Nebkha development and its significance to wind erosion and land degradation in semi-arid northern China[J]. Journal of Arid Environments.2006,65(1):129-141.
    [328]Bing L, Wenzhi Z, Rong Y. Characteristics and spatial heterogeneity of Tamarix ramosissima Nebkhas in desert-oasis ecotones[J]. Acta Ecologica Sinica.2008,28(4):1446-1455.
    [329]El-Bana MI, Nijs I, Kockelbergh F. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem[J]. Plant and Soil.2002,247(2):283-293.
    [3301 杜建会,严平,董玉祥.干旱地区灌丛沙堆研究现状与展望[J].地理学报.2010,65(03):339-350.
    [331]岳兴玲,哈斯,庄燕美等.沙质草原灌丛沙堆研究综述[J].中国沙漠.2005,25(05):738-743.
    [332]Hesp P, McLachlan A. Morphology, dynamics, ecology and fauna of Arctotheca populifolia and Gazania rigens nabkha dunes[J]. Journal of Arid Environments.2000,44(2):155-172.
    [333]Khalaf FI, Misak R, Al-Dousari A. Sedimentological and morphological characteristics of some nabkha deposits in the northern coastal plain of Kuwait, Arabia[J]. Journal of Arid Environments.1995,29(3):267-292.
    [334]van de Ven T, Fryrear D, Spaan W. Vegetation characteristics and soil loss by wind[J]. Journal of Soil and Water Conservation.1989,44(4):347.
    [335]Hesp P. The formation of shadow dunes[J]. Journal of Sedimentary Research.1981,51(1):101-112.
    [336]Bochet E, Poesen J, Rubio JL. Mound development as an interaction of individual plants with soil, water erosion and sedimentation processes on slopes[J]. Earth Surface Processes and Landforms.2000,25(8): 847-867.
    [337]刘冰,赵文智.荒漠绿洲过渡带泡泡刺灌丛沙堆形态特征及其空间异质性[J].应用生态学报.2007,18(12).
    [338]张萍,哈斯,岳兴玲等.白刺灌丛沙堆形态与沉积特征[J].干旱区地理.2008,31(06):926-932.
    [339]Tengberg A, Chen D. A comparative analysis of nebkhas in central Tunisia and northern Burkina Faso[J]. Geomorphology.1998,22(2):181-192.
    [340]Carrera AL, Bertiller MB, Sain CL et al. Relationship between plant nitrogen conservation strategies and the dynamics of soil nitrogen in the arid Patagonian Monte, Argentina[J]. Plant and Soil.2003,255(2):595-604.
    [341]Charley JL, West NE. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah[J]. Journal of Ecology.1975,63(3):945-963.
    [342]Garner W, Steinberger Y. A proposed mechanism for the formation of fertile islands in the desert ecosystem[J]. Journal of Arid Environments.1989,16(3):257-262.
    [343]Schlesinger WH, Raikes JA, Hartley AE et al. On the spatial pattern of soil nutrients in desert ecosystems[J]. Ecology.1996,77:364-374.
    [344]Stock WD, Dlamini TS, Cowling RM. Plant induced fertile islands as possible indicators of desertification in a succulent desert ecosystem in northern Namaqualand, South Africa[J]. Plant Ecology.1999,142(1-2): 161-167.
    [345]El-Bana MI, Nijs I, Khedr AHA. The Importance of Phytogenic Mounds(Nebkhas) for Restoration of Arid Degraded Rangelands in Northern Sinai[J]. Restoration Ecology.2003,11(3):317-324.
    [346]Rostagno C. Infiltration and sediment production as affected by soil surface conditions in a shrubland of Patagonia, Argentina[J]. Journal of Range Management.1989,42(5):382-385.
    [347]Dougill AJ, Thomas AD. Nebkha Dunes as Indicators of Soil Degradation in the Molopo Basin, South Africa and Botswana[J]. Journal of Arid Environment.2001,50:413-442R.
    [348]Martinez-Meza E, Whitford WG. Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs[J]. Journal of Arid Environments.1996,32(3):271-287.
    [349]Whitford WG, Anderson J, Rice PM. Stemflow contribution to the'fertile island'effect in creosotebush, Larrea tridentata[J]. Journal of Arid Environments.1997,35(3):451-457.
