常染色体显性遗传非综合症型耳聋基因的定位与突变筛查
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋是导致言语交流障碍的常见疾病,在世界范围发病率是每1,000名新生儿中就有一名先天性耳聋的患者,其中有50%是由遗传因素引起的。从20世纪90年代至今,引发遗传性耳聋的基因的定位与克隆取得了突破性的进展。研究表明,耳聋有着高度的遗传异质性,涉及众多的基因。尽管耳聋基因的发现已经取得了显著进步,但还有未知的耳聋基因等待我们去发现,对已知耳聋基因的功能仍需深入研究。对遗传性耳聋致病基因以及它们的分子遗传机制的研究,无论是对阐明人类听觉功能的分子机制,还是对耳聋的临床防治,都具有重要的意义。
     遗传性耳聋分为综合征型和非综合征型,其中非综合征型耳聋又分为常染色体显性遗传(DFNA,约70%)、常染色体隐性遗传(DFNB,约15~20%)、x染色体连锁遗传(DFN)和线粒体突变(小于1%)。
     在本研究中,我们利用了经典的连锁分析的方法,对1个常染色体显性遗传的非综合征型耳聋(DFNA)大家系NMG-L024,进行了相关耳聋基因的定位研究和突变筛查。该家系6代相传,患病个体表现为常染色体显性感音性进行性耳聋,患病初期为高频下降,逐渐引起全频下降并最终耳聋。
     实验采用常染色体上的微卫星标记对家系的全基因组扫描和连锁分析,结果表明该家系的致病基因被定位于7号染色体的短臂端7p15.1—7p15.3区域。选取该区域的9个微卫星标记进行精细定位的研究,利用其中的6个微卫星标记对家系作了单倍型分析,发现患者个体Ⅳ:2在D7S629,Ⅳ:16、Ⅳ:17在D7S526的位置上发生了交换,在D7S2457的位置得到了最大的LOD值5.39(θ=0)。从而将该致病基因定位于微卫星标记D7S629和D7S526之间的12cM区域。
     在此区域当中,DFNA5被作为首选的候选基因进行突变位点的筛查。通过测序的方法,我们在DFNA5基因中发现了与NMG-L024家系表型共分离的1个新的突变位点—ⅣS8+4 A→G。我们对整个家系和选取的100个纯音测听正常人对照进行了该位点的酶切检测,均证明了只有家系中的病人发生了该位点的突变。同时,在DFNA5基因的所有外显子以及外显子前后100bp的区域内没有发现别的突变位点。
     家系病人的RNA反转录试验结果显示,在转录水平上检测到了外显子8的缺失。该结果进一步证明了家系定位的正确性。
     DFNA5基因的功能研究至今没有取得确定的结论,我们希望进一步的工作能够揭开该谜团。
Hearing loss is a common sensory disorder in the human population, approximately 1 in 1000 children is affected by severe or profound hearing loss at birth or during early childhood (prelingual deafness). Congenital deafness in at least 50% of subjects in developed countries is attributed to genetic defects. From 1990 till now, location and cloning of genes related to the hereditary hearing loss have developped so quickly. Hereditary hearing loss is a most common genetic disease in Otorhinolaryngology, also a paradigm of genetic heterogeneity. Although significant advances have been made, there is no doubt that more genes are to be discovered, and the function of the genes should be studied. Study on hereditary hearing loss genes and the molecular mechanism processes involved in the auditory system is important for both clarifying the molecular mechanism of heating and clinical prevention and cure of deafness.
     Hereditary heating loss is classified as nonsyndromic and syndromic types. Nonsyndromic hearing impairment can be subdivided by the mode of inheritance: 70% of causes are autosomal recessive (DFNB), 15~20% are autosomal dominant (DFNA), and less then 1% are X-linked (DFN) and mitochondrial inheritance. Remarkable progress has been made in the identification of new loci for nonsyndromic hearing impairment (NSHL) and in the cloning of deafness genes.
     In this research, we adopted classical linkage analysis method in mapping the locus for a Chinese DFNA family—NMG-L024 and screen the mutation。The Chinese family with six generations affected members are autosomal dominant progressive sensorineural hearing loss starting in the high frequencies then the mid and low frequencies.