    [350]熊小刚,韩兴国.内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布[J].生态学报.2005,25(07):1678-1683.
    [351]Gallardo A, Schlesinger WH. Factors determining soil microbial biomass and nutrient immobilization in desert soils[J]. Biogeochemistry.1995,28(1):55-68.
    [352]Herman RP, Provencio KR, Herrera-Matos J et al. Resource islands predict the distribution of heterotrophic bacteria in Chihuahuan desert soils[J]. Applied and Environmental Microbiology.1995,61(5):1816.
    [353]Chew RW, Whitford WG. A long-term positive effect of kangaroo rats(Dipodomys spectabilis) on creosotebushes(Larrea tridentata)[J]. Journal of Arid Environments.1992,22(4):375-386.
    [354]Freckman DW, Mankau R. Abundance, distribution, biomass and energetics of soil nematodes in a northern Mojave Desert ecosystem[J]. Pedobiologia.1986,29(2):129-142.
    [355]Bochet E, Rubio JL, Poesen J. Modified topsoil islands within patchy Mediterranean vegetation in SE Spain[J]. Catena.1999,38(1):23-44.
    [356]Titus JH, Nowak RS, Smith SD. Soil resource heterogeneity in the Mojave Desert[J]. Journal of Arid Environments.2002,52(3):269-292.
    [357]Kieft TL, White CS, Loftin SR et al. Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone[J]. Ecology.1998,79(2):671-683.
    [358]Eldridge DJ, Robson AD. Bladeploughing and exclosure influence soil properties in a semi-arid Australian woodland[J]. Journal of Range Management.1997:191-198.
    [359]Neave M, Abrahams AD. Vegetation influences on water yields from grassland and shrubland ecosystems in the Chihuahuan Desert[J]. Earth Surface Processes and Landforms.2002,27(9).
    [360]Canton Y, Sole-Benet A, Domingo F. Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain[J]. Journal of Hydrology.2004,285(1-4):199-214.
    [3611 Virginia R. Soil Properties in a Mesquite-Dominated Sonoran Desert Ecosystem[J]. Soil Science Society of America Journal.1982,47(1):138.
    [362]李香真,张淑敏.小叶锦鸡儿灌丛引起的植物生物量和土壤化学元素含量的空间变异[J].草业学报.2002,11(1):24-30.
    [363]Cavieres LA, Badano EI, Sierra-Almeida A et al. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile[J]. Arctic, Antarctic, and Alpine Research.2007,39(2):229-236.
    [364]Maestre FT, Reynolds JF. Small-scale spatial heterogeneity in the vertical distribution of soil nutrients has limited effects on the growth and development of Prosopis glandulosa seedlings[J]. Plant Ecology.2006, 183(1):65-75.
    [365]Robinson D. The responses of plants to non-uniform supplies of nutrients[J]. New Phytologist.1994,127(4): 635-674.
    [366]Kondo J, Hirobe M, Yamada Y et al. Effects of Caragana microphylla patch and its canopy size on "islands of fertility" in a Mongolian grassland ecosystem[J]. Landscape and Ecological Engineering.2010:1-8.
    [367]Li PX, Wang N, He WM et al. Fertile islands under Artemisia ordosica in inland dunes of northern China: Effects of habitats and plant developmental stages[J]. Journal of Arid Environments.2008,72(6):953-963.
    [368]Li J, Zhao C, Zhu H et al. Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China[J]. Journal of Arid Environments.2007,71(4):350-361.
    [369]Charley JL. The role of shrubs in nutrient cycling. In:C. M. McKell JPB, and J. R. Goodin Wildland Shrubs. Their Biology and Utilisation., ed. Department of Agriculture, Forest Service, General Technical Report INT-1. U.S., Odgen, Utah; 1972:182-203.
    [370]杜建会,严平,丁连刚等.民勤绿洲不同演化阶段白刺灌丛沙堆表面土壤理化性质研究[J].中国沙漠.2009,29(02):248-253.
    [371]武胜利,李志忠,焦黎等.新疆和田河流域柽柳沙堆表面沙物质粒度特征[J].干旱区研究.2008,25(05):745-751.