     Whole genome scan and linkage analysis were performed, in which autosomal microsatellite markers were used. The disease gene causing hearing loss in this family was localized to the short arm of chromosome 7, in the 7p15.1—7p15.3. Fine mapping with nine STR in the region was performed, and six of them were used to do hyplotype. The result indicated that the crossing over happened in the affected numberⅣ∶2 in D7S629, andⅣ∶16,Ⅳ∶17 in D7S526. The disease gene was located within a 12 cM region between markers D7s629 and D7s526, with a maximum two-point lod (logarithm of differences) score of 5.39 (θ=0) at D7s2457.
     Within this region, DFNA5 gene located in 7p15 was considered to be a good candidate of disease-causing gene. By sequencing the coding and flanking region of DFNA5, a novel mutationⅣS8+4 A→G was detected, and no other mutation in any other part of DFNA5 has ever been found. Restriction digestion test in this mutation for whole family members and 100 normal control showed that the mutation was detected only in the cases of this family.
     Skipping of exon 8 in the DFNA5 gene has been determined through RT-PCR.
     However, till now, the function of the DFNA5 gene has not been known. More work should be done. We hope to find the truth.
引文
1.奥斯泊,F,R.布伦特,R.E.金斯顿,D.D.穆尔,J.G塞德曼,J.A.史密斯,K斯特拉尔.1999.精编分子生物学实验指南.科学出版社.北京
    2.戴朴,遗传性耳聋的分子诊断和遗传咨询,实用医学杂志2005,21(2):116-118。
    3.黄选兆、汪吉宝主编.《实用耳鼻咽喉科学》,北京:人民卫生出版社,1998年。
    4.金冬雁、黎孟枫等译,《分子克隆实验指南》,北京:·科学出版社.,1998年.第二版。
    5.谢鼎华,、杨伟炎主编.《耳聋的基础与临床》.长沙:湖南科学技术出版社,2004.
    6. Akino K, Toyota M, Suzuki H et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 2006.
    7. Akino K, Toyota M, Suzuki H et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 2007;98:88-95.
    8.Basan H, Gumnusderelioglu M, Orbey T. Diclofenac sodium releasing pH-sensitive monolithic devices. Int J Pharm. 2002;245:191-198.
    9. Baydoun L, Muller-Goymann CC. Influence of n-octenylsuccinate starch on in vitro permeation of sodium diclofenac across excised porcine cornea in comparison to Voltaren ophtha. Eur J Pharm Biopharm. 2003;56:73-79.
    10. Bennett MH, Kertesz T, Yeung P. Hyperbaric oxygen for idiopathic sudden sensorineural hearing loss and tinnitus. Cochrane Database Syst Rev. 2007;CD004739
    11. Birkenhager R, Aschendorff A, Schipper J, Laszig R. [Non-syndromic hereditary hearing impairment]. Laryngorhinootologie. 2007;86:299-309.
    12. Bischoff AM, Luijendijk MW, Huygen PL et al. A novel mutation identified in the DFNA5 gene in a Dutch family: a clinical and genetic evaluation. Audiol Neurootol. 2004;9:34-46.13. BitneroGlindzicz M. Hereditary deafness and phenotyping in humans.Br Med Bull. 2002;63:73-94.
    13.Bitner-Glindzicz M.Hereditary deafness and phenotyping in humans.Br Med Bull.2002;63:73-94.
    14. Blanton SH, Liang CY, Cai MW et al. A novel locus for autosomal dominant non-syndromic deafness (DFNA41) maps to chromosome 12q24-qter. J Med Genet. 2002;39:567-570.
    15. Born S J, Kunst HP, Huygen PL, Cremers FP, Cremers CW. Non-syndromal autosomal dominant hearing impairment: ongoing phenotypical characterization of genotypes. Br J Audiol. 1999;33:335-348.
    16. Bonsch D, Scheer P, Neumann C et al. A novel locus for autosomal dominant, non-syndromic hearing impairment (DFNA18) maps to chromosome 3q22 immediately adjacent to the DM2 locus. Eur J Hum Genet. 2001;9:165-170.
    17. Borg E, Samuelsson E, Dahl N. Audiometric characterization of a family with digenic autosomal, dominant, progressive sensorineural hearing loss. Acta Otolaryngol. 2000;120:51-57.
    18. Busch-Nentwich E, Sollner C, Roehl H, Nicolson T. The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish. Development. 2004;131:943-951.