    [372]Guo Q, Rundel P, Goodall D. Horizontal and vertical distribution of desert seed banks:patterns, causes, and implications[J]. Journal of Arid Environments.1998,38(3):465-478.
    [373]Tobe K, Zhang L, Omasa K. Seed germination and seedling emergence of three annuals growing on desert sand dunes in China[J]. Annals of Botany.2005,95(4):649.
    [374]Anderson TM, McNaughton SJ, Ritchie ME. Scale-dependent relationships between the spatial distribution of a limiting resource and plant species diversity in an African grassland ecosystem[J]. Oecologia.2004,139(2): 277-287.
    [375]Pan D, Bouchard A, Legendre P et al. Influence of edaphic factors on the spatial structure of inland halophytic communities:a case study in China[J]. Journal of Vegetation Science.1998:797-804.
    [376]Mou P, Jones RH, Mitchell RJ et al. Spatial distribution of roots in sweetgum and loblolly pine monocultures and relations with above-ground biomass and soil nutrients[J]. Functional Ecology.1995:689-699.
    [377]Brown G, Porembski S. The maintenance of species diversity by miniature dunes in a sand-depleted Haloxylon salicornicum community in Kuwait [J]. Journal of Arid Environments.1997,37(3):461-474.
    [378]Shachak M, Lovett GM. Atmospheric deposition to a desert ecosystem and its implications for management[J]. Ecological Applications.1998,8(2):455-463.
    [379]Reynolds J, Virginia R, Schlesinger W. Defining functional types for models of desertification. In:Smith T, Shugart H, Woodward F, eds. Plant functional types:their relevance to ecosystem properties and global change. Cambridge,UK:Cambridge University Press; 1997:194-214.
    [380]Takar A, Dobrowolski J, Thurow T. Influence of grazing, vegetation life-form, and soil type on infiltration rates and interrill erosion on a Somalion rangeland[J]. Journal of Range Management.1990,43:486-490.
    [381]Milton SJ, Dean WRJ, du Plessis MA et al. A conceptual model of arid rangeland degradation[J]. BioScience. 1994,44(2):70-76.
    [382]熊小刚,韩兴国.资源岛在草原灌丛化和灌丛化草原中的作用[J].草业科学.2006,15(1):9-14.
    [383]Ludwig J. Primary productivity in arid lands:Myths and realities[J]. Journal of Arid Environments.1987,13(1): 1-7.
    [384]Dregne H. Soils of arid regions. Amsterdam:Elsevier Scientific Publishing; 1976.
    [385]Smith S, Renwick W, Buddemeier R et al. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States[J]. Global Biogeochemical Cycles.2001,15(3): 697-707.
    [3861 Sterk G, Herrmann L, Bationo A. Wind-blown nutrient transport and soil productivity changes in southwest Niger[J]. Land Degradation & Development.1996,7(4):325-335.
    [387]Schlesinger WH, Pilmanis AM. Plant-soil interactions in deserts[J]. Biogeochemistry.1998,42(1):169-187.
    [388]Wang X, Xiao H, Li J et al. Nebkha development and its relationship to environmental change in the Alaxa Plateau, China[J]. Environmental Geology.2008,56(2):359-365.
    [389]夏训诚,赵元杰,王富葆等.红柳沙包的层状特征及其可能的年代学意义[J].科学通报.2004,49(13):1337-1338.
    [390]夏训诚,赵元杰,王富葆等.罗布泊地区红柳沙包年层的环境意义探讨[J].科学通报.2005,50(19):2176-2177.
    [391]Dougill AJ, Thomas AD. Nebkha dunes in the Molopo Basin, South Africa and Botswana:formation controls and their validity as indicators of soil degradation[J]. Journal of Arid Environments.2002,50(3):413-428.
    [392]Qong M, Takamura H, Hudaberdi M. Formation and internal structure of Tamarix cones in the Taklimakan Desert[J]. Journal of Arid Environments.2002,50(1):81-97.
    [393]Wang X, Zhang C, Zhang J et al. Nebkha formation:Implications for reconstructing environmental changes over the past several centuries in the Ala Shan Plateau, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology.2010.
    [394]杜建会,严平,俄有浩.甘肃民勤不同演化阶段白刺灌丛沙堆分布格局及特征[J].生态学杂志.2007,26(08):1165-1170.