    19. De Leenheer EM, van Zuijlen DA, Van LL et al. Clinical features of DFNA5. Adv Otorhinolaryngol. 2002;61:53-59.
    20. Delmaghani S, del Castillo FJ, Michel V et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet. 2006;38:770-778.
    21. Dou H, Finberg K, Cardell EL, Lifton R, Choo D. Mice lacking the BI subunit of H+ -ATPase have normal hearing. Hear Res. 2003; 180:76-84.
    22. Duno M, Hove H, Kirchhoff M, Devriendt K, Schwartz M. Mapping genomic deletions down to the base: a quantitative copy number scanning approach used to characterise and clone the breakpoints of a recurrent 7pl4.2pl5.3 deletion. Hum Genet. 2004; 115:459-467.
    23. Feng Y, He C, Xiao J et al. An analysis of a large hereditary postlingually deaf families and detecting mutation of the deafness genes. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2002;16:323-325.
    24. Flex E, Mangino M, Mazzoli M et al. Mapping of a new autosomal dominant non-syndromic hearing loss locus (DFNA43) to chromosome 2pl2. J Med Genet. 2003;40:278-281.
    25. Frykholm C, Larsen HC, Dahl N, Klar J, Rask-Andersen H, Friberg U. Familial Meniere's disease in five generations. Otol Neurotol. 2006;27:681-686.
    26. Govaerts PJ, De CG, Daemers K et al. A new autosomal-dominant locus (DFNA12) is responsible for a nonsyndromic, midfrequency, prelingual and nonprogressive sensorineural hearing loss. Am J Otol. 1998;19:718-723.
    27. Gregan J, Van LL, Lieto LD, Van CG, Kearsey SE. A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment. Biochim Biophys Acta. 2003;1638:179-186.
    28. Haynes DS, O'Malley M, Cohen S, Watford K, Labadie RF. Intratympanic dexamethasone for sudden sensorineural hearing loss after failure of systemic therapy. Laryngoscope. 2007;117:3-15.
    29. Hair A, Razin SV, Vasetskii ES. [3]. Ontogenez. 2002;33:85-89.
    30 Huygen PL, Bom SJ, Van CG, Cremers CW. Clinical presentation of the DFNA loci where causative genes have not yet been cloned. DFNA4, DFNA6/14, DFNA7, DFNA16, DFNA20 and DFNA21. Adv Otorhinolaryngol. 2002;61:98-106.
    31. Jia SB, Tang LS. [4]. Hunan Yi Ke Da Xue Xue Bao. 2001;26:131-132.
    32. Kaderavek JN, Pakulski LA. Facilitating literacy development in young children with hearing loss. Semin Speech Lang. 2007;28:69-78.
    33. Kastury K, Taylor WE, Gutierrez M et al. Chromosomal mapping of two members of the human dynein gene family to chromosome regions 7p15 and 11q13 near the deafness loci DFNA 5 and DFNA 11. Genomics. 1997;44:362-364.
    34. Katoh M, Katoh M. Identification and characterization of human DFNA5L, mouse Dfna51, and rat Dfna51 genes in silico. Int J Oncol. 2004;25:765-770.
    35. Keats BJ, Berlin CI. Genomics and hearing impairment. Genome Res. 1999;9:7-16.
    36. Kelsell DP, Dunlop J, Stevens HP et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997;387:80-83.
    37. Kemperman MH, De Leenheer EM, Huygen PL et al. A Dutch family with hearing loss linked to the DFNA20/26 locus: longitudinal analysis of hearing impairment. Arch Otolaryngol Head Neck Surg. 2004;130:281-288.
    38. Kitamura K, Takahashi K, Tamagawa Y et al. Deafness genes. J Med Dent Sci. 2000;47:1-11.
    39. Lage H, Helmbach H, Grottke C, Dietel M, Schadendorf D. DFNA5 (ICERE-1) contributes to acquired etoposide resistance in melanoma cells. FEBS Lett. 2001;494:54-59.
    40. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860-921.
    41. Leon PE, Raventos H, Lynch E, Morrow J, King MC. The gene for an inherited form of deafness maps to chromosome 5q31. Proc Natl Acad Sci U S A. 1992;89:5181-5184.
    42. Macchia PE, Lapi P, Krude H, et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet, 1998; 19:83-86
    43. Maeda Y, Fukushima K, Kasai N, Maeta M, Nishizaki K. Quantification of TECTA and DFNA5 expression in the developing mouse cochlea. Neuroreport. 2001; 12:3223-3226.
    44. Mangino M, Rex E, Capon F et al. Mapping of a new autosomal dominant nonsyndromic hearing loss locus (DFNA30) to chromosome 15q25-26. Eur J Hum Genet. 2001;9:667-671.
    45. Mansouri A, Chowdhury K, Gruss ? Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet, 1998;19:87-90
    46. Marazita ML, Ploughman LM, Rawlings B, Remington E, Amos KS, Nance WE. Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet. 1993;46:486491.
    47. Masuda Y, Futamura M, Kamino H et al. The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. J Hum Genet. 2006;51:652-664.
    48. McGuirt WT, Lesperance MM, Wilcox ER, Chen AH, Van CG, Smith RJ. Characterization of autosomal dominant non-syndromic hearing loss loci: DFNA 4, 6, 10 and 13. Adv Otorhinolaryngol. 2000;56:84-96.
    49. Mehl AL, Thomson V. Newborn hearing screening: the great omisiion. Pediatrics. 1998;101:1-6.
    50. Mehl AL, Thomson V. The Colorado newborn hearing screening project, 1992-1999: on the treshold of effective population-based universal newborn hearing screening. Pediatrics. 2002;109:1-8.
    51. Mirghomizadeh F, Bardtke B, Devoto M et al. Second family with hearing impairment linked to 19q13 and refined DFNA4 localisation. Eur J Hum Genet. 2002;10:95-99.
    52. Modamio-Hoybjor S, Moreno-Pelayo MA, Mencia A et al. A novel locus for autosomal dominant nonsyndromic hearing loss (DFNA44) maps to chromosome 3q28-29. Hum Genet. 2003;112:24-28.
    53. Morton NE. Genetic epidemiology of hearing impairment. Ann N Y Acad Sci. 1991;630:16-31.
    54. Neiswanger K, Deleyiannis FW, Avila JR et al. Candidate genes for oral-facial clefts in Guatemalan families. Ann Plast Surg. 2006;56:518-521.
    55. Nishikori T, Hatta T, Kawauchi H, Otani H. Apoptosis during inner ear development in human and mouse embryos: an analysis by computer-assisted three-dimensional reconstruction. Anat Embryol (Berl). 1999;200:19-26.
    56 O'Neill ME, Marietta J, Nishimura D, et al. A gene for autosomal dominant late-onset progressive non-syndromic hearing loss, DFNA10, maps to chromosome 6. Hum Mol Genet. 1996 Jun;5(6):853-6.
    57. Palomo ME, Ballesteros MP, Frutos P. Solvent and plasticizer influences on ethylcellulose-microcapsules. J Microencapsul. 1996; 13:307-318.
    58. Palomo ME, Ballesteros MP, Frutos P. Analysis of diclofenac sodium and derivatives. J Pharm Biomed Anal. 1999;21:83-94.
    59. Petersen MB. Non-syndromic autosomal-dominant deafness. Clin Genet. 2002;62:1-13.
    60. Piao H, Kamiya N, Watanabe J et al. Oral delivery of diclofenac sodium using a novel solid-in-oil suspension. Int J Pharm. 2006;313:159-162.
    61. Plum A, Winterhager E, Pesch J et al. Connexin31-deficiency in mice causes transient placental dysmorphogenesis but does not impair hearing and skin differentiation. Dev Biol. 2001;231:334-347.
    62. Saunders JE, Vaz S, Greinwald JH, Lai J, Morin L, Mojica K. Prevalence and etiology of hearing loss in rural Nicaraguan children. Laryngoscope. 2007;117:387-398.
    63. Shimazaki J, Fujishima H, Yagi Y, Tsubota K. Effects of diclofenac eye drops on corneal epithelial structure and function after small-incision cataract surgery. Ophthalmology. 1996;103:50-57.
    64. Shimazaki J, Saito H, Yang HY, Toda I, Fujishima H, Tsubota K. Persistent epithelial defect following penetrating keratoplasty: an adverse effect of diclofenac eyedrops. Cornea. 1995;14:623-627.
    65. Shoji N, Oshika T, Masuda K. Inflammatory reaction via arachidonic acid cascade after intravitreal injection of endothelin-1. Curr Eye Res. 1998;17:205-210.