    [395]李志忠,武胜利,王晓峰等.新疆和田河流域柽柳沙堆的生物地貌发育过程[J].地理学报.2007,62(05):462-470.
    [396]李志忠,武胜利,肖晨曦等.新疆和田河流域灌丛沙堆风洞流场的实验研究(Ⅱ)[J].中国沙漠.2007,27(01).
    [397]李志忠,武胜利,肖晨曦等.新疆和田河流域灌丛沙堆风洞流场的实验研究(Ⅰ)[J].中国沙漠.2007,27(01).
    [398]刘冰,赵文智,杨荣.荒漠绿洲过渡带柽柳灌丛沙堆特征及其空间异质性[J].生态学报.2008,28(04).
    [399]武胜利.新疆和田河流域灌(草)丛沙堆发育机制研究;2007.
    [400]Badano EI, Jones CG, Cavieres LA et al. Assessing impacts of ecosystem engineers on community organization: a general approach illustrated by effects of a high-Andean cushion plant[J]. Oikos.2006,115(2):369-385.
    [401]Cavieres LA, Badano EI, Sierra-Almeida A et al. Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile[J]. New Phytologist.2006,169(1):59-69.
    [402]Cavieres LA, Quiroz CL, Molina-Montenegro MA et al. Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile[J]. Perspectives in Plant Ecology, Evolution and Systematics.2005,7(3):217-226.
    [403]McCarthy D. Dating with cushion plants:establishment of a Silene acaulis growth curve in the Canadian Rockies[J]. Arctic and Alpine Research.1992,24(1):50-55.
    [404]黄荣福,王为义.青藏高原垫状植物区系及垫状植物群落演替[J].高原生物学集刊.1991,10:15-26.
    [405]李渤生,张经炜.西藏高山垫状植物[J].植物学报.1985,27(2):311-317.
    [406]Arroyo MTK, Cavieres LA, Pe aloza A et al. Positive associations between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes[J]. Plant Ecology.2003,169(1):121-129.
    [407]Nunez C, Aizen M, Ezcurra C. Species associations and nurse plant effects in patches of high-Andean vegetation[J]. Journal of Vegetation Science.1999,10(3):357-364.
    [408]Korner C, ed. Alpine Plant Life:Functional Plant Ecology of High Mountain Ecosystems. New York:Springer Press 1999.
    [409]Badano El, Cavieres LA. Ecosystem engineering across ecosystems:do engineer species sharing common features have generalized or idiosyncratic effects on species diversity?[J]. Journal of Biogeography.2006, 33(2):304-313.
    [410]Cavieres L, Arroyo MTK, Pe aloza A et al. Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes[J]. Journal of Vegetation Science.2002,13(4):547-554.
    [411]Sklenar P. Presence of cushion plants increases community diversity diversity in the high equatorial Andes[J]. Flora.2009,204:270-277.
    [412]Programme UUNE. Global deserts outlook. In:Ezcurra E, ed. Nairobi, Kenya:Division of Early Warning and Assessment:United Nations Environment Programme; 2006:100-102.
    [413]中国科学院内蒙古宁夏综合考察队.内蒙古自治区及其东西部毗邻地区天然草场资源(内部资料).北京:科学出版社;1974.
    [414]李博.内蒙古鄂尔多斯高原自然资源与环境研究:科学出版社;1990.
    [415]马成杰.藏锦鸡儿草场的自然和经济特征[J].中国草地学报.1983,3:50-54.
    [416]张明理,黄永梅.锦鸡儿属植物在鄂尔多斯高原区系和植被中的作用[J].植物研究.2002,22(004):497-502.
    [417]李政海.内蒙古草原与荒漠区几种锦鸡几种群格局的研究[J].内蒙古大学学报:自然科学版.1995,26(001):67-74.
    [418]李政海,鲍雅静.内蒙古草原与荒漠区的锦鸡儿属植物种群格局动态和种间关系的研究[J].干旱区资源与环境.2000,14(001):64-68.
    [419]陈世鐄,张昊,王立群.中国北方草地植物根系.In:长春:吉林大学出版社;2001:153-155.
    [420]马毓泉.内蒙古植物志 (第二版)第三卷.北京:科学出版社;1998.