    66. Steel KP, Kros CJ. A genetic approach to understanding auditory function. Nat Genet. 2001;27:143-149.
    67. Sun HJ, Tao R, Cheng J et al. [Mapping of gene underlying autosomal dominant non-syndromic hearing loss(DFNA)]. Yi Chuan. 2006;28:1489-1494.
    68. Sun Q, Zhang LQ, He FC. Progress of researches on gene function of GSDMDC family. Yi Chuan. 2006;28:596-600.
    69. Tamura M, Tanaka S, Fujii T et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics. 2007;89:618-629.
    70. Terwilliger JD, Speer M, Ott J. Chromosome-based method for rapid computer simulation in human genetic linkage analysis. Genet Epidemiol. 1993;10:217-224.
    71. Thompson DA, Weigel RJ. Characterization of a gene that is inversely correlated with estrogen receptor expression (ICERE-1) in breast carcinomas. Eur J Biochem. 1998;252:169-177.
    72. Tsuchiya T, Ayaki M, Onishi T, Kageyama T, Yaguchi S. Three-year prospective randomized study of incidence of posterior capsule opacification in eyes treated with topical diclofenac and betamethasone. Ophthalmic Res. 2003;35:67-70.
    73. Turker S, Erdogan S, Ozer AY et al. Scintigraphic imaging of radiolabelled drug delivery systems in rabbits with arthritis. Int J Pharm. 2005;296:34-43.
    74. Van CG, Coucke P, Balemans W et al. Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7pl5. Hum Mol Genet. 1995;4:2159-2163.
    75. Van CG, Coucke PJ, Van HP et al. DFNA 2,5, 8,12. Adv Otorhinolaryngol. 2000;56:68-77.
    76. Van LL, DeStefano AL, Myers RH et al. Is DFNA5 a susceptibility gene for age-related hearing impairment? Eur J Hum Genet. 2002;10:883-886.
    77. Van LL, Huizing EH, Verstreken M et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat Genet. 1998;20:194-197.
    78. Van LL, Meyer NC, Malekpour M et al. A novel DFNA5 mutation does not cause hearing loss in an Iranian family. J Hum Genet. 2007.
    79. Van LL, Pfister M, Thys S et al. Mice lacking Dfna5 show a diverging number of cochlear fourth row outer hair cells. Neurobiol Dis. 2005;19:386-399.
    80. Van LL, Van CG, van ZD et al. Refined mapping of a gene for autosomal dominant progressive sensorineural hearing loss (DFNA5) to a 2-cM region, and exclusion of a candidate gene that is expressed in the cochlea. Eur J Hum Genet. 1997;5:397-405.
    81. Van LL, Vrijens K, Thys S et al. DFNA5: hearing impairment exon instead of hearing impairment gene? J Med Genet. 2004;41:401-406.
    82. Van LLK, Smith RJ, Van CG Nonsyndromic hearing loss. Ear Hear. 2003;24:275-288.
    83. Vermeire K, Brokx JP, Wuyts FL et al. Good speech recognition and quality-of-life scores after cochlear implantation in patients with DFNA9. Otol Neurotol. 2006;27:44-49.
    84. Waldman ID, Gizer IR. The genetics of attention deficit hyperactivity disorder. Clin Psychol Rev. 2006;26:396-432.
    85. Wang QJ, Lu CY, Li N et al. Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family. J Med Genet. 2004;41 :e80.
    86. Weiser M, Davidson M, Noy S. Comments on risk for schizophrenia. Schizophr Res. 2005;79:15-21.
    87. Wohl M, Purper-Ouakil D, Mouren MC, Ades J, Gorwood P. Meta-analysis of candidate genes in attention-deficit hyperactivity disorder. Encephale. 2005;31:437-447.
    88. Xia J, Deng H, Feng Y et al. A novel locus for autosomal dominant nonsyndromic hearing loss identified at 5q31.1-32 in a Chinese pedigree. J Hum Genet. 2002;47:635-640.
    89. Xia JH, Liu CY, Tang BS et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet. 1998;20:370-373.
    90. Xiao S, Yu C, Chou X et al. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet. 2001;27:201-204.
    91. Yu C, Meng X, Zhang S, Zhao G, Hu L, Kong X. A 3-nucleotide deletion in the polypyrimidine tract of intron 7 of the DFNA5 gene causes nonsyndromic hearing impairment in a Chinese family. Genomics. 2003;82:575-579.
    1.陈竺,黄薇,傅刚,等.人类基因组计划现状与展望[J].自然杂志,22(3):125—132.
    2.丁立,刘国仰,杨焕明.人类基因组计划中的外显子捕获技术[J].遗传,1998,20(3): 35—37.
    3.管峰,茆达干.微卫星的构成及其检测技术.生物学杂志.2004,Apr,V01.21 No.2
    4.骆建新,郑崛村,马用信,等.人类基因组计划与后基因组时代[J].中国生物工程杂志,2003,23(11):87—94.
    5.刘万青,贺林。SNP-为人类基因组描绘新的蓝图。遗传HEREDITAS(Beijing)1998,20(6):38~40
    6.刘万清,贺林.自动化大规模基因组扫描与连锁分析[J].生命科学,1998,10(5):233—235.
    7. Abel K, Reneland R, Kammerer Set al. Genome-wide SNP association: identification of susceptibility alleles for osteoarthritis. Autoimmun Rev 2006 April;5(4):258-63.
    8. Altshuler D, Pollara VJ, Cowles CR et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 2000 September 28;407(6803):513-6.
    9.Bemig T, Chanock SJ. Challenges of SNP genotyping and genetic variation: its future role indiagnosis and treatment of cancer. Expert Rev Mol Diagn 2006 May;6(3):319-31.
    10. Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 2006 March;51(2):253-65.
    11. Chatterjee M, Chakraborty T, Tassone P. Multiple myeloma: monoclonal antibodies-based immunotherapeuticstrategiesandtargetedradiotherapy.EurJCancer2006 July;42(11):1640-52.
    12. Cohen DI, Hedrick SM, Nielsen EA et al. Isolation of a cDNA clone corresponding to an X-linked gene family (XLR) closely linked to the murine immunodeficiency disorder xid. Nature 1985 March 28;314(6009):369-72.
    13. Colombo G, Lobina C, Carai MA, Gessa GL. Phenotypic characterization of genetically selected Sardinian alcohol-preferring (sP) and-non-preferring (sNP) rats. Addict Biol 2006 September;11(3-4):324-38.
    14. Darras BT, Francke U. A partial deletion of the muscular dystrophy gene transmitted twice by an unaffected male. Nature 1987 October 8;329(6139):556-8.
    15. de Azeredo-Espin AM, Lessinger AC. Genetic approaches for studying myiasis-causing flies: molecular markers and mitochondrial genomics. Genetica 2006 January;126(1-2):111-31.
    16. De GM, Viprakasit V, Hughes JR et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 2006 May 26;312(5777):1215-7.
    17. DiLella AG, Marvit J, Brayton K, Woo SL. An amino-acid substitution involved in phenylketonuria is in linkage disequilibrium with DNA haplotype 2. Nature 1987 May 28;327(6120):333-6.
    18. Engle LJ, Simpson CL, Landers JE. Using high-throughput SNP technologies to study cancer. Oncogene 2006 March 13;25(11):1594-601.
    19. Erdos M, Marodi L. [1]. Orv Hetil 2006 April 30;147(17):799-804.
    20. Fogt R. [2]. Wiad Parazytol 2006;52(1):31-5.
    21. Foppen JW, Schijven JF. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Res 2006 February;40(3):401-26.
    22. Galetti PM, Jr., Molina WF, Affonso PR, Aguilar CT. Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica 2006 January;126(1-2):161-77.
    23. Gitschier J, Drayna D, Tuddenham EG et al. Genetic mapping and diagnosis of haemophilia A achieved through a BclI polymorphism in the factor VIII gene. Nature 1985 April 25;314(6013):738-40.
    24. Goedecke N, McKenna B, El-Difrawy S et al. Microdevice DNA forensics by the simple tandem repeat method. J Chromatogr A 2006 April 14;111(2):206-13.
    25. Gura T. Genetics. SNP-ing drugs to size. Science 2001 July 27;293(5530):595.
    26. Grodzicher,T.,Williams,J.Cold Spring Harbor Sympon Quan.Biol., 1974, 39,439
    27. Hagmann M. Human genome. A good SNP may be hard to find. Science 1999 July 2;285(5424):21-2.
    28. Higuchi R, von Beroldingen CH, Sensabaugh GF, Erlich HA. DNA typing from single hairs. Nature 1988 April 7;332(6164):543-6.
    29. Jaskunas SR, Lindahl L, Nomura M. Identification of two copies of the gene for the elongation factor EF-Tu in E. coli. Nature 1975 October 9;257(5526):458-62.