    [421]马成仓,高玉葆,郭宏宇等.内蒙古高原西部荒漠区锦鸡儿属(Caragana)优势种的形态适应特征[J].生态学报.2006,26(07):2308-2312.
    [422]苏明,莫日根,吴丽芝.两种宿轴锦鸡儿花粉形态种内分化及近缘种的比较研究[J].哲里木畜牧学院学 报.1997,7(03):31-34.
    [423]燕玲,李红,刘艳,.13种锦难儿属植物叶的解剖生态学研究[J].干旱区资源与环境.2002,16(001):100-106.
    [424]马成仓,高玉葆,李清芳等.内蒙古高原荒漠区几种锦鸡儿属(Caragana)优势植物的生理生态适应特性[J].生态学报.2007,27(11):4643-4650.
    [425]盛红梅,陈拓,安黎哲等.锦鸡儿属植物的遗传多样性及其种间关系[J].中国沙漠.2005,25(005):697-701.
    [426]杨九艳,杨劫,杨明博等.鄂尔多斯高原锦鸡儿属药用植物的ISSR分析[J].中草药.2006,37(010):1562-1566.
    [427]王俊儒,丁利,张义英等.锦鸡儿属10种植物茎叶有效成分的系统预试[J].西北植物学报.2005,25(12):2549-2552.
    [428]张新时.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报.1994,18(001):1-16.
    [429]李新荣,刘新民.鄂尔多斯高原荒漠化草原和草原化荒漠灌木类群与环境关系的研究[J].中国沙漠.1998,18(002):123-130.
    [430]朱宗元,马毓泉,刘钟龄等.阿拉善—鄂尔多斯生物多样性中心的特有植物和植物区系的性质[J].干旱区资源与环境.1999,13(002):1-16.
    [431]李新荣,陈仲新.鄂尔多斯高原西部几种荒漠灌丛群落种间联结关系的研究[J].植物学通报.1998,15(001):56-62.
    [432]吴征镒.中国种子植物属的分布区类型[J].云南植物研究.1991,增刊Ⅳ:1-139.
    [433]赵一之.鄂尔多斯高原维管束植物.呼和浩特:内蒙古大学出版社;2006.
    [434]Sφrensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons[J]. Biologiske Skrifter.1948,5: 1-34.
    [435]Zhang XP, Wang MB, She B et al. Quantitative classification and ordination of forest communities in Pangquangou National Nature Reserve[J]. Acta Ecologica Sinica.2006,26:754-761.
    [436]马克平,黄建辉,于顺利等.北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J].生态学报.1995,15(3):268-277.
    [437]李秀萍.植物物种的生境适宜性研究[硕士]:内蒙古大学;2007.
    [438]Goreaud F, Pelissier R. Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses[J]. Journal of Vegetation Science.2003, (14): 681-692.
    [439]Robertson GP. Geostatistics in ecology:interpolating with known variance[J]. Ecology.1987,68:744-748.
    [440]Rossi RE, Mulla DJ, Journel AG et al. Geostatistical tools for modeling and interpreting ecological spatial dependence[J]. Ecological Monographs.1992,62(2):277-314.
    [441]Augustine D, Frank D. Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem[J]. Ecology.2001,82(11):3149-3162.
    [442]Pastor J, Dewey B, Moen R et al. Spatial patterns in the moose-forest-soil ecosystem on Isle Royale, Michigan, USA[J]. Ecological Applications.1998,8(2):411-424.
    [443]Jackson RB, Caldwell MM. Geostatistical patterns of soil heterogeneity around individual perennial plants[J]. Journal of Ecology.1993,81:683-692.
    [444]Isaaks EH, Srivastava RM. Applied Geostatistics. New York:Oxford University Press; 1989.
    [445]Robertson GP, Gross KL. Assessing the heterogeneity of below-ground resources:quantifying pattern and scale. In:Caldwell MM, Pearcy RW, eds. Plant exploitation of environmental heterogeneity. New York, USA.: Academic Press; 1994:237-252.
    [446]Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties[J]. Biology and Fertility of Soils.1998,27:315-334.
    [447]Wiegand T, Milton SJ, Esler KJ et al. Live fast, die young:estimating size-age relations and mortality pattern of shrubs species in the semi-arid Karoo, South Africa[J]. Plant Ecology.2000,150(1-2):115-131.