    30. Jones GH, Roussos E, Krupp N et al Enceladus' varying imprint on the magnetosphere of Saturn. Science 2006 March 10;311(5766):1412-5.
    31. Kennedy JL, Giuffra LA, Moises HW et al. Evidence against linkage of schizophrenia to markers on chromosome 5 in a northern Swedish pedigree. Nature 1988 November 10;336(6195):167-70.
    32. Khlestkina EK, Salina EA. [5]. Genetika 2006 June;42(6):725-36.
    33. Knowlton RG, Cohen-Haguenauer O, Van CN et al. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 1985 November 28;318(6044):380-2.
    34. Konishi S, Izawa T, Lin SY et al. An SNP caused loss of seed shattering during rice domestication. Science 2006 June 2;312(5778): 1392-6.
    35. Kuhlbrandt W, Zeelen J, Dietrich J. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 2002 September 6;297(5587):1692-6.
    36. Lusser A, Brosch G, Loidl A et al. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 1997 July 4;277(5322):88-91.
    37. Masood E. As consortium plans free SNP map of human genome. Nature 1999 April 15;398(6728):545-6.
    38. Meier T, Polzer P, Diederichs K et al. Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 2005 April 29;308(5722):659-62.
    39. Nagy E, Urban E, Soki J et al. The place of molecular genetic methods in the diagnostics of human pathogenic anaerobic bacteria. A minireview. Acta Microbiol Immunol Hung 2006 June;53(2):183-94.
    40. Nau MM, Brooks BJ, Battey J et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 1985 November 7;318(6041):69-73.
    41. Olsson MO, Gausing K. Post-transciptional control of coordinated ribosomal protein synthesis in Escherichia coli. Nature 1980 February 7;283(5747):599-600.
    42. Paterson AH, Lander ES, Hewitt JD et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 1988 October 20;335(6192):721-6.
    43. Pearson PL. Historical development of analysing large-scale changes in the human genome, Cytogenet Genome Res 2006; 115(3-4): 198-204.
    44. Prieto MA, Brunetti G, Mack KH. Particle accelerators in the hot spots of radio galaxy 3C 445, imaged with the VLT. Science 2002 October 4;298(5591):193-5.
    45. Ray PN, Belfall B, Duff C et al. Cloning of the breakpoint of an X;21 translocation associated with Duchenne muscular dystrophy. Nature 1985 December 19;318(6047):672-5.
    46. Ribas G, Gonzalez-Neira A, Salas A et al. Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes. Hum Genet 2006 February;118(6):669-79.
    47. Robert B, Barton P, Minty A et al. Investigation of genetic linkage between myosin and actin genes using an interspecific mouse back-cross. Nature 1985 March 14;314(6007):181-3.
    48. Roberts L. Human genome research. SNP mappers confront reality and find it daunting. Science 2000 March 17;287(5460):1898-9.
    49. Stumpf G, Domdey H. Dependence of yeast pre-mRNA 3'-end processing on CFT1: a sequence homolog of the mammalian AAUAAA binding factor. Science 1996 November 29;274(5292):1517-20.
    50. Takashima T, Iwamoto T. [6]. Kekkaku 2006 November;81(11):693-707.
    51. Tempfer CB, Hefler LA, Schneeberger C, Huber JC. How valid is single nucleotide polymorphism (SNP) diagnosis for the individual risk assessment of breast cancer? Gynecol Endocrinoi 2006 March;22(3):155-9.
    52. Veverka J, Thomas P, Harch A et al. NEAR's flyby of 253 mathilde: images of a C asteroid. Science 1997 December 19;278(5346):2109-14.
    53. Wegner KM, Kalbe M, Kurtz J et al. Parasite selection for immunogenetic optimality. Science 2003 September 5;301(5638):1343.
    54. Weller DM, Landa BB, Mavrodi OV et al. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol (Stuttg) 2007 January;9(1):4-20.
    55. Wes PD, Bargmann CI. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 2001 April 5;410(6829):698-701.
    56. Wojciechowski AP, Farrall M, Cullen P et al. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23-q24. Nature 1991 January 10;349(6305):161-4.
    57. Zimdahl H, Nyakatura G, Brandt P et al. A SNP map of the rat genome generated from cDNA sequences. Science 2004 February 6;303(5659):807.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.