    [448]Ludwig JA, Reynolds JF, Whitson PD. Size-biomass relations of several Chihuahuan Desert shrubs[J]. American midland naturalist.1975,94:451-461.
    [449]吴征镒.中国植被.北京:科学出版社;1980.
    [450]Frank PW. Life histories and community stability[J]. Ecology.1968,49(2):355-357.
    [451]Gallardo A, Parama R, Covelo F. Differences between soil ammonium and nitrate spatial pattern in six plant communities. Simulated effect on plant populations[J]. Plant and Soil.2006,279(1):333-346.
    [452]Saetre P. Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand[J]. Ecography.1999,22:183-192.
    [453]Begg J, Turner N, Kramer P. Adaptation of plants to water and high temperature stress[J]. Whiley, New York. 1980:33-42.
    [454]Jones CS. The effect of axis splitting on xylem pressure potentials and water movement in the desert shrub Ambrosia dumosa (Gray) Payne (Asteraceae)[J]. Botanical Gazette.1984,145(1):125-131.
    [455]王继和,吴春荣,张盹明等.甘肃荒漠区濒危植物绵刺生理生态学特性的研究[J].中国沙漠.2000,20(04):53-59.
    [456]侯艳伟,王迎春,杨持等.绵刺(Potaninia mongolica)劈裂生长的形态发生及内部解剖结构特征的研究[J].中国沙漠.2006,26(02):254-258.
    [457]Evenari M, Shanan L, Tadmor N. The Negev:the challenge of a desert. Cambridge,Massachusetts:Harvard University Press; 1982.
    [458]Ginzburg C. Some anatomic features of splitting of desert shrubs[J]. Phytomorphol.1963,13:92-97.
    [459]赵铁桥(译),Cox CB, Moore PD生物地理学-生态和进化的途径( Biogeography:An Ecological and Evolutionary Approach). 北京:高等教育出版社; 2007.
    [460]Francis CF, Thornes JB, Romero Diaz A et al. Topographic control of soil moisture, vegetation cover and land degradation in a moisture stressed Mediterranean environment[J]. Catena.1986,13:211-225.
    [461]苏金华,刘福英,王璐等.内蒙古西鄂尔多斯孑遗植物富集带牧农区生物多样性及其保护途径[J].农业环境科学学报.2006,25(S1):285-289.
    [462]熊小刚,韩兴国.内蒙古退化草原中与小叶锦鸡儿相关的小尺度土壤碳、氮资源异质性动态[J].生态学报.2006,26(02):483-488.
    [463]Whitford WG, Freckman DW. The role of soil biota in soil processes in the Chihuahuan desert[J]. Arid Lands: Today and Tomorrow. Eds. EE Whitehead, CG Hutchinson, BN Timmerman and RG Varady.1988: 1063-1073.
    [464]TielbOrger K, Kadmon R. Relationships between shrubs and annual communities in a sandy desert ecosystem:a three-year study[J]. Plant Ecology.1997,130(2):191-201.
    [465]Pugnaire F, Haase P, Puigdefabregas J et al. Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in a semi-arid environment in south-east Spain[J]. Oikos.1996,76(3):455-464.
    [466]Wilby A, Shachak M. Shrubs, granivores and annual plant community stability in an arid ecosystem[J]. Oikos. 2004,106(2):209-216.
    [467]Corbineau F, Belaid D, Come D. Dormancy of Bromus rubens L. seeds in relation to temperature, light and oxygen effects[J]. Weed Research.2006,32(4):303-310.
    [468]Gutterman Y. Phenotypic germination plasticity related to caryopsis size in Schismus arabicus[J]. Seed Science Research.2007,11(02):173-178.
    [469]Rodriguez-Iturbe I. Ecohydrology:A hydrologic perspective of climate-soil-vegetation dynamics[J]. Water Resources Research.2000,36(1):3-9.
    [470]Sharifi MR, Meinzer FC, Nilsen ET et al. Effect of manipulation of water and nitrogen supplies on the quantitative phenology of Larrea tridentata (creosote bush) in the Sonoran Desert of California[J]. American Journal of Botany.1988,75(8):1163-1174.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